blob: 5f18d969e05a447f7e53de0e56247a8e4d237f1d [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import numpy as np
import pandas as pd
from pyspark import pandas as ps
from pyspark.pandas.exceptions import DataError
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
class GroupbyCumulativeMixin:
def test_cumcount(self):
pdf = pd.DataFrame(
{
"a": [1, 2, 3, 4, 5, 6] * 3,
"b": [1, 1, 2, 3, 5, 8] * 3,
"c": [1, 4, 9, 16, 25, 36] * 3,
},
index=np.random.rand(6 * 3),
)
psdf = ps.from_pandas(pdf)
for ascending in [True, False]:
self.assert_eq(
psdf.groupby("b").cumcount(ascending=ascending).sort_index(),
pdf.groupby("b").cumcount(ascending=ascending).sort_index(),
)
self.assert_eq(
psdf.groupby(["a", "b"]).cumcount(ascending=ascending).sort_index(),
pdf.groupby(["a", "b"]).cumcount(ascending=ascending).sort_index(),
)
self.assert_eq(
psdf.groupby(["b"])["a"].cumcount(ascending=ascending).sort_index(),
pdf.groupby(["b"])["a"].cumcount(ascending=ascending).sort_index(),
)
self.assert_eq(
psdf.groupby(["b"])[["a", "c"]].cumcount(ascending=ascending).sort_index(),
pdf.groupby(["b"])[["a", "c"]].cumcount(ascending=ascending).sort_index(),
)
self.assert_eq(
psdf.groupby(psdf.b // 5).cumcount(ascending=ascending).sort_index(),
pdf.groupby(pdf.b // 5).cumcount(ascending=ascending).sort_index(),
)
self.assert_eq(
psdf.groupby(psdf.b // 5)["a"].cumcount(ascending=ascending).sort_index(),
pdf.groupby(pdf.b // 5)["a"].cumcount(ascending=ascending).sort_index(),
)
self.assert_eq(
psdf.groupby("b").cumcount(ascending=ascending).sum(),
pdf.groupby("b").cumcount(ascending=ascending).sum(),
)
self.assert_eq(
psdf.a.rename().groupby(psdf.b).cumcount(ascending=ascending).sort_index(),
pdf.a.rename().groupby(pdf.b).cumcount(ascending=ascending).sort_index(),
)
self.assert_eq(
psdf.a.groupby(psdf.b.rename()).cumcount(ascending=ascending).sort_index(),
pdf.a.groupby(pdf.b.rename()).cumcount(ascending=ascending).sort_index(),
)
self.assert_eq(
psdf.a.rename().groupby(psdf.b.rename()).cumcount(ascending=ascending).sort_index(),
pdf.a.rename().groupby(pdf.b.rename()).cumcount(ascending=ascending).sort_index(),
)
# multi-index columns
columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")])
pdf.columns = columns
psdf.columns = columns
for ascending in [True, False]:
self.assert_eq(
psdf.groupby(("x", "b")).cumcount(ascending=ascending).sort_index(),
pdf.groupby(("x", "b")).cumcount(ascending=ascending).sort_index(),
)
self.assert_eq(
psdf.groupby([("x", "a"), ("x", "b")]).cumcount(ascending=ascending).sort_index(),
pdf.groupby([("x", "a"), ("x", "b")]).cumcount(ascending=ascending).sort_index(),
)
def test_cummin(self):
pdf = pd.DataFrame(
{
"a": [1, 2, 3, 4, 5, 6] * 3,
"b": [1, 1, 2, 3, 5, 8] * 3,
"c": [1, 4, 9, 16, 25, 36] * 3,
},
index=np.random.rand(6 * 3),
)
psdf = ps.from_pandas(pdf)
self.assert_eq(
psdf.groupby("b").cummin().sort_index(), pdf.groupby("b").cummin().sort_index()
)
self.assert_eq(
psdf.groupby(["a", "b"]).cummin().sort_index(),
pdf.groupby(["a", "b"]).cummin().sort_index(),
)
self.assert_eq(
psdf.groupby(["b"])["a"].cummin().sort_index(),
pdf.groupby(["b"])["a"].cummin().sort_index(),
)
self.assert_eq(
psdf.groupby(["b"])[["a", "c"]].cummin().sort_index(),
pdf.groupby(["b"])[["a", "c"]].cummin().sort_index(),
)
self.assert_eq(
psdf.groupby(psdf.b // 5).cummin().sort_index(),
pdf.groupby(pdf.b // 5).cummin().sort_index(),
)
self.assert_eq(
psdf.groupby(psdf.b // 5)["a"].cummin().sort_index(),
pdf.groupby(pdf.b // 5)["a"].cummin().sort_index(),
)
self.assert_eq(
psdf.groupby("b").cummin().sum().sort_index(),
pdf.groupby("b").cummin().sum().sort_index(),
)
self.assert_eq(
psdf.a.rename().groupby(psdf.b).cummin().sort_index(),
pdf.a.rename().groupby(pdf.b).cummin().sort_index(),
)
self.assert_eq(
psdf.a.groupby(psdf.b.rename()).cummin().sort_index(),
pdf.a.groupby(pdf.b.rename()).cummin().sort_index(),
)
self.assert_eq(
psdf.a.rename().groupby(psdf.b.rename()).cummin().sort_index(),
pdf.a.rename().groupby(pdf.b.rename()).cummin().sort_index(),
)
# multi-index columns
columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")])
pdf.columns = columns
psdf.columns = columns
self.assert_eq(
psdf.groupby(("x", "b")).cummin().sort_index(),
pdf.groupby(("x", "b")).cummin().sort_index(),
)
self.assert_eq(
psdf.groupby([("x", "a"), ("x", "b")]).cummin().sort_index(),
pdf.groupby([("x", "a"), ("x", "b")]).cummin().sort_index(),
)
psdf = ps.DataFrame([["a"], ["b"], ["c"]], columns=["A"])
self.assertRaises(DataError, lambda: psdf.groupby(["A"]).cummin())
psdf = ps.DataFrame([[1, "a"], [2, "b"], [3, "c"]], columns=["A", "B"])
self.assertRaises(DataError, lambda: psdf.groupby(["A"])["B"].cummin())
def test_cummax(self):
pdf = pd.DataFrame(
{
"a": [1, 2, 3, 4, 5, 6] * 3,
"b": [1, 1, 2, 3, 5, 8] * 3,
"c": [1, 4, 9, 16, 25, 36] * 3,
},
index=np.random.rand(6 * 3),
)
psdf = ps.from_pandas(pdf)
self.assert_eq(
psdf.groupby("b").cummax().sort_index(), pdf.groupby("b").cummax().sort_index()
)
self.assert_eq(
psdf.groupby(["a", "b"]).cummax().sort_index(),
pdf.groupby(["a", "b"]).cummax().sort_index(),
)
self.assert_eq(
psdf.groupby(["b"])["a"].cummax().sort_index(),
pdf.groupby(["b"])["a"].cummax().sort_index(),
)
self.assert_eq(
psdf.groupby(["b"])[["a", "c"]].cummax().sort_index(),
pdf.groupby(["b"])[["a", "c"]].cummax().sort_index(),
)
self.assert_eq(
psdf.groupby(psdf.b // 5).cummax().sort_index(),
pdf.groupby(pdf.b // 5).cummax().sort_index(),
)
self.assert_eq(
psdf.groupby(psdf.b // 5)["a"].cummax().sort_index(),
pdf.groupby(pdf.b // 5)["a"].cummax().sort_index(),
)
self.assert_eq(
psdf.groupby("b").cummax().sum().sort_index(),
pdf.groupby("b").cummax().sum().sort_index(),
)
self.assert_eq(
psdf.a.rename().groupby(psdf.b).cummax().sort_index(),
pdf.a.rename().groupby(pdf.b).cummax().sort_index(),
)
self.assert_eq(
psdf.a.groupby(psdf.b.rename()).cummax().sort_index(),
pdf.a.groupby(pdf.b.rename()).cummax().sort_index(),
)
self.assert_eq(
psdf.a.rename().groupby(psdf.b.rename()).cummax().sort_index(),
pdf.a.rename().groupby(pdf.b.rename()).cummax().sort_index(),
)
# multi-index columns
columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")])
pdf.columns = columns
psdf.columns = columns
self.assert_eq(
psdf.groupby(("x", "b")).cummax().sort_index(),
pdf.groupby(("x", "b")).cummax().sort_index(),
)
self.assert_eq(
psdf.groupby([("x", "a"), ("x", "b")]).cummax().sort_index(),
pdf.groupby([("x", "a"), ("x", "b")]).cummax().sort_index(),
)
psdf = ps.DataFrame([["a"], ["b"], ["c"]], columns=["A"])
self.assertRaises(DataError, lambda: psdf.groupby(["A"]).cummax())
psdf = ps.DataFrame([[1, "a"], [2, "b"], [3, "c"]], columns=["A", "B"])
self.assertRaises(DataError, lambda: psdf.groupby(["A"])["B"].cummax())
def test_cumsum(self):
pdf = pd.DataFrame(
{
"a": [1, 2, 3, 4, 5, 6] * 3,
"b": [1, 1, 2, 3, 5, 8] * 3,
"c": [1, 4, 9, 16, 25, 36] * 3,
},
index=np.random.rand(6 * 3),
)
psdf = ps.from_pandas(pdf)
self.assert_eq(
psdf.groupby("b").cumsum().sort_index(), pdf.groupby("b").cumsum().sort_index()
)
self.assert_eq(
psdf.groupby(["a", "b"]).cumsum().sort_index(),
pdf.groupby(["a", "b"]).cumsum().sort_index(),
)
self.assert_eq(
psdf.groupby(["b"])["a"].cumsum().sort_index(),
pdf.groupby(["b"])["a"].cumsum().sort_index(),
)
self.assert_eq(
psdf.groupby(["b"])[["a", "c"]].cumsum().sort_index(),
pdf.groupby(["b"])[["a", "c"]].cumsum().sort_index(),
)
self.assert_eq(
psdf.groupby(psdf.b // 5).cumsum().sort_index(),
pdf.groupby(pdf.b // 5).cumsum().sort_index(),
)
self.assert_eq(
psdf.groupby(psdf.b // 5)["a"].cumsum().sort_index(),
pdf.groupby(pdf.b // 5)["a"].cumsum().sort_index(),
)
self.assert_eq(
psdf.groupby("b").cumsum().sum().sort_index(),
pdf.groupby("b").cumsum().sum().sort_index(),
)
self.assert_eq(
psdf.a.rename().groupby(psdf.b).cumsum().sort_index(),
pdf.a.rename().groupby(pdf.b).cumsum().sort_index(),
)
self.assert_eq(
psdf.a.groupby(psdf.b.rename()).cumsum().sort_index(),
pdf.a.groupby(pdf.b.rename()).cumsum().sort_index(),
)
self.assert_eq(
psdf.a.rename().groupby(psdf.b.rename()).cumsum().sort_index(),
pdf.a.rename().groupby(pdf.b.rename()).cumsum().sort_index(),
)
# multi-index columns
columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")])
pdf.columns = columns
psdf.columns = columns
self.assert_eq(
psdf.groupby(("x", "b")).cumsum().sort_index(),
pdf.groupby(("x", "b")).cumsum().sort_index(),
)
self.assert_eq(
psdf.groupby([("x", "a"), ("x", "b")]).cumsum().sort_index(),
pdf.groupby([("x", "a"), ("x", "b")]).cumsum().sort_index(),
)
psdf = ps.DataFrame([["a"], ["b"], ["c"]], columns=["A"])
self.assertRaises(DataError, lambda: psdf.groupby(["A"]).cumsum())
psdf = ps.DataFrame([[1, "a"], [2, "b"], [3, "c"]], columns=["A", "B"])
self.assertRaises(DataError, lambda: psdf.groupby(["A"])["B"].cumsum())
def test_cumprod(self):
pdf = pd.DataFrame(
{
"a": [1, 2, -3, 4, -5, 6] * 3,
"b": [1, 1, 2, 3, 5, 8] * 3,
"c": [1, 0, 9, 16, 25, 36] * 3,
},
index=np.random.rand(6 * 3),
)
psdf = ps.from_pandas(pdf)
self.assert_eq(
psdf.groupby("b").cumprod().sort_index(),
pdf.groupby("b").cumprod().sort_index(),
check_exact=False,
)
self.assert_eq(
psdf.groupby(["a", "b"]).cumprod().sort_index(),
pdf.groupby(["a", "b"]).cumprod().sort_index(),
check_exact=False,
)
self.assert_eq(
psdf.groupby(["b"])["a"].cumprod().sort_index(),
pdf.groupby(["b"])["a"].cumprod().sort_index(),
check_exact=False,
)
self.assert_eq(
psdf.groupby(["b"])[["a", "c"]].cumprod().sort_index(),
pdf.groupby(["b"])[["a", "c"]].cumprod().sort_index(),
check_exact=False,
)
self.assert_eq(
psdf.groupby(psdf.b // 3).cumprod().sort_index(),
pdf.groupby(pdf.b // 3).cumprod().sort_index(),
check_exact=False,
)
self.assert_eq(
psdf.groupby(psdf.b // 3)["a"].cumprod().sort_index(),
pdf.groupby(pdf.b // 3)["a"].cumprod().sort_index(),
check_exact=False,
)
self.assert_eq(
psdf.groupby("b").cumprod().sum().sort_index(),
pdf.groupby("b").cumprod().sum().sort_index(),
check_exact=False,
)
self.assert_eq(
psdf.a.rename().groupby(psdf.b).cumprod().sort_index(),
pdf.a.rename().groupby(pdf.b).cumprod().sort_index(),
check_exact=False,
)
self.assert_eq(
psdf.a.groupby(psdf.b.rename()).cumprod().sort_index(),
pdf.a.groupby(pdf.b.rename()).cumprod().sort_index(),
check_exact=False,
)
self.assert_eq(
psdf.a.rename().groupby(psdf.b.rename()).cumprod().sort_index(),
pdf.a.rename().groupby(pdf.b.rename()).cumprod().sort_index(),
check_exact=False,
)
# multi-index columns
columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")])
pdf.columns = columns
psdf.columns = columns
self.assert_eq(
psdf.groupby(("x", "b")).cumprod().sort_index(),
pdf.groupby(("x", "b")).cumprod().sort_index(),
check_exact=False,
)
self.assert_eq(
psdf.groupby([("x", "a"), ("x", "b")]).cumprod().sort_index(),
pdf.groupby([("x", "a"), ("x", "b")]).cumprod().sort_index(),
check_exact=False,
)
psdf = ps.DataFrame([["a"], ["b"], ["c"]], columns=["A"])
self.assertRaises(DataError, lambda: psdf.groupby(["A"]).cumprod())
psdf = ps.DataFrame([[1, "a"], [2, "b"], [3, "c"]], columns=["A", "B"])
self.assertRaises(DataError, lambda: psdf.groupby(["A"])["B"].cumprod())
class GroupbyCumulativeTests(
GroupbyCumulativeMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
from pyspark.pandas.tests.groupby.test_cumulative import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)