| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import unittest |
| import decimal |
| |
| import numpy as np |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class FrameCovMixin: |
| def test_cov(self): |
| # SPARK-36396: Implement DataFrame.cov |
| |
| # int |
| pdf = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], columns=["a", "b"]) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.cov(), psdf.cov(), almost=True) |
| self.assert_eq(pdf.cov(min_periods=4), psdf.cov(min_periods=4), almost=True) |
| self.assert_eq(pdf.cov(min_periods=5), psdf.cov(min_periods=5)) |
| |
| # ddof |
| with self.assertRaisesRegex(TypeError, "ddof must be integer"): |
| psdf.cov(ddof="ddof") |
| for ddof in [-1, 0, 2]: |
| self.assert_eq(pdf.cov(ddof=ddof), psdf.cov(ddof=ddof), almost=True) |
| self.assert_eq( |
| pdf.cov(min_periods=4, ddof=ddof), psdf.cov(min_periods=4, ddof=ddof), almost=True |
| ) |
| self.assert_eq(pdf.cov(min_periods=5, ddof=ddof), psdf.cov(min_periods=5, ddof=ddof)) |
| |
| # bool |
| pdf = pd.DataFrame( |
| { |
| "a": [1, np.nan, 3, 4], |
| "b": [True, False, False, True], |
| "c": [True, True, False, True], |
| } |
| ) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.cov(), psdf.cov(), almost=True) |
| self.assert_eq(pdf.cov(min_periods=4), psdf.cov(min_periods=4), almost=True) |
| self.assert_eq(pdf.cov(min_periods=5), psdf.cov(min_periods=5)) |
| |
| # extension dtype |
| numeric_dtypes = ["Int8", "Int16", "Int32", "Int64", "Float32", "Float64", "float"] |
| boolean_dtypes = ["boolean", "bool"] |
| |
| sers = [pd.Series([1, 2, 3, None], dtype=dtype) for dtype in numeric_dtypes] |
| sers += [pd.Series([True, False, True, None], dtype=dtype) for dtype in boolean_dtypes] |
| sers.append(pd.Series([decimal.Decimal(1), decimal.Decimal(2), decimal.Decimal(3), None])) |
| |
| pdf = pd.concat(sers, axis=1) |
| pdf.columns = [dtype for dtype in numeric_dtypes + boolean_dtypes] + ["decimal"] |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(pdf.cov(numeric_only=True), psdf.cov(), almost=True) |
| |
| # string column |
| pdf = pd.DataFrame( |
| [(1, 2, "a", 1), (0, 3, "b", 1), (2, 0, "c", 9), (1, 1, "d", 1)], |
| columns=["a", "b", "c", "d"], |
| ) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.cov(numeric_only=True), psdf.cov(), almost=True) |
| self.assert_eq( |
| pdf.cov(numeric_only=True, min_periods=4), psdf.cov(min_periods=4), almost=True |
| ) |
| self.assert_eq(pdf.cov(numeric_only=True, min_periods=5), psdf.cov(min_periods=5)) |
| |
| # nan |
| np.random.seed(42) |
| pdf = pd.DataFrame(np.random.randn(20, 3), columns=["a", "b", "c"]) |
| pdf.loc[pdf.index[:5], "a"] = np.nan |
| pdf.loc[pdf.index[5:10], "b"] = np.nan |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.cov(min_periods=11), psdf.cov(min_periods=11), almost=True) |
| self.assert_eq(pdf.cov(min_periods=10), psdf.cov(min_periods=10), almost=True) |
| |
| # return empty DataFrame |
| pdf = pd.DataFrame([("1", "2"), ("0", "3"), ("2", "0"), ("1", "1")], columns=["a", "b"]) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(pdf.cov(numeric_only=True), psdf.cov()) |
| |
| |
| class FrameCovTests( |
| FrameCovMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.computation.test_cov import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |