| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import unittest |
| |
| import numpy as np |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class FrameDescribeMixin: |
| @classmethod |
| def setUpClass(cls): |
| super(FrameDescribeMixin, cls).setUpClass() |
| # Some nanosecond->microsecond conversions throw loss of precision errors |
| cls.spark.conf.set("spark.sql.execution.pandas.convertToArrowArraySafely", "false") |
| |
| @property |
| def pdf(self): |
| return pd.DataFrame( |
| {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, |
| index=np.random.rand(9), |
| ) |
| |
| @property |
| def df_pair(self): |
| pdf = self.pdf |
| psdf = ps.from_pandas(pdf) |
| return pdf, psdf |
| |
| def test_describe(self): |
| pdf, psdf = self.df_pair |
| |
| # numeric columns |
| self.assert_eq(psdf.describe(), pdf.describe()) |
| psdf.a += psdf.a |
| pdf.a += pdf.a |
| self.assert_eq(psdf.describe(), pdf.describe()) |
| |
| # string columns |
| psdf = ps.DataFrame({"A": ["a", "b", "b", "c"], "B": ["d", "e", "f", "f"]}) |
| pdf = psdf._to_pandas() |
| self.assert_eq(psdf.describe(), pdf.describe().astype(str)) |
| psdf.A += psdf.A |
| pdf.A += pdf.A |
| self.assert_eq(psdf.describe(), pdf.describe().astype(str)) |
| |
| # timestamp columns |
| psdf = ps.DataFrame( |
| { |
| "A": [ |
| pd.Timestamp("2020-10-20"), |
| pd.Timestamp("2021-06-02"), |
| pd.Timestamp("2021-06-02"), |
| pd.Timestamp("2022-07-11"), |
| ], |
| "B": [ |
| pd.Timestamp("2021-11-20"), |
| pd.Timestamp("2023-06-02"), |
| pd.Timestamp("2026-07-11"), |
| pd.Timestamp("2026-07-11"), |
| ], |
| } |
| ) |
| pdf = psdf._to_pandas() |
| self.assert_eq( |
| psdf.describe().loc[["count", "mean", "min", "max"]], |
| pdf.describe().astype(str).loc[["count", "mean", "min", "max"]], |
| ) |
| |
| # String & timestamp columns |
| psdf = ps.DataFrame( |
| { |
| "A": ["a", "b", "b", "c"], |
| "B": [ |
| pd.Timestamp("2021-11-20"), |
| pd.Timestamp("2023-06-02"), |
| pd.Timestamp("2026-07-11"), |
| pd.Timestamp("2026-07-11"), |
| ], |
| } |
| ) |
| pdf = psdf._to_pandas() |
| self.assert_eq( |
| psdf.describe().loc[["count", "mean", "min", "max"]], |
| pdf.describe().astype(str).loc[["count", "mean", "min", "max"]], |
| ) |
| psdf.A += psdf.A |
| pdf.A += pdf.A |
| self.assert_eq( |
| psdf.describe().loc[["count", "mean", "min", "max"]], |
| pdf.describe().astype(str).loc[["count", "mean", "min", "max"]], |
| ) |
| |
| # Numeric & timestamp columns |
| psdf = ps.DataFrame( |
| { |
| "A": [1, 2, 2, 3], |
| "B": [ |
| pd.Timestamp("2021-11-20"), |
| pd.Timestamp("2023-06-02"), |
| pd.Timestamp("2026-07-11"), |
| pd.Timestamp("2026-07-11"), |
| ], |
| } |
| ) |
| pdf = psdf._to_pandas() |
| pandas_result = pdf.describe() |
| pandas_result.B = pandas_result.B.astype(str) |
| self.assert_eq( |
| psdf.describe().loc[["count", "mean", "min", "max"]], |
| pandas_result.loc[["count", "mean", "min", "max"]], |
| ) |
| psdf.A += psdf.A |
| pdf.A += pdf.A |
| pandas_result = pdf.describe() |
| pandas_result.B = pandas_result.B.astype(str) |
| self.assert_eq( |
| psdf.describe().loc[["count", "mean", "min", "max"]], |
| pandas_result.loc[["count", "mean", "min", "max"]], |
| ) |
| |
| # Include None column |
| psdf = ps.DataFrame( |
| { |
| "a": [1, 2, 3], |
| "b": [pd.Timestamp(1), pd.Timestamp(1), pd.Timestamp(1)], |
| "c": [None, None, None], |
| } |
| ) |
| pdf = psdf._to_pandas() |
| pandas_result = pdf.describe() |
| pandas_result.b = pandas_result.b.astype(str) |
| self.assert_eq( |
| psdf.describe().loc[["count", "mean", "min", "max"]], |
| pandas_result.loc[["count", "mean", "min", "max"]], |
| ) |
| |
| msg = r"Percentiles should all be in the interval \[0, 1\]" |
| with self.assertRaisesRegex(ValueError, msg): |
| psdf.describe(percentiles=[1.1]) |
| |
| psdf = ps.DataFrame() |
| msg = "Cannot describe a DataFrame without columns" |
| with self.assertRaisesRegex(ValueError, msg): |
| psdf.describe() |
| |
| def test_describe_empty(self): |
| # Empty DataFrame |
| psdf = ps.DataFrame(columns=["A", "B"]) |
| pdf = psdf._to_pandas() |
| self.assert_eq( |
| psdf.describe(), |
| pdf.describe().astype(float), |
| ) |
| |
| # Explicit empty DataFrame numeric only |
| psdf = ps.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) |
| pdf = psdf._to_pandas() |
| self.assert_eq( |
| psdf[psdf.a != psdf.a].describe(), |
| pdf[pdf.a != pdf.a].describe(), |
| ) |
| |
| # Explicit empty DataFrame string only |
| psdf = ps.DataFrame({"a": ["a", "b", "c"], "b": ["q", "w", "e"]}) |
| pdf = psdf._to_pandas() |
| self.assert_eq( |
| psdf[psdf.a != psdf.a].describe(), |
| pdf[pdf.a != pdf.a].describe().astype(float), |
| ) |
| |
| # Explicit empty DataFrame timestamp only |
| psdf = ps.DataFrame( |
| { |
| "a": [pd.Timestamp(1), pd.Timestamp(1), pd.Timestamp(1)], |
| "b": [pd.Timestamp(1), pd.Timestamp(1), pd.Timestamp(1)], |
| } |
| ) |
| pdf = psdf._to_pandas() |
| # For timestamp type, we should convert NaT to None in pandas result |
| # since pandas API on Spark doesn't support the NaT for object type. |
| pdf_result = pdf[pdf.a != pdf.a].describe() |
| self.assert_eq( |
| psdf[psdf.a != psdf.a].describe(), |
| pdf_result.where(pdf_result.notnull(), None).astype(str), |
| ) |
| |
| # Explicit empty DataFrame numeric & timestamp |
| psdf = ps.DataFrame( |
| {"a": [1, 2, 3], "b": [pd.Timestamp(1), pd.Timestamp(1), pd.Timestamp(1)]} |
| ) |
| pdf = psdf._to_pandas() |
| pdf_result = pdf[pdf.a != pdf.a].describe() |
| pdf_result.b = pdf_result.b.where(pdf_result.b.notnull(), None).astype(str) |
| self.assert_eq( |
| psdf[psdf.a != psdf.a].describe(), |
| pdf_result, |
| ) |
| |
| # Explicit empty DataFrame numeric & string |
| psdf = ps.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]}) |
| pdf = psdf._to_pandas() |
| self.assert_eq( |
| psdf[psdf.a != psdf.a].describe(), |
| pdf[pdf.a != pdf.a].describe(), |
| ) |
| |
| # Explicit empty DataFrame string & timestamp |
| psdf = ps.DataFrame( |
| {"a": ["a", "b", "c"], "b": [pd.Timestamp(1), pd.Timestamp(1), pd.Timestamp(1)]} |
| ) |
| pdf = psdf._to_pandas() |
| pdf_result = pdf[pdf.a != pdf.a].describe() |
| self.assert_eq( |
| psdf[psdf.a != psdf.a].describe(), |
| pdf_result.where(pdf_result.notnull(), None).astype(str), |
| ) |
| |
| |
| class FrameDescribeTests( |
| FrameDescribeMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.computation.test_describe import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |