| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import os |
| import tempfile |
| import unittest |
| |
| from pyspark.mllib.common import _to_java_object_rdd |
| from pyspark.mllib.util import LinearDataGenerator |
| from pyspark.mllib.util import MLUtils |
| from pyspark.mllib.linalg import SparseVector, DenseVector, Vectors |
| from pyspark.mllib.random import RandomRDDs |
| from pyspark.testing.mllibutils import MLlibTestCase |
| |
| |
| class MLUtilsTests(MLlibTestCase): |
| def test_append_bias(self): |
| data = [2.0, 2.0, 2.0] |
| ret = MLUtils.appendBias(data) |
| self.assertEqual(ret[3], 1.0) |
| self.assertEqual(type(ret), DenseVector) |
| |
| def test_append_bias_with_vector(self): |
| data = Vectors.dense([2.0, 2.0, 2.0]) |
| ret = MLUtils.appendBias(data) |
| self.assertEqual(ret[3], 1.0) |
| self.assertEqual(type(ret), DenseVector) |
| |
| def test_append_bias_with_sp_vector(self): |
| data = Vectors.sparse(3, {0: 2.0, 2: 2.0}) |
| expected = Vectors.sparse(4, {0: 2.0, 2: 2.0, 3: 1.0}) |
| # Returned value must be SparseVector |
| ret = MLUtils.appendBias(data) |
| self.assertEqual(ret, expected) |
| self.assertEqual(type(ret), SparseVector) |
| |
| def test_load_vectors(self): |
| import shutil |
| |
| data = [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]] |
| temp_dir = tempfile.mkdtemp() |
| load_vectors_path = os.path.join(temp_dir, "test_load_vectors") |
| try: |
| self.sc.parallelize(data).saveAsTextFile(load_vectors_path) |
| ret_rdd = MLUtils.loadVectors(self.sc, load_vectors_path) |
| ret = ret_rdd.collect() |
| self.assertEqual(len(ret), 2) |
| self.assertEqual(ret[0], DenseVector([1.0, 2.0, 3.0])) |
| self.assertEqual(ret[1], DenseVector([1.0, 2.0, 3.0])) |
| except BaseException: |
| self.fail() |
| finally: |
| shutil.rmtree(load_vectors_path) |
| |
| |
| class LinearDataGeneratorTests(MLlibTestCase): |
| def test_dim(self): |
| linear_data = LinearDataGenerator.generateLinearInput( |
| intercept=0.0, |
| weights=[0.0, 0.0, 0.0], |
| xMean=[0.0, 0.0, 0.0], |
| xVariance=[0.33, 0.33, 0.33], |
| nPoints=4, |
| seed=0, |
| eps=0.1, |
| ) |
| self.assertEqual(len(linear_data), 4) |
| for point in linear_data: |
| self.assertEqual(len(point.features), 3) |
| |
| linear_data = LinearDataGenerator.generateLinearRDD( |
| sc=self.sc, nexamples=6, nfeatures=2, eps=0.1, nParts=2, intercept=0.0 |
| ).collect() |
| self.assertEqual(len(linear_data), 6) |
| for point in linear_data: |
| self.assertEqual(len(point.features), 2) |
| |
| |
| class SerDeTest(MLlibTestCase): |
| def test_to_java_object_rdd(self): # SPARK-6660 |
| data = RandomRDDs.uniformRDD(self.sc, 10, 5, seed=0) |
| self.assertEqual(_to_java_object_rdd(data).count(), 10) |
| |
| |
| if __name__ == "__main__": |
| from pyspark.mllib.tests.test_util import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |