| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import sys |
| |
| from typing import Any, Generic, List, NamedTuple, TypeVar |
| |
| from pyspark import since, SparkContext |
| from pyspark.mllib.common import JavaModelWrapper, callMLlibFunc |
| from pyspark.mllib.util import JavaSaveable, JavaLoader, inherit_doc |
| from pyspark.core.rdd import RDD |
| |
| __all__ = ["FPGrowth", "FPGrowthModel", "PrefixSpan", "PrefixSpanModel"] |
| |
| T = TypeVar("T") |
| |
| |
| @inherit_doc |
| class FPGrowthModel(JavaModelWrapper, JavaSaveable, JavaLoader["FPGrowthModel"]): |
| """ |
| A FP-Growth model for mining frequent itemsets |
| using the Parallel FP-Growth algorithm. |
| |
| .. versionadded:: 1.4.0 |
| |
| Examples |
| -------- |
| >>> data = [["a", "b", "c"], ["a", "b", "d", "e"], ["a", "c", "e"], ["a", "c", "f"]] |
| >>> rdd = sc.parallelize(data, 2) |
| >>> model = FPGrowth.train(rdd, 0.6, 2) |
| >>> sorted(model.freqItemsets().collect()) |
| [FreqItemset(items=['a'], freq=4), FreqItemset(items=['c'], freq=3), ... |
| >>> model_path = temp_path + "/fpm" |
| >>> model.save(sc, model_path) |
| >>> sameModel = FPGrowthModel.load(sc, model_path) |
| >>> sorted(model.freqItemsets().collect()) == sorted(sameModel.freqItemsets().collect()) |
| True |
| """ |
| |
| @since("1.4.0") |
| def freqItemsets(self) -> RDD["FPGrowth.FreqItemset"]: |
| """ |
| Returns the frequent itemsets of this model. |
| """ |
| return self.call("getFreqItemsets").map(lambda x: (FPGrowth.FreqItemset(x[0], x[1]))) |
| |
| @classmethod |
| @since("2.0.0") |
| def load(cls, sc: SparkContext, path: str) -> "FPGrowthModel": |
| """ |
| Load a model from the given path. |
| """ |
| model = cls._load_java(sc, path) |
| assert sc._jvm is not None |
| wrapper = sc._jvm.org.apache.spark.mllib.api.python.FPGrowthModelWrapper(model) |
| return FPGrowthModel(wrapper) |
| |
| |
| class FPGrowth: |
| """ |
| A Parallel FP-growth algorithm to mine frequent itemsets. |
| |
| .. versionadded:: 1.4.0 |
| """ |
| |
| @classmethod |
| def train( |
| cls, data: RDD[List[T]], minSupport: float = 0.3, numPartitions: int = -1 |
| ) -> "FPGrowthModel": |
| """ |
| Computes an FP-Growth model that contains frequent itemsets. |
| |
| .. versionadded:: 1.4.0 |
| |
| Parameters |
| ---------- |
| data : :py:class:`pyspark.RDD` |
| The input data set, each element contains a transaction. |
| minSupport : float, optional |
| The minimal support level. |
| (default: 0.3) |
| numPartitions : int, optional |
| The number of partitions used by parallel FP-growth. A value |
| of -1 will use the same number as input data. |
| (default: -1) |
| """ |
| model = callMLlibFunc("trainFPGrowthModel", data, float(minSupport), int(numPartitions)) |
| return FPGrowthModel(model) |
| |
| class FreqItemset(NamedTuple): |
| """ |
| Represents an (items, freq) tuple. |
| |
| .. versionadded:: 1.4.0 |
| """ |
| |
| items: List[Any] |
| freq: int |
| |
| |
| @inherit_doc |
| class PrefixSpanModel(JavaModelWrapper, Generic[T]): |
| """ |
| Model fitted by PrefixSpan |
| |
| .. versionadded:: 1.6.0 |
| |
| Examples |
| -------- |
| >>> data = [ |
| ... [["a", "b"], ["c"]], |
| ... [["a"], ["c", "b"], ["a", "b"]], |
| ... [["a", "b"], ["e"]], |
| ... [["f"]]] |
| >>> rdd = sc.parallelize(data, 2) |
| >>> model = PrefixSpan.train(rdd) |
| >>> sorted(model.freqSequences().collect()) |
| [FreqSequence(sequence=[['a']], freq=3), FreqSequence(sequence=[['a'], ['a']], freq=1), ... |
| """ |
| |
| @since("1.6.0") |
| def freqSequences(self) -> RDD["PrefixSpan.FreqSequence"]: |
| """Gets frequent sequences""" |
| return self.call("getFreqSequences").map(lambda x: PrefixSpan.FreqSequence(x[0], x[1])) |
| |
| |
| class PrefixSpan: |
| """ |
| A parallel PrefixSpan algorithm to mine frequent sequential patterns. |
| The PrefixSpan algorithm is described in Jian Pei et al (2001) [1]_ |
| |
| .. versionadded:: 1.6.0 |
| |
| .. [1] Jian Pei et al., |
| "PrefixSpan,: mining sequential patterns efficiently by prefix-projected pattern growth," |
| Proceedings 17th International Conference on Data Engineering, Heidelberg, |
| Germany, 2001, pp. 215-224, |
| doi: https://doi.org/10.1109/ICDE.2001.914830 |
| """ |
| |
| @classmethod |
| def train( |
| cls, |
| data: RDD[List[List[T]]], |
| minSupport: float = 0.1, |
| maxPatternLength: int = 10, |
| maxLocalProjDBSize: int = 32000000, |
| ) -> PrefixSpanModel[T]: |
| """ |
| Finds the complete set of frequent sequential patterns in the |
| input sequences of itemsets. |
| |
| .. versionadded:: 1.6.0 |
| |
| Parameters |
| ---------- |
| data : :py:class:`pyspark.RDD` |
| The input data set, each element contains a sequence of |
| itemsets. |
| minSupport : float, optional |
| The minimal support level of the sequential pattern, any |
| pattern that appears more than (minSupport * |
| size-of-the-dataset) times will be output. |
| (default: 0.1) |
| maxPatternLength : int, optional |
| The maximal length of the sequential pattern, any pattern |
| that appears less than maxPatternLength will be output. |
| (default: 10) |
| maxLocalProjDBSize : int, optional |
| The maximum number of items (including delimiters used in the |
| internal storage format) allowed in a projected database before |
| local processing. If a projected database exceeds this size, |
| another iteration of distributed prefix growth is run. |
| (default: 32000000) |
| """ |
| model = callMLlibFunc( |
| "trainPrefixSpanModel", data, minSupport, maxPatternLength, maxLocalProjDBSize |
| ) |
| return PrefixSpanModel(model) |
| |
| class FreqSequence(NamedTuple): |
| """ |
| Represents a (sequence, freq) tuple. |
| |
| .. versionadded:: 1.6.0 |
| """ |
| |
| sequence: List[List[Any]] |
| freq: int |
| |
| |
| def _test() -> None: |
| import doctest |
| from pyspark.sql import SparkSession |
| import pyspark.mllib.fpm |
| |
| globs = pyspark.mllib.fpm.__dict__.copy() |
| spark = SparkSession.builder.master("local[4]").appName("mllib.fpm tests").getOrCreate() |
| globs["sc"] = spark.sparkContext |
| import tempfile |
| |
| temp_path = tempfile.mkdtemp() |
| globs["temp_path"] = temp_path |
| try: |
| (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) |
| spark.stop() |
| finally: |
| from shutil import rmtree |
| |
| try: |
| rmtree(temp_path) |
| except OSError: |
| pass |
| if failure_count: |
| sys.exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |