| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import unittest |
| |
| import pandas as pd |
| import numpy as np |
| import pyspark.pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.pandas.groupby import SeriesGroupBy |
| |
| |
| class GroupingTestsMixin: |
| def test_get_group(self): |
| pdf = pd.DataFrame( |
| [ |
| ("falcon", "bird", 389.0), |
| ("parrot", "bird", 24.0), |
| ("lion", "mammal", 80.5), |
| ("monkey", "mammal", np.nan), |
| ], |
| columns=["name", "class", "max_speed"], |
| index=[0, 2, 3, 1], |
| ) |
| pdf.columns.name = "Koalas" |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq( |
| psdf.groupby("class").get_group("bird"), |
| pdf.groupby("class").get_group("bird"), |
| ) |
| self.assert_eq( |
| psdf.groupby("class")["name"].get_group("mammal"), |
| pdf.groupby("class")["name"].get_group("mammal"), |
| ) |
| self.assert_eq( |
| psdf.groupby("class")[["name"]].get_group("mammal"), |
| pdf.groupby("class")[["name"]].get_group("mammal"), |
| ) |
| self.assert_eq( |
| psdf.groupby(["class", "name"]).get_group(("mammal", "lion")), |
| pdf.groupby(["class", "name"]).get_group(("mammal", "lion")), |
| ) |
| self.assert_eq( |
| psdf.groupby(["class", "name"])["max_speed"].get_group(("mammal", "lion")), |
| pdf.groupby(["class", "name"])["max_speed"].get_group(("mammal", "lion")), |
| ) |
| self.assert_eq( |
| psdf.groupby(["class", "name"])[["max_speed"]].get_group(("mammal", "lion")), |
| pdf.groupby(["class", "name"])[["max_speed"]].get_group(("mammal", "lion")), |
| ) |
| self.assert_eq( |
| (psdf.max_speed + 1).groupby(psdf["class"]).get_group("mammal"), |
| (pdf.max_speed + 1).groupby(pdf["class"]).get_group("mammal"), |
| ) |
| self.assert_eq( |
| psdf.groupby("max_speed").get_group(80.5), |
| pdf.groupby("max_speed").get_group(80.5), |
| ) |
| |
| self.assertRaises(KeyError, lambda: psdf.groupby("class").get_group("fish")) |
| self.assertRaises(TypeError, lambda: psdf.groupby("class").get_group(["bird", "mammal"])) |
| self.assertRaises(KeyError, lambda: psdf.groupby("class")["name"].get_group("fish")) |
| self.assertRaises( |
| TypeError, lambda: psdf.groupby("class")["name"].get_group(["bird", "mammal"]) |
| ) |
| self.assertRaises( |
| KeyError, lambda: psdf.groupby(["class", "name"]).get_group(("lion", "mammal")) |
| ) |
| self.assertRaises(ValueError, lambda: psdf.groupby(["class", "name"]).get_group(("lion",))) |
| self.assertRaises( |
| ValueError, lambda: psdf.groupby(["class", "name"]).get_group(("mammal",)) |
| ) |
| self.assertRaises(ValueError, lambda: psdf.groupby(["class", "name"]).get_group("mammal")) |
| |
| # MultiIndex columns |
| pdf.columns = pd.MultiIndex.from_tuples([("A", "name"), ("B", "class"), ("C", "max_speed")]) |
| pdf.columns.names = ["Hello", "Koalas"] |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq( |
| psdf.groupby(("B", "class")).get_group("bird"), |
| pdf.groupby(("B", "class")).get_group("bird"), |
| ) |
| self.assert_eq( |
| psdf.groupby(("B", "class"))[[("A", "name")]].get_group("mammal"), |
| pdf.groupby(("B", "class"))[[("A", "name")]].get_group("mammal"), |
| ) |
| self.assert_eq( |
| psdf.groupby([("B", "class"), ("A", "name")]).get_group(("mammal", "lion")), |
| pdf.groupby([("B", "class"), ("A", "name")]).get_group(("mammal", "lion")), |
| ) |
| self.assert_eq( |
| psdf.groupby([("B", "class"), ("A", "name")])[[("C", "max_speed")]].get_group( |
| ("mammal", "lion") |
| ), |
| pdf.groupby([("B", "class"), ("A", "name")])[[("C", "max_speed")]].get_group( |
| ("mammal", "lion") |
| ), |
| ) |
| self.assert_eq( |
| (psdf[("C", "max_speed")] + 1).groupby(psdf[("B", "class")]).get_group("mammal"), |
| (pdf[("C", "max_speed")] + 1).groupby(pdf[("B", "class")]).get_group("mammal"), |
| ) |
| self.assert_eq( |
| psdf.groupby(("C", "max_speed")).get_group(80.5), |
| pdf.groupby(("C", "max_speed")).get_group(80.5), |
| ) |
| |
| self.assertRaises(KeyError, lambda: psdf.groupby(("B", "class")).get_group("fish")) |
| self.assertRaises( |
| TypeError, lambda: psdf.groupby(("B", "class")).get_group(["bird", "mammal"]) |
| ) |
| self.assertRaises( |
| KeyError, lambda: psdf.groupby(("B", "class"))[("A", "name")].get_group("fish") |
| ) |
| self.assertRaises( |
| KeyError, |
| lambda: psdf.groupby([("B", "class"), ("A", "name")]).get_group(("lion", "mammal")), |
| ) |
| self.assertRaises( |
| ValueError, |
| lambda: psdf.groupby([("B", "class"), ("A", "name")]).get_group(("lion",)), |
| ) |
| self.assertRaises( |
| ValueError, lambda: psdf.groupby([("B", "class"), ("A", "name")]).get_group(("mammal",)) |
| ) |
| self.assertRaises( |
| ValueError, lambda: psdf.groupby([("B", "class"), ("A", "name")]).get_group("mammal") |
| ) |
| |
| def test_getitem(self): |
| psdf = ps.DataFrame( |
| { |
| "a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3] * 3, |
| "b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5] * 3, |
| "c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6] * 3, |
| }, |
| index=np.random.rand(10 * 3), |
| ) |
| |
| self.assertTrue(isinstance(psdf.groupby("a")["b"], SeriesGroupBy)) |
| |
| |
| class GroupingTests( |
| GroupingTestsMixin, |
| PandasOnSparkTestCase, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.groupby.test_grouping import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |