| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| from pyspark.pandas.missing import unsupported_function, unsupported_property, common |
| |
| |
| def _unsupported_function(method_name, deprecated=False, reason=""): |
| return unsupported_function( |
| class_name="pd.Series", method_name=method_name, deprecated=deprecated, reason=reason |
| ) |
| |
| |
| def _unsupported_property(property_name, deprecated=False, reason=""): |
| return unsupported_property( |
| class_name="pd.Series", property_name=property_name, deprecated=deprecated, reason=reason |
| ) |
| |
| |
| class MissingPandasLikeSeries: |
| # NOTE: Please update the pandas-on-Spark reference document when implementing the new API. |
| # Documentation path: `python/docs/source/reference/pyspark.pandas/`. |
| |
| # Functions |
| asfreq = _unsupported_function("asfreq") |
| combine = _unsupported_function("combine") |
| convert_dtypes = _unsupported_function("convert_dtypes") |
| infer_objects = _unsupported_function("infer_objects") |
| reorder_levels = _unsupported_function("reorder_levels") |
| set_axis = _unsupported_function("set_axis") |
| to_period = _unsupported_function("to_period") |
| to_sql = _unsupported_function("to_sql") |
| to_timestamp = _unsupported_function("to_timestamp") |
| tz_convert = _unsupported_function("tz_convert") |
| tz_localize = _unsupported_function("tz_localize") |
| view = _unsupported_function("view") |
| |
| # Properties we won't support. |
| array = common.array(_unsupported_property) |
| nbytes = _unsupported_property( |
| "nbytes", |
| reason="'nbytes' requires to compute whole dataset. You can calculate manually it, " |
| "with its 'itemsize', by explicitly executing its count. Use Spark's web UI " |
| "to monitor disk and memory usage of your application in general.", |
| ) |
| |
| # Functions we won't support. |
| memory_usage = common.memory_usage(_unsupported_function) |
| to_pickle = common.to_pickle(_unsupported_function) |
| to_xarray = common.to_xarray(_unsupported_function) |
| __iter__ = common.__iter__(_unsupported_function) |
| ravel = _unsupported_function( |
| "ravel", |
| reason="If you want to collect your flattened underlying data as an NumPy array, " |
| "use 'to_numpy().ravel()' instead.", |
| ) |