blob: 784e9e9befc353e6dac307afc76a93bb6087df18 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import pandas as pd
import numpy as np
import pyspark.pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.pandas.groupby import SeriesGroupBy
class GroupingTestsMixin:
def test_get_group(self):
pdf = pd.DataFrame(
[
("falcon", "bird", 389.0),
("parrot", "bird", 24.0),
("lion", "mammal", 80.5),
("monkey", "mammal", np.nan),
],
columns=["name", "class", "max_speed"],
index=[0, 2, 3, 1],
)
pdf.columns.name = "Koalas"
psdf = ps.from_pandas(pdf)
self.assert_eq(
psdf.groupby("class").get_group("bird"),
pdf.groupby("class").get_group("bird"),
)
self.assert_eq(
psdf.groupby("class")["name"].get_group("mammal"),
pdf.groupby("class")["name"].get_group("mammal"),
)
self.assert_eq(
psdf.groupby("class")[["name"]].get_group("mammal"),
pdf.groupby("class")[["name"]].get_group("mammal"),
)
self.assert_eq(
psdf.groupby(["class", "name"]).get_group(("mammal", "lion")),
pdf.groupby(["class", "name"]).get_group(("mammal", "lion")),
)
self.assert_eq(
psdf.groupby(["class", "name"])["max_speed"].get_group(("mammal", "lion")),
pdf.groupby(["class", "name"])["max_speed"].get_group(("mammal", "lion")),
)
self.assert_eq(
psdf.groupby(["class", "name"])[["max_speed"]].get_group(("mammal", "lion")),
pdf.groupby(["class", "name"])[["max_speed"]].get_group(("mammal", "lion")),
)
self.assert_eq(
(psdf.max_speed + 1).groupby(psdf["class"]).get_group("mammal"),
(pdf.max_speed + 1).groupby(pdf["class"]).get_group("mammal"),
)
self.assert_eq(
psdf.groupby("max_speed").get_group(80.5),
pdf.groupby("max_speed").get_group(80.5),
)
self.assertRaises(KeyError, lambda: psdf.groupby("class").get_group("fish"))
self.assertRaises(TypeError, lambda: psdf.groupby("class").get_group(["bird", "mammal"]))
self.assertRaises(KeyError, lambda: psdf.groupby("class")["name"].get_group("fish"))
self.assertRaises(
TypeError, lambda: psdf.groupby("class")["name"].get_group(["bird", "mammal"])
)
self.assertRaises(
KeyError, lambda: psdf.groupby(["class", "name"]).get_group(("lion", "mammal"))
)
self.assertRaises(ValueError, lambda: psdf.groupby(["class", "name"]).get_group(("lion",)))
self.assertRaises(
ValueError, lambda: psdf.groupby(["class", "name"]).get_group(("mammal",))
)
self.assertRaises(ValueError, lambda: psdf.groupby(["class", "name"]).get_group("mammal"))
# MultiIndex columns
pdf.columns = pd.MultiIndex.from_tuples([("A", "name"), ("B", "class"), ("C", "max_speed")])
pdf.columns.names = ["Hello", "Koalas"]
psdf = ps.from_pandas(pdf)
self.assert_eq(
psdf.groupby(("B", "class")).get_group("bird"),
pdf.groupby(("B", "class")).get_group("bird"),
)
self.assert_eq(
psdf.groupby(("B", "class"))[[("A", "name")]].get_group("mammal"),
pdf.groupby(("B", "class"))[[("A", "name")]].get_group("mammal"),
)
self.assert_eq(
psdf.groupby([("B", "class"), ("A", "name")]).get_group(("mammal", "lion")),
pdf.groupby([("B", "class"), ("A", "name")]).get_group(("mammal", "lion")),
)
self.assert_eq(
psdf.groupby([("B", "class"), ("A", "name")])[[("C", "max_speed")]].get_group(
("mammal", "lion")
),
pdf.groupby([("B", "class"), ("A", "name")])[[("C", "max_speed")]].get_group(
("mammal", "lion")
),
)
self.assert_eq(
(psdf[("C", "max_speed")] + 1).groupby(psdf[("B", "class")]).get_group("mammal"),
(pdf[("C", "max_speed")] + 1).groupby(pdf[("B", "class")]).get_group("mammal"),
)
self.assert_eq(
psdf.groupby(("C", "max_speed")).get_group(80.5),
pdf.groupby(("C", "max_speed")).get_group(80.5),
)
self.assertRaises(KeyError, lambda: psdf.groupby(("B", "class")).get_group("fish"))
self.assertRaises(
TypeError, lambda: psdf.groupby(("B", "class")).get_group(["bird", "mammal"])
)
self.assertRaises(
KeyError, lambda: psdf.groupby(("B", "class"))[("A", "name")].get_group("fish")
)
self.assertRaises(
KeyError,
lambda: psdf.groupby([("B", "class"), ("A", "name")]).get_group(("lion", "mammal")),
)
self.assertRaises(
ValueError,
lambda: psdf.groupby([("B", "class"), ("A", "name")]).get_group(("lion",)),
)
self.assertRaises(
ValueError, lambda: psdf.groupby([("B", "class"), ("A", "name")]).get_group(("mammal",))
)
self.assertRaises(
ValueError, lambda: psdf.groupby([("B", "class"), ("A", "name")]).get_group("mammal")
)
def test_getitem(self):
psdf = ps.DataFrame(
{
"a": [1, 1, 1, 1, 2, 2, 2, 3, 3, 3] * 3,
"b": [2, 3, 1, 4, 6, 9, 8, 10, 7, 5] * 3,
"c": [3, 5, 2, 5, 1, 2, 6, 4, 3, 6] * 3,
},
index=np.random.rand(10 * 3),
)
self.assertTrue(isinstance(psdf.groupby("a")["b"], SeriesGroupBy))
class GroupingTests(
GroupingTestsMixin,
PandasOnSparkTestCase,
):
pass
if __name__ == "__main__":
from pyspark.pandas.tests.groupby.test_grouping import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)