| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import unittest |
| |
| import numpy as np |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class GroupbyMissingDataMixin: |
| def test_fillna(self): |
| pdf = pd.DataFrame( |
| { |
| "A": [1, 1, 2, 2] * 3, |
| "B": [2, 4, None, 3] * 3, |
| "C": [None, None, None, 1] * 3, |
| "D": [0, 1, 5, 4] * 3, |
| } |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq( |
| psdf.groupby("A").fillna(0).sort_index(), pdf.groupby("A").fillna(0).sort_index() |
| ) |
| self.assert_eq( |
| psdf.groupby("A")["C"].fillna(0).sort_index(), |
| pdf.groupby("A")["C"].fillna(0).sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby("A")[["C"]].fillna(0).sort_index(), |
| pdf.groupby("A")[["C"]].fillna(0).sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby("A").fillna(method="bfill").sort_index(), |
| pdf.groupby("A").fillna(method="bfill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby("A")["C"].fillna(method="bfill").sort_index(), |
| pdf.groupby("A")["C"].fillna(method="bfill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby("A")[["C"]].fillna(method="bfill").sort_index(), |
| pdf.groupby("A")[["C"]].fillna(method="bfill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby("A").fillna(method="ffill").sort_index(), |
| pdf.groupby("A").fillna(method="ffill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby("A")["C"].fillna(method="ffill").sort_index(), |
| pdf.groupby("A")["C"].fillna(method="ffill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby("A")[["C"]].fillna(method="ffill").sort_index(), |
| pdf.groupby("A")[["C"]].fillna(method="ffill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby(psdf.A // 5).fillna(method="bfill").sort_index(), |
| pdf.groupby(pdf.A // 5).fillna(method="bfill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby(psdf.A // 5)["C"].fillna(method="bfill").sort_index(), |
| pdf.groupby(pdf.A // 5)["C"].fillna(method="bfill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby(psdf.A // 5)[["C"]].fillna(method="bfill").sort_index(), |
| pdf.groupby(pdf.A // 5)[["C"]].fillna(method="bfill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby(psdf.A // 5).fillna(method="ffill").sort_index(), |
| pdf.groupby(pdf.A // 5).fillna(method="ffill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby(psdf.A // 5)["C"].fillna(method="ffill").sort_index(), |
| pdf.groupby(pdf.A // 5)["C"].fillna(method="ffill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby(psdf.A // 5)[["C"]].fillna(method="ffill").sort_index(), |
| pdf.groupby(pdf.A // 5)[["C"]].fillna(method="ffill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.C.rename().groupby(psdf.A).fillna(0).sort_index(), |
| pdf.C.rename().groupby(pdf.A).fillna(0).sort_index(), |
| ) |
| self.assert_eq( |
| psdf.C.groupby(psdf.A.rename()).fillna(0).sort_index(), |
| pdf.C.groupby(pdf.A.rename()).fillna(0).sort_index(), |
| ) |
| self.assert_eq( |
| psdf.C.rename().groupby(psdf.A.rename()).fillna(0).sort_index(), |
| pdf.C.rename().groupby(pdf.A.rename()).fillna(0).sort_index(), |
| ) |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C"), ("Z", "D")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| self.assert_eq( |
| psdf.groupby(("X", "A")).fillna(0).sort_index(), |
| pdf.groupby(("X", "A")).fillna(0).sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby(("X", "A")).fillna(method="bfill").sort_index(), |
| pdf.groupby(("X", "A")).fillna(method="bfill").sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby(("X", "A")).fillna(method="ffill").sort_index(), |
| pdf.groupby(("X", "A")).fillna(method="ffill").sort_index(), |
| ) |
| |
| def test_ffill(self): |
| idx = np.random.rand(4 * 3) |
| pdf = pd.DataFrame( |
| { |
| "A": [1, 1, 2, 2] * 3, |
| "B": [2, 4, None, 3] * 3, |
| "C": [None, None, None, 1] * 3, |
| "D": [0, 1, 5, 4] * 3, |
| }, |
| index=idx, |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq( |
| psdf.groupby("A").ffill().sort_index(), pdf.groupby("A").ffill().sort_index() |
| ) |
| self.assert_eq( |
| psdf.groupby("A")[["B"]].ffill().sort_index(), |
| pdf.groupby("A")[["B"]].ffill().sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby("A")["B"].ffill().sort_index(), pdf.groupby("A")["B"].ffill().sort_index() |
| ) |
| self.assert_eq( |
| psdf.groupby("A")["B"].ffill()[idx[6]], pdf.groupby("A")["B"].ffill()[idx[6]] |
| ) |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C"), ("Z", "D")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| self.assert_eq( |
| psdf.groupby(("X", "A")).ffill().sort_index(), |
| pdf.groupby(("X", "A")).ffill().sort_index(), |
| ) |
| |
| def test_bfill(self): |
| idx = np.random.rand(4 * 3) |
| pdf = pd.DataFrame( |
| { |
| "A": [1, 1, 2, 2] * 3, |
| "B": [2, 4, None, 3] * 3, |
| "C": [None, None, None, 1] * 3, |
| "D": [0, 1, 5, 4] * 3, |
| }, |
| index=idx, |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq( |
| psdf.groupby("A").bfill().sort_index(), pdf.groupby("A").bfill().sort_index() |
| ) |
| self.assert_eq( |
| psdf.groupby("A")[["B"]].bfill().sort_index(), |
| pdf.groupby("A")[["B"]].bfill().sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby("A")["B"].bfill().sort_index(), |
| pdf.groupby("A")["B"].bfill().sort_index(), |
| ) |
| self.assert_eq( |
| psdf.groupby("A")["B"].bfill()[idx[6]], pdf.groupby("A")["B"].bfill()[idx[6]] |
| ) |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C"), ("Z", "D")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| self.assert_eq( |
| psdf.groupby(("X", "A")).bfill().sort_index(), |
| pdf.groupby(("X", "A")).bfill().sort_index(), |
| ) |
| |
| def test_dropna(self): |
| pdf = pd.DataFrame( |
| {"A": [None, 1, None, 1, 2], "B": [1, 2, 3, None, None], "C": [4, 5, 6, 7, None]} |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| for dropna in [True, False]: |
| for as_index in [True, False]: |
| if as_index: |
| |
| def sort(df): |
| return df.sort_index() |
| |
| else: |
| |
| def sort(df): |
| return df.sort_values("A").reset_index(drop=True) |
| |
| self.assert_eq( |
| sort(psdf.groupby("A", as_index=as_index, dropna=dropna).std()), |
| sort(pdf.groupby("A", as_index=as_index, dropna=dropna).std()), |
| ) |
| |
| self.assert_eq( |
| sort(psdf.groupby("A", as_index=as_index, dropna=dropna).B.std()), |
| sort(pdf.groupby("A", as_index=as_index, dropna=dropna).B.std()), |
| ) |
| self.assert_eq( |
| sort(psdf.groupby("A", as_index=as_index, dropna=dropna)["B"].std()), |
| sort(pdf.groupby("A", as_index=as_index, dropna=dropna)["B"].std()), |
| ) |
| |
| self.assert_eq( |
| sort( |
| psdf.groupby("A", as_index=as_index, dropna=dropna).agg( |
| {"B": "min", "C": "std"} |
| ) |
| ), |
| sort( |
| pdf.groupby("A", as_index=as_index, dropna=dropna).agg( |
| {"B": "min", "C": "std"} |
| ) |
| ), |
| ) |
| |
| for dropna in [True, False]: |
| for as_index in [True, False]: |
| if as_index: |
| |
| def sort(df): |
| return df.sort_index() |
| |
| else: |
| |
| def sort(df): |
| return df.sort_values(["A", "B"]).reset_index(drop=True) |
| |
| self.assert_eq( |
| sort( |
| psdf.groupby(["A", "B"], as_index=as_index, dropna=dropna).agg( |
| {"C": ["min", "std"]} |
| ) |
| ), |
| sort( |
| pdf.groupby(["A", "B"], as_index=as_index, dropna=dropna).agg( |
| {"C": ["min", "std"]} |
| ) |
| ), |
| almost=True, |
| ) |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| for dropna in [True, False]: |
| for as_index in [True, False]: |
| if as_index: |
| |
| def sort(df): |
| return df.sort_index() |
| |
| else: |
| |
| def sort(df): |
| return df.sort_values(("X", "A")).reset_index(drop=True) |
| |
| sorted_stats_psdf = sort( |
| psdf.groupby(("X", "A"), as_index=as_index, dropna=dropna).agg( |
| {("X", "B"): "min", ("Y", "C"): "std"} |
| ) |
| ) |
| sorted_stats_pdf = sort( |
| pdf.groupby(("X", "A"), as_index=as_index, dropna=dropna).agg( |
| {("X", "B"): "min", ("Y", "C"): "std"} |
| ) |
| ) |
| self.assert_eq(sorted_stats_psdf, sorted_stats_pdf) |
| |
| |
| class GroupbyMissingDataTests( |
| GroupbyMissingDataMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.groupby.test_missing_data import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |