blob: 08f21f46b2cc12f077c592940ff926e34acdab9c [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from pyspark.pandas.missing import unsupported_function, unsupported_property, common
def _unsupported_function(method_name, deprecated=False, reason=""):
return unsupported_function(
class_name="pd.Series", method_name=method_name, deprecated=deprecated, reason=reason
)
def _unsupported_property(property_name, deprecated=False, reason=""):
return unsupported_property(
class_name="pd.Series", property_name=property_name, deprecated=deprecated, reason=reason
)
class MissingPandasLikeSeries:
# NOTE: Please update the pandas-on-Spark reference document when implementing the new API.
# Documentation path: `python/docs/source/reference/pyspark.pandas/`.
# Functions
asfreq = _unsupported_function("asfreq")
combine = _unsupported_function("combine")
convert_dtypes = _unsupported_function("convert_dtypes")
infer_objects = _unsupported_function("infer_objects")
reorder_levels = _unsupported_function("reorder_levels")
set_axis = _unsupported_function("set_axis")
to_period = _unsupported_function("to_period")
to_sql = _unsupported_function("to_sql")
to_timestamp = _unsupported_function("to_timestamp")
tz_convert = _unsupported_function("tz_convert")
tz_localize = _unsupported_function("tz_localize")
view = _unsupported_function("view")
# Properties we won't support.
array = common.array(_unsupported_property)
nbytes = _unsupported_property(
"nbytes",
reason="'nbytes' requires to compute whole dataset. You can calculate manually it, "
"with its 'itemsize', by explicitly executing its count. Use Spark's web UI "
"to monitor disk and memory usage of your application in general.",
)
# Functions we won't support.
memory_usage = common.memory_usage(_unsupported_function)
to_pickle = common.to_pickle(_unsupported_function)
to_xarray = common.to_xarray(_unsupported_function)
__iter__ = common.__iter__(_unsupported_function)
ravel = _unsupported_function(
"ravel",
reason="If you want to collect your flattened underlying data as an NumPy array, "
"use 'to_numpy().ravel()' instead.",
)