blob: 1f76064cd6df13789910d899338d8a76982d553d [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import numpy as np
import pandas as pd
from pyspark import pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
# This file contains test cases for 'Binary operator functions'
# https://spark.apache.org/docs/latest/api/python/reference/pyspark.pandas/frame.html#binary-operator-functions
class FrameBinaryOpsMixin:
@property
def pdf(self):
return pd.DataFrame(
{"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]},
index=np.random.rand(9),
)
@property
def psdf(self):
return ps.from_pandas(self.pdf)
def test_binary_operators(self):
pdf = pd.DataFrame(
{"A": [0, 2, 4], "B": [4, 2, 0], "X": [-1, 10, 0]}, index=np.random.rand(3)
)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf + psdf.copy(), pdf + pdf.copy())
self.assert_eq(psdf + psdf.loc[:, ["A", "B"]], pdf + pdf.loc[:, ["A", "B"]])
self.assert_eq(psdf.loc[:, ["A", "B"]] + psdf, pdf.loc[:, ["A", "B"]] + pdf)
with ps.option_context("compute.ops_on_diff_frames", False):
self.assertRaisesRegex(
ValueError,
"it comes from a different dataframe",
lambda: ps.range(10).add(ps.range(10)),
)
self.assertRaisesRegex(
TypeError,
"add with a sequence is currently not supported",
lambda: ps.range(10).add(ps.range(10).id),
)
psdf_other = psdf.copy()
psdf_other.columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X"), ("C", "C")])
self.assertRaisesRegex(
ValueError,
"cannot join with no overlapping index names",
lambda: psdf.add(psdf_other),
)
def test_binary_operator_add(self):
# Positive
pdf = pd.DataFrame({"a": ["x"], "b": ["y"], "c": [1], "d": [2]})
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf["a"] + psdf["b"], pdf["a"] + pdf["b"])
self.assert_eq(psdf["c"] + psdf["d"], pdf["c"] + pdf["d"])
# Negative
ks_err_msg = "Addition can not be applied to given types"
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] + psdf["c"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["c"] + psdf["a"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["c"] + "literal")
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" + psdf["c"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 + psdf["a"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] + 1)
def test_binary_operator_sub(self):
# Positive
pdf = pd.DataFrame({"a": [2], "b": [1]})
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf["a"] - psdf["b"], pdf["a"] - pdf["b"])
# Negative
psdf = ps.DataFrame({"a": ["x"], "b": [1]})
ks_err_msg = "Subtraction can not be applied to given types"
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] - psdf["a"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] - "literal")
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" - psdf["b"])
ks_err_msg = "Subtraction can not be applied to strings"
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] - psdf["b"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 - psdf["a"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] - 1)
psdf = ps.DataFrame({"a": ["x"], "b": ["y"]})
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] - psdf["b"])
def test_divide_by_zero_behavior(self):
# float / float
# np.float32
pdf = pd.DataFrame(
{
"a": [1.0, -1.0, 0.0, np.nan],
"b": [0.0, 0.0, 0.0, 0.0],
},
dtype=np.float32,
)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf["a"] / psdf["b"], pdf["a"] / pdf["b"])
# np.float64
pdf = pd.DataFrame(
{
"a": [1.0, -1.0, 0.0, np.nan],
"b": [0.0, 0.0, 0.0, 0.0],
},
dtype=np.float64,
)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf["a"] / psdf["b"], pdf["a"] / pdf["b"])
# int / int
for dtype in [np.int32, np.int64]:
pdf = pd.DataFrame(
{
"a": [1, -1, 0],
"b": [0, 0, 0],
},
dtype=dtype,
)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf["a"] / psdf["b"], pdf["a"] / pdf["b"])
# float / int
pdf = pd.DataFrame(
{
"a": pd.Series([1.0, -1.0, 0.0, np.nan]),
"b": pd.Series([0, 0, 0, 0]),
}
)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf["a"] / psdf["b"], pdf["a"] / pdf["b"])
# int / float
pdf = pd.DataFrame(
{
"a": pd.Series([1, -1, 0]),
"b": pd.Series([0.0, 0.0, 0.0]),
}
)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf["a"] / psdf["b"], pdf["a"] / pdf["b"])
# bool
pdf = pd.DataFrame(
{
"a": pd.Series([True, False]),
"b": pd.Series([0, 0]),
}
)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf["a"] / psdf["b"], pdf["a"] / pdf["b"])
pdf = pd.DataFrame(
{
"a": pd.Series([True, False]),
"b": pd.Series([0.0, 0.0]),
}
)
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf["a"] / psdf["b"], pdf["a"] / pdf["b"])
def test_binary_operator_truediv(self):
# Positive
pdf = pd.DataFrame({"a": [3], "b": [2]})
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf["a"] / psdf["b"], pdf["a"] / pdf["b"])
pser = pd.Series([1.1, 2.2, 3.3], dtype=np.float32)
psser = ps.from_pandas(pser)
self.assert_eq(psser / 1, pser / 1)
self.assert_eq(psser / 0, pser / 0)
# Negative
psdf = ps.DataFrame({"a": ["x"], "b": [1]})
ks_err_msg = "True division can not be applied to given types"
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] / psdf["a"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] / "literal")
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" / psdf["b"])
ks_err_msg = "True division can not be applied to strings"
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] / psdf["b"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 / psdf["a"])
def test_binary_operator_floordiv(self):
pdf = pd.DataFrame({"a": ["x"], "b": [1], "c": [1.0], "d": [0]})
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf["b"] // 0, psdf["b"] // 0)
self.assert_eq(pdf["c"] // 0, psdf["c"] // 0)
self.assert_eq(pdf["d"] // 0, psdf["d"] // 0)
pser = pd.Series([1.1, 2.2, 3.3], dtype=np.float32)
psser = ps.from_pandas(pser)
self.assert_eq(psser // 1, pser // 1)
ks_err_msg = "Floor division can not be applied to strings"
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] // psdf["b"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 // psdf["a"])
ks_err_msg = "Floor division can not be applied to given types"
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] // psdf["a"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] // "literal")
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" // psdf["b"])
def test_binary_operator_mod(self):
# Positive
pdf = pd.DataFrame({"a": [3], "b": [2], "c": [0]})
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf["a"] % psdf["b"], pdf["a"] % pdf["b"])
self.assert_eq(psdf["a"] % 0, pdf["a"] % 0)
self.assert_eq(1 % psdf["c"], 1 % pdf["c"])
# Negative
psdf = ps.DataFrame({"a": ["x"], "b": [1]})
ks_err_msg = "Modulo can not be applied to given types"
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] % psdf["a"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] % "literal")
ks_err_msg = "Modulo can not be applied to strings"
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] % psdf["b"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 % psdf["a"])
def test_binary_operator_multiply(self):
# Positive
pdf = pd.DataFrame({"a": ["x", "y"], "b": [1, 2], "c": [3, 4]})
psdf = ps.from_pandas(pdf)
self.assert_eq(psdf["b"] * psdf["c"], pdf["b"] * pdf["c"])
self.assert_eq(psdf["c"] * psdf["b"], pdf["c"] * pdf["b"])
self.assert_eq(psdf["a"] * psdf["b"], pdf["a"] * pdf["b"])
self.assert_eq(psdf["b"] * psdf["a"], pdf["b"] * pdf["a"])
self.assert_eq(psdf["a"] * 2, pdf["a"] * 2)
self.assert_eq(psdf["b"] * 2, pdf["b"] * 2)
self.assert_eq(2 * psdf["a"], 2 * pdf["a"])
self.assert_eq(2 * psdf["b"], 2 * pdf["b"])
# Negative
psdf = ps.DataFrame({"a": ["x"], "b": [2]})
ks_err_msg = "Multiplication can not be applied to given types"
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] * "literal")
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" * psdf["b"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] * "literal")
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] * psdf["a"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] * 0.1)
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 0.1 * psdf["a"])
self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" * psdf["a"])
def test_combine_first(self):
pdf = pd.DataFrame(
{("X", "A"): [None, 0], ("X", "B"): [4, None], ("Y", "C"): [3, 3], ("Y", "B"): [1, 1]}
)
pdf1, pdf2 = pdf["X"], pdf["Y"]
psdf = ps.from_pandas(pdf)
psdf1, psdf2 = psdf["X"], psdf["Y"]
self.assert_eq(pdf1.combine_first(pdf2), psdf1.combine_first(psdf2))
def test_dot(self):
psdf = self.psdf
with self.assertRaisesRegex(TypeError, "Unsupported type DataFrame"):
psdf.dot(psdf)
def test_rfloordiv(self):
pdf = pd.DataFrame(
{"angles": [0, 3, 4], "degrees": [360, 180, 360]},
index=["circle", "triangle", "rectangle"],
columns=["angles", "degrees"],
)
psdf = ps.from_pandas(pdf)
expected_result = pdf.rfloordiv(10)
self.assert_eq(psdf.rfloordiv(10), expected_result)
class FrameBinaryOpsTests(
FrameBinaryOpsMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
from pyspark.pandas.tests.computation.test_binary_ops import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)