| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import sys |
| import array as pyarray |
| from math import exp, log |
| from collections import namedtuple |
| from typing import Any, List, Optional, Tuple, TypeVar, Union, overload, TYPE_CHECKING |
| |
| import numpy as np |
| from numpy import array, random, tile |
| |
| from pyspark import SparkContext, since |
| from pyspark.core.rdd import RDD |
| from pyspark.mllib.common import JavaModelWrapper, callMLlibFunc, callJavaFunc, _py2java, _java2py |
| from pyspark.mllib.linalg import SparseVector, _convert_to_vector, DenseVector # noqa: F401 |
| from pyspark.mllib.stat.distribution import MultivariateGaussian |
| from pyspark.mllib.util import Saveable, Loader, inherit_doc, JavaLoader, JavaSaveable |
| from pyspark.streaming import DStream |
| |
| if TYPE_CHECKING: |
| from py4j.java_gateway import JavaObject |
| from pyspark.mllib._typing import VectorLike |
| |
| T = TypeVar("T") |
| |
| __all__ = [ |
| "BisectingKMeansModel", |
| "BisectingKMeans", |
| "KMeansModel", |
| "KMeans", |
| "GaussianMixtureModel", |
| "GaussianMixture", |
| "PowerIterationClusteringModel", |
| "PowerIterationClustering", |
| "StreamingKMeans", |
| "StreamingKMeansModel", |
| "LDA", |
| "LDAModel", |
| ] |
| |
| |
| @inherit_doc |
| class BisectingKMeansModel(JavaModelWrapper): |
| """ |
| A clustering model derived from the bisecting k-means method. |
| |
| .. versionadded:: 2.0.0 |
| |
| Examples |
| -------- |
| >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4, 2) |
| >>> bskm = BisectingKMeans() |
| >>> model = bskm.train(sc.parallelize(data, 2), k=4) |
| >>> p = array([0.0, 0.0]) |
| >>> model.predict(p) |
| 0 |
| >>> model.k |
| 4 |
| >>> model.computeCost(p) |
| 0.0 |
| """ |
| |
| def __init__(self, java_model: "JavaObject"): |
| super(BisectingKMeansModel, self).__init__(java_model) |
| self.centers = [c.toArray() for c in self.call("clusterCenters")] |
| |
| @property |
| @since("2.0.0") |
| def clusterCenters(self) -> List[np.ndarray]: |
| """Get the cluster centers, represented as a list of NumPy |
| arrays.""" |
| return self.centers |
| |
| @property |
| @since("2.0.0") |
| def k(self) -> int: |
| """Get the number of clusters""" |
| return self.call("k") |
| |
| @overload |
| def predict(self, x: "VectorLike") -> int: |
| ... |
| |
| @overload |
| def predict(self, x: RDD["VectorLike"]) -> RDD[int]: |
| ... |
| |
| def predict(self, x: Union["VectorLike", RDD["VectorLike"]]) -> Union[int, RDD[int]]: |
| """ |
| Find the cluster that each of the points belongs to in this |
| model. |
| |
| .. versionadded:: 2.0.0 |
| |
| Parameters |
| ---------- |
| x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` |
| A data point (or RDD of points) to determine cluster index. |
| :py:class:`pyspark.mllib.linalg.Vector` can be replaced with equivalent |
| objects (list, tuple, numpy.ndarray). |
| |
| Returns |
| ------- |
| int or :py:class:`pyspark.RDD` of int |
| Predicted cluster index or an RDD of predicted cluster indices |
| if the input is an RDD. |
| """ |
| if isinstance(x, RDD): |
| vecs = x.map(_convert_to_vector) |
| return self.call("predict", vecs) |
| |
| x = _convert_to_vector(x) |
| return self.call("predict", x) |
| |
| def computeCost(self, x: Union["VectorLike", RDD["VectorLike"]]) -> float: |
| """ |
| Return the Bisecting K-means cost (sum of squared distances of |
| points to their nearest center) for this model on the given |
| data. If provided with an RDD of points returns the sum. |
| |
| .. versionadded:: 2.0.0 |
| |
| Parameters |
| ---------- |
| point : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` |
| A data point (or RDD of points) to compute the cost(s). |
| :py:class:`pyspark.mllib.linalg.Vector` can be replaced with equivalent |
| objects (list, tuple, numpy.ndarray). |
| """ |
| if isinstance(x, RDD): |
| vecs = x.map(_convert_to_vector) |
| return self.call("computeCost", vecs) |
| |
| return self.call("computeCost", _convert_to_vector(x)) |
| |
| |
| class BisectingKMeans: |
| """ |
| A bisecting k-means algorithm based on the paper "A comparison of |
| document clustering techniques" by Steinbach, Karypis, and Kumar, |
| with modification to fit Spark. |
| The algorithm starts from a single cluster that contains all points. |
| Iteratively it finds divisible clusters on the bottom level and |
| bisects each of them using k-means, until there are `k` leaf |
| clusters in total or no leaf clusters are divisible. |
| The bisecting steps of clusters on the same level are grouped |
| together to increase parallelism. If bisecting all divisible |
| clusters on the bottom level would result more than `k` leaf |
| clusters, larger clusters get higher priority. |
| |
| .. versionadded:: 2.0.0 |
| |
| Notes |
| ----- |
| See the original paper [1]_ |
| |
| .. [1] Steinbach, M. et al. "A Comparison of Document Clustering Techniques." (2000). |
| KDD Workshop on Text Mining, 2000 |
| http://glaros.dtc.umn.edu/gkhome/fetch/papers/docclusterKDDTMW00.pdf |
| """ |
| |
| @classmethod |
| def train( |
| cls, |
| rdd: RDD["VectorLike"], |
| k: int = 4, |
| maxIterations: int = 20, |
| minDivisibleClusterSize: float = 1.0, |
| seed: int = -1888008604, |
| ) -> BisectingKMeansModel: |
| """ |
| Runs the bisecting k-means algorithm return the model. |
| |
| .. versionadded:: 2.0.0 |
| |
| Parameters |
| ---------- |
| rdd : :py:class:`pyspark.RDD` |
| Training points as an `RDD` of `Vector` or convertible |
| sequence types. |
| k : int, optional |
| The desired number of leaf clusters. The actual number could |
| be smaller if there are no divisible leaf clusters. |
| (default: 4) |
| maxIterations : int, optional |
| Maximum number of iterations allowed to split clusters. |
| (default: 20) |
| minDivisibleClusterSize : float, optional |
| Minimum number of points (if >= 1.0) or the minimum proportion |
| of points (if < 1.0) of a divisible cluster. |
| (default: 1) |
| seed : int, optional |
| Random seed value for cluster initialization. |
| (default: -1888008604 from classOf[BisectingKMeans].getName.##) |
| """ |
| java_model = callMLlibFunc( |
| "trainBisectingKMeans", |
| rdd.map(_convert_to_vector), |
| k, |
| maxIterations, |
| minDivisibleClusterSize, |
| seed, |
| ) |
| return BisectingKMeansModel(java_model) |
| |
| |
| @inherit_doc |
| class KMeansModel(Saveable, Loader["KMeansModel"]): |
| |
| """A clustering model derived from the k-means method. |
| |
| .. versionadded:: 0.9.0 |
| |
| Examples |
| -------- |
| >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4, 2) |
| >>> model = KMeans.train( |
| ... sc.parallelize(data), 2, maxIterations=10, initializationMode="random", |
| ... seed=50, initializationSteps=5, epsilon=1e-4) |
| >>> model.predict(array([0.0, 0.0])) == model.predict(array([1.0, 1.0])) |
| True |
| >>> model.predict(array([8.0, 9.0])) == model.predict(array([9.0, 8.0])) |
| True |
| >>> model.k |
| 2 |
| >>> model.computeCost(sc.parallelize(data)) |
| 2.0 |
| >>> model = KMeans.train(sc.parallelize(data), 2) |
| >>> sparse_data = [ |
| ... SparseVector(3, {1: 1.0}), |
| ... SparseVector(3, {1: 1.1}), |
| ... SparseVector(3, {2: 1.0}), |
| ... SparseVector(3, {2: 1.1}) |
| ... ] |
| >>> model = KMeans.train(sc.parallelize(sparse_data), 2, initializationMode="k-means||", |
| ... seed=50, initializationSteps=5, epsilon=1e-4) |
| >>> model.predict(array([0., 1., 0.])) == model.predict(array([0, 1.1, 0.])) |
| True |
| >>> model.predict(array([0., 0., 1.])) == model.predict(array([0, 0, 1.1])) |
| True |
| >>> model.predict(sparse_data[0]) == model.predict(sparse_data[1]) |
| True |
| >>> model.predict(sparse_data[2]) == model.predict(sparse_data[3]) |
| True |
| >>> isinstance(model.clusterCenters, list) |
| True |
| >>> import os, tempfile |
| >>> path = tempfile.mkdtemp() |
| >>> model.save(sc, path) |
| >>> sameModel = KMeansModel.load(sc, path) |
| >>> sameModel.predict(sparse_data[0]) == model.predict(sparse_data[0]) |
| True |
| >>> from shutil import rmtree |
| >>> try: |
| ... rmtree(path) |
| ... except OSError: |
| ... pass |
| |
| >>> data = array([-383.1,-382.9, 28.7,31.2, 366.2,367.3]).reshape(3, 2) |
| >>> model = KMeans.train(sc.parallelize(data), 3, maxIterations=0, |
| ... initialModel = KMeansModel([(-1000.0,-1000.0),(5.0,5.0),(1000.0,1000.0)])) |
| >>> model.clusterCenters |
| [array([-1000., -1000.]), array([ 5., 5.]), array([ 1000., 1000.])] |
| """ |
| |
| def __init__(self, centers: List["VectorLike"]): |
| self.centers = centers |
| |
| @property |
| @since("1.0.0") |
| def clusterCenters(self) -> List["VectorLike"]: |
| """Get the cluster centers, represented as a list of NumPy arrays.""" |
| return self.centers |
| |
| @property |
| @since("1.4.0") |
| def k(self) -> int: |
| """Total number of clusters.""" |
| return len(self.centers) |
| |
| @overload |
| def predict(self, x: "VectorLike") -> int: |
| ... |
| |
| @overload |
| def predict(self, x: RDD["VectorLike"]) -> RDD[int]: |
| ... |
| |
| def predict(self, x: Union["VectorLike", RDD["VectorLike"]]) -> Union[int, RDD[int]]: |
| """ |
| Find the cluster that each of the points belongs to in this |
| model. |
| |
| .. versionadded:: 0.9.0 |
| |
| Parameters |
| ---------- |
| x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` |
| A data point (or RDD of points) to determine cluster index. |
| :py:class:`pyspark.mllib.linalg.Vector` can be replaced with equivalent |
| objects (list, tuple, numpy.ndarray). |
| |
| Returns |
| ------- |
| int or :py:class:`pyspark.RDD` of int |
| Predicted cluster index or an RDD of predicted cluster indices |
| if the input is an RDD. |
| """ |
| best = 0 |
| best_distance = float("inf") |
| if isinstance(x, RDD): |
| return x.map(self.predict) |
| |
| x = _convert_to_vector(x) |
| for i in range(len(self.centers)): |
| distance = x.squared_distance(self.centers[i]) # type: ignore[attr-defined] |
| if distance < best_distance: |
| best = i |
| best_distance = distance |
| return best |
| |
| def computeCost(self, rdd: RDD["VectorLike"]) -> float: |
| """ |
| Return the K-means cost (sum of squared distances of points to |
| their nearest center) for this model on the given |
| data. |
| |
| .. versionadded:: 1.4.0 |
| |
| Parameters |
| ---------- |
| rdd : ::py:class:`pyspark.RDD` |
| The RDD of points to compute the cost on. |
| """ |
| cost = callMLlibFunc( |
| "computeCostKmeansModel", |
| rdd.map(_convert_to_vector), |
| [_convert_to_vector(c) for c in self.centers], |
| ) |
| return cost |
| |
| @since("1.4.0") |
| def save(self, sc: SparkContext, path: str) -> None: |
| """ |
| Save this model to the given path. |
| """ |
| assert sc._jvm is not None |
| |
| java_centers = _py2java(sc, [_convert_to_vector(c) for c in self.centers]) |
| java_model = sc._jvm.org.apache.spark.mllib.clustering.KMeansModel(java_centers) |
| java_model.save(sc._jsc.sc(), path) |
| |
| @classmethod |
| @since("1.4.0") |
| def load(cls, sc: SparkContext, path: str) -> "KMeansModel": |
| """ |
| Load a model from the given path. |
| """ |
| assert sc._jvm is not None |
| |
| java_model = sc._jvm.org.apache.spark.mllib.clustering.KMeansModel.load(sc._jsc.sc(), path) |
| return KMeansModel(_java2py(sc, java_model.clusterCenters())) |
| |
| |
| class KMeans: |
| """ |
| K-means clustering. |
| |
| .. versionadded:: 0.9.0 |
| """ |
| |
| @classmethod |
| def train( |
| cls, |
| rdd: RDD["VectorLike"], |
| k: int, |
| maxIterations: int = 100, |
| initializationMode: str = "k-means||", |
| seed: Optional[int] = None, |
| initializationSteps: int = 2, |
| epsilon: float = 1e-4, |
| initialModel: Optional[KMeansModel] = None, |
| distanceMeasure: str = "euclidean", |
| ) -> "KMeansModel": |
| """ |
| Train a k-means clustering model. |
| |
| .. versionadded:: 0.9.0 |
| |
| Parameters |
| ---------- |
| rdd : ::py:class:`pyspark.RDD` |
| Training points as an `RDD` of :py:class:`pyspark.mllib.linalg.Vector` |
| or convertible sequence types. |
| k : int |
| Number of clusters to create. |
| maxIterations : int, optional |
| Maximum number of iterations allowed. |
| (default: 100) |
| initializationMode : str, optional |
| The initialization algorithm. This can be either "random" or |
| "k-means||". |
| (default: "k-means||") |
| seed : int, optional |
| Random seed value for cluster initialization. Set as None to |
| generate seed based on system time. |
| (default: None) |
| initializationSteps : |
| Number of steps for the k-means|| initialization mode. |
| This is an advanced setting -- the default of 2 is almost |
| always enough. |
| (default: 2) |
| epsilon : float, optional |
| Distance threshold within which a center will be considered to |
| have converged. If all centers move less than this Euclidean |
| distance, iterations are stopped. |
| (default: 1e-4) |
| initialModel : :py:class:`KMeansModel`, optional |
| Initial cluster centers can be provided as a KMeansModel object |
| rather than using the random or k-means|| initializationModel. |
| (default: None) |
| distanceMeasure : str, optional |
| The distance measure used by the k-means algorithm. |
| (default: "euclidean") |
| """ |
| clusterInitialModel = [] |
| if initialModel is not None: |
| if not isinstance(initialModel, KMeansModel): |
| raise TypeError( |
| "initialModel is of " + str(type(initialModel)) + ". It needs " |
| "to be of <type 'KMeansModel'>" |
| ) |
| clusterInitialModel = [_convert_to_vector(c) for c in initialModel.clusterCenters] |
| model = callMLlibFunc( |
| "trainKMeansModel", |
| rdd.map(_convert_to_vector), |
| k, |
| maxIterations, |
| initializationMode, |
| seed, |
| initializationSteps, |
| epsilon, |
| clusterInitialModel, |
| distanceMeasure, |
| ) |
| centers = callJavaFunc(rdd.context, model.clusterCenters) |
| return KMeansModel([c.toArray() for c in centers]) |
| |
| |
| @inherit_doc |
| class GaussianMixtureModel(JavaModelWrapper, JavaSaveable, JavaLoader["GaussianMixtureModel"]): |
| |
| """ |
| A clustering model derived from the Gaussian Mixture Model method. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> from pyspark.mllib.linalg import Vectors, DenseMatrix |
| >>> from numpy.testing import assert_equal |
| >>> from shutil import rmtree |
| >>> import os, tempfile |
| |
| >>> clusterdata_1 = sc.parallelize(array([-0.1,-0.05,-0.01,-0.1, |
| ... 0.9,0.8,0.75,0.935, |
| ... -0.83,-0.68,-0.91,-0.76 ]).reshape(6, 2), 2) |
| >>> model = GaussianMixture.train(clusterdata_1, 3, convergenceTol=0.0001, |
| ... maxIterations=50, seed=10) |
| >>> labels = model.predict(clusterdata_1).collect() |
| >>> labels[0]==labels[1] |
| False |
| >>> labels[1]==labels[2] |
| False |
| >>> labels[4]==labels[5] |
| True |
| >>> model.predict([-0.1,-0.05]) |
| 0 |
| >>> softPredicted = model.predictSoft([-0.1,-0.05]) |
| >>> abs(softPredicted[0] - 1.0) < 0.03 |
| True |
| >>> abs(softPredicted[1] - 0.0) < 0.03 |
| True |
| >>> abs(softPredicted[2] - 0.0) < 0.03 |
| True |
| |
| >>> path = tempfile.mkdtemp() |
| >>> model.save(sc, path) |
| >>> sameModel = GaussianMixtureModel.load(sc, path) |
| >>> assert_equal(model.weights, sameModel.weights) |
| >>> mus, sigmas = list( |
| ... zip(*[(g.mu, g.sigma) for g in model.gaussians])) |
| >>> sameMus, sameSigmas = list( |
| ... zip(*[(g.mu, g.sigma) for g in sameModel.gaussians])) |
| >>> mus == sameMus |
| True |
| >>> sigmas == sameSigmas |
| True |
| >>> from shutil import rmtree |
| >>> try: |
| ... rmtree(path) |
| ... except OSError: |
| ... pass |
| |
| >>> data = array([-5.1971, -2.5359, -3.8220, |
| ... -5.2211, -5.0602, 4.7118, |
| ... 6.8989, 3.4592, 4.6322, |
| ... 5.7048, 4.6567, 5.5026, |
| ... 4.5605, 5.2043, 6.2734]) |
| >>> clusterdata_2 = sc.parallelize(data.reshape(5,3)) |
| >>> model = GaussianMixture.train(clusterdata_2, 2, convergenceTol=0.0001, |
| ... maxIterations=150, seed=4) |
| >>> labels = model.predict(clusterdata_2).collect() |
| >>> labels[0]==labels[1] |
| True |
| >>> labels[2]==labels[3]==labels[4] |
| True |
| """ |
| |
| @property |
| @since("1.4.0") |
| def weights(self) -> np.ndarray: |
| """ |
| Weights for each Gaussian distribution in the mixture, where weights[i] is |
| the weight for Gaussian i, and weights.sum == 1. |
| """ |
| return array(self.call("weights")) |
| |
| @property |
| @since("1.4.0") |
| def gaussians(self) -> List[MultivariateGaussian]: |
| """ |
| Array of MultivariateGaussian where gaussians[i] represents |
| the Multivariate Gaussian (Normal) Distribution for Gaussian i. |
| """ |
| return [ |
| MultivariateGaussian(gaussian[0], gaussian[1]) for gaussian in self.call("gaussians") |
| ] |
| |
| @property |
| @since("1.4.0") |
| def k(self) -> int: |
| """Number of gaussians in mixture.""" |
| return len(self.weights) |
| |
| @overload |
| def predict(self, x: "VectorLike") -> np.int64: |
| ... |
| |
| @overload |
| def predict(self, x: RDD["VectorLike"]) -> RDD[int]: |
| ... |
| |
| def predict(self, x: Union["VectorLike", RDD["VectorLike"]]) -> Union[np.int64, RDD[int]]: |
| """ |
| Find the cluster to which the point 'x' or each point in RDD 'x' |
| has maximum membership in this model. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` |
| A feature vector or an RDD of vectors representing data points. |
| |
| Returns |
| ------- |
| numpy.float64 or :py:class:`pyspark.RDD` of int |
| Predicted cluster label or an RDD of predicted cluster labels |
| if the input is an RDD. |
| """ |
| if isinstance(x, RDD): |
| cluster_labels = self.predictSoft(x).map(lambda z: z.index(max(z))) |
| return cluster_labels |
| else: |
| z = self.predictSoft(x) |
| return z.argmax() |
| |
| @overload |
| def predictSoft(self, x: "VectorLike") -> np.ndarray: |
| ... |
| |
| @overload |
| def predictSoft(self, x: RDD["VectorLike"]) -> RDD[pyarray.array]: |
| ... |
| |
| def predictSoft( |
| self, x: Union["VectorLike", RDD["VectorLike"]] |
| ) -> Union[np.ndarray, RDD[pyarray.array]]: |
| """ |
| Find the membership of point 'x' or each point in RDD 'x' to all mixture components. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` |
| A feature vector or an RDD of vectors representing data points. |
| |
| Returns |
| ------- |
| numpy.ndarray or :py:class:`pyspark.RDD` |
| The membership value to all mixture components for vector 'x' |
| or each vector in RDD 'x'. |
| """ |
| if isinstance(x, RDD): |
| means, sigmas = zip(*[(g.mu, g.sigma) for g in self.gaussians]) |
| membership_matrix = callMLlibFunc( |
| "predictSoftGMM", |
| x.map(_convert_to_vector), |
| _convert_to_vector(self.weights), |
| means, |
| sigmas, |
| ) |
| return membership_matrix.map(lambda x: pyarray.array("d", x)) |
| else: |
| return self.call("predictSoft", _convert_to_vector(x)).toArray() |
| |
| @classmethod |
| def load(cls, sc: SparkContext, path: str) -> "GaussianMixtureModel": |
| """Load the GaussianMixtureModel from disk. |
| |
| .. versionadded:: 1.5.0 |
| |
| Parameters |
| ---------- |
| sc : :py:class:`SparkContext` |
| path : str |
| Path to where the model is stored. |
| """ |
| assert sc._jvm is not None |
| |
| model = cls._load_java(sc, path) |
| wrapper = sc._jvm.org.apache.spark.mllib.api.python.GaussianMixtureModelWrapper(model) |
| return cls(wrapper) |
| |
| |
| class GaussianMixture: |
| """ |
| Learning algorithm for Gaussian Mixtures using the expectation-maximization algorithm. |
| |
| .. versionadded:: 1.3.0 |
| """ |
| |
| @classmethod |
| def train( |
| cls, |
| rdd: RDD["VectorLike"], |
| k: int, |
| convergenceTol: float = 1e-3, |
| maxIterations: int = 100, |
| seed: Optional[int] = None, |
| initialModel: Optional[GaussianMixtureModel] = None, |
| ) -> GaussianMixtureModel: |
| """ |
| Train a Gaussian Mixture clustering model. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| rdd : ::py:class:`pyspark.RDD` |
| Training points as an `RDD` of :py:class:`pyspark.mllib.linalg.Vector` |
| or convertible sequence types. |
| k : int |
| Number of independent Gaussians in the mixture model. |
| convergenceTol : float, optional |
| Maximum change in log-likelihood at which convergence is |
| considered to have occurred. |
| (default: 1e-3) |
| maxIterations : int, optional |
| Maximum number of iterations allowed. |
| (default: 100) |
| seed : int, optional |
| Random seed for initial Gaussian distribution. Set as None to |
| generate seed based on system time. |
| (default: None) |
| initialModel : GaussianMixtureModel, optional |
| Initial GMM starting point, bypassing the random |
| initialization. |
| (default: None) |
| """ |
| initialModelWeights = None |
| initialModelMu = None |
| initialModelSigma = None |
| if initialModel is not None: |
| if initialModel.k != k: |
| raise ValueError( |
| "Mismatched cluster count, initialModel.k = %s, however k = %s" |
| % (initialModel.k, k) |
| ) |
| initialModelWeights = list(initialModel.weights) |
| initialModelMu = [initialModel.gaussians[i].mu for i in range(initialModel.k)] |
| initialModelSigma = [initialModel.gaussians[i].sigma for i in range(initialModel.k)] |
| java_model = callMLlibFunc( |
| "trainGaussianMixtureModel", |
| rdd.map(_convert_to_vector), |
| k, |
| convergenceTol, |
| maxIterations, |
| seed, |
| initialModelWeights, |
| initialModelMu, |
| initialModelSigma, |
| ) |
| return GaussianMixtureModel(java_model) |
| |
| |
| class PowerIterationClusteringModel( |
| JavaModelWrapper, JavaSaveable, JavaLoader["PowerIterationClusteringModel"] |
| ): |
| |
| """ |
| Model produced by :py:class:`PowerIterationClustering`. |
| |
| .. versionadded:: 1.5.0 |
| |
| Examples |
| -------- |
| >>> import math |
| >>> def genCircle(r, n): |
| ... points = [] |
| ... for i in range(0, n): |
| ... theta = 2.0 * math.pi * i / n |
| ... points.append((r * math.cos(theta), r * math.sin(theta))) |
| ... return points |
| ... |
| >>> def sim(x, y): |
| ... dist2 = (x[0] - y[0]) * (x[0] - y[0]) + (x[1] - y[1]) * (x[1] - y[1]) |
| ... return math.exp(-dist2 / 2.0) |
| ... |
| >>> r1 = 1.0 |
| >>> n1 = 10 |
| >>> r2 = 4.0 |
| >>> n2 = 40 |
| >>> n = n1 + n2 |
| >>> points = genCircle(r1, n1) + genCircle(r2, n2) |
| >>> similarities = [(i, j, sim(points[i], points[j])) for i in range(1, n) for j in range(0, i)] |
| >>> rdd = sc.parallelize(similarities, 2) |
| >>> model = PowerIterationClustering.train(rdd, 2, 40) |
| >>> model.k |
| 2 |
| >>> result = sorted(model.assignments().collect(), key=lambda x: x.id) |
| >>> result[0].cluster == result[1].cluster == result[2].cluster == result[3].cluster |
| True |
| >>> result[4].cluster == result[5].cluster == result[6].cluster == result[7].cluster |
| True |
| >>> import os, tempfile |
| >>> path = tempfile.mkdtemp() |
| >>> model.save(sc, path) |
| >>> sameModel = PowerIterationClusteringModel.load(sc, path) |
| >>> sameModel.k |
| 2 |
| >>> result = sorted(model.assignments().collect(), key=lambda x: x.id) |
| >>> result[0].cluster == result[1].cluster == result[2].cluster == result[3].cluster |
| True |
| >>> result[4].cluster == result[5].cluster == result[6].cluster == result[7].cluster |
| True |
| >>> from shutil import rmtree |
| >>> try: |
| ... rmtree(path) |
| ... except OSError: |
| ... pass |
| """ |
| |
| @property |
| @since("1.5.0") |
| def k(self) -> int: |
| """ |
| Returns the number of clusters. |
| """ |
| return self.call("k") |
| |
| @since("1.5.0") |
| def assignments(self) -> RDD["PowerIterationClustering.Assignment"]: |
| """ |
| Returns the cluster assignments of this model. |
| """ |
| return self.call("getAssignments").map(lambda x: (PowerIterationClustering.Assignment(*x))) |
| |
| @classmethod |
| @since("1.5.0") |
| def load(cls, sc: SparkContext, path: str) -> "PowerIterationClusteringModel": |
| """ |
| Load a model from the given path. |
| """ |
| assert sc._jvm is not None |
| |
| model = cls._load_java(sc, path) |
| wrapper = sc._jvm.org.apache.spark.mllib.api.python.PowerIterationClusteringModelWrapper( |
| model |
| ) |
| return PowerIterationClusteringModel(wrapper) |
| |
| |
| class PowerIterationClustering: |
| """ |
| Power Iteration Clustering (PIC), a scalable graph clustering algorithm. |
| |
| |
| Developed by Lin and Cohen [1]_. From the abstract: |
| |
| "PIC finds a very low-dimensional embedding of a |
| dataset using truncated power iteration on a normalized pair-wise |
| similarity matrix of the data." |
| |
| .. versionadded:: 1.5.0 |
| |
| .. [1] Lin, Frank & Cohen, William. (2010). Power Iteration Clustering. |
| http://www.cs.cmu.edu/~frank/papers/icml2010-pic-final.pdf |
| """ |
| |
| @classmethod |
| def train( |
| cls, |
| rdd: RDD[Tuple[int, int, float]], |
| k: int, |
| maxIterations: int = 100, |
| initMode: str = "random", |
| ) -> PowerIterationClusteringModel: |
| r""" |
| Train PowerIterationClusteringModel |
| |
| .. versionadded:: 1.5.0 |
| |
| Parameters |
| ---------- |
| rdd : :py:class:`pyspark.RDD` |
| An RDD of (i, j, s\ :sub:`ij`\) tuples representing the |
| affinity matrix, which is the matrix A in the PIC paper. The |
| similarity s\ :sub:`ij`\ must be nonnegative. This is a symmetric |
| matrix and hence s\ :sub:`ij`\ = s\ :sub:`ji`\ For any (i, j) with |
| nonzero similarity, there should be either (i, j, s\ :sub:`ij`\) or |
| (j, i, s\ :sub:`ji`\) in the input. Tuples with i = j are ignored, |
| because it is assumed s\ :sub:`ij`\ = 0.0. |
| k : int |
| Number of clusters. |
| maxIterations : int, optional |
| Maximum number of iterations of the PIC algorithm. |
| (default: 100) |
| initMode : str, optional |
| Initialization mode. This can be either "random" to use |
| a random vector as vertex properties, or "degree" to use |
| normalized sum similarities. |
| (default: "random") |
| """ |
| model = callMLlibFunc( |
| "trainPowerIterationClusteringModel", |
| rdd.map(_convert_to_vector), |
| int(k), |
| int(maxIterations), |
| initMode, |
| ) |
| return PowerIterationClusteringModel(model) |
| |
| class Assignment(namedtuple("Assignment", ["id", "cluster"])): |
| """ |
| Represents an (id, cluster) tuple. |
| |
| .. versionadded:: 1.5.0 |
| """ |
| |
| |
| class StreamingKMeansModel(KMeansModel): |
| """ |
| Clustering model which can perform an online update of the centroids. |
| |
| The update formula for each centroid is given by |
| |
| - c_t+1 = ((c_t * n_t * a) + (x_t * m_t)) / (n_t + m_t) |
| - n_t+1 = n_t * a + m_t |
| |
| where |
| |
| - c_t: Centroid at the n_th iteration. |
| - n_t: Number of samples (or) weights associated with the centroid |
| at the n_th iteration. |
| - x_t: Centroid of the new data closest to c_t. |
| - m_t: Number of samples (or) weights of the new data closest to c_t |
| - c_t+1: New centroid. |
| - n_t+1: New number of weights. |
| - a: Decay Factor, which gives the forgetfulness. |
| |
| .. versionadded:: 1.5.0 |
| |
| Parameters |
| ---------- |
| clusterCenters : list of :py:class:`pyspark.mllib.linalg.Vector` or covertible |
| Initial cluster centers. |
| clusterWeights : :py:class:`pyspark.mllib.linalg.Vector` or covertible |
| List of weights assigned to each cluster. |
| |
| Notes |
| ----- |
| If a is set to 1, it is the weighted mean of the previous |
| and new data. If it set to zero, the old centroids are completely |
| forgotten. |
| |
| Examples |
| -------- |
| >>> initCenters = [[0.0, 0.0], [1.0, 1.0]] |
| >>> initWeights = [1.0, 1.0] |
| >>> stkm = StreamingKMeansModel(initCenters, initWeights) |
| >>> data = sc.parallelize([[-0.1, -0.1], [0.1, 0.1], |
| ... [0.9, 0.9], [1.1, 1.1]]) |
| >>> stkm = stkm.update(data, 1.0, "batches") |
| >>> stkm.centers |
| array([[ 0., 0.], |
| [ 1., 1.]]) |
| >>> stkm.predict([-0.1, -0.1]) |
| 0 |
| >>> stkm.predict([0.9, 0.9]) |
| 1 |
| >>> stkm.clusterWeights |
| [3.0, 3.0] |
| >>> decayFactor = 0.0 |
| >>> data = sc.parallelize([DenseVector([1.5, 1.5]), DenseVector([0.2, 0.2])]) |
| >>> stkm = stkm.update(data, 0.0, "batches") |
| >>> stkm.centers |
| array([[ 0.2, 0.2], |
| [ 1.5, 1.5]]) |
| >>> stkm.clusterWeights |
| [1.0, 1.0] |
| >>> stkm.predict([0.2, 0.2]) |
| 0 |
| >>> stkm.predict([1.5, 1.5]) |
| 1 |
| """ |
| |
| def __init__(self, clusterCenters: List["VectorLike"], clusterWeights: "VectorLike"): |
| super(StreamingKMeansModel, self).__init__(centers=clusterCenters) |
| self._clusterWeights = list(clusterWeights) # type: ignore[arg-type] |
| |
| @property |
| @since("1.5.0") |
| def clusterWeights(self) -> List[np.float64]: |
| """Return the cluster weights.""" |
| return self._clusterWeights |
| |
| @since("1.5.0") |
| def update( |
| self, data: RDD["VectorLike"], decayFactor: float, timeUnit: str |
| ) -> "StreamingKMeansModel": |
| """Update the centroids, according to data |
| |
| .. versionadded:: 1.5.0 |
| |
| Parameters |
| ---------- |
| data : :py:class:`pyspark.RDD` |
| RDD with new data for the model update. |
| decayFactor : float |
| Forgetfulness of the previous centroids. |
| timeUnit : str |
| Can be "batches" or "points". If points, then the decay factor |
| is raised to the power of number of new points and if batches, |
| then decay factor will be used as is. |
| """ |
| if not isinstance(data, RDD): |
| raise TypeError("Data should be of an RDD, got %s." % type(data)) |
| data = data.map(_convert_to_vector) |
| decayFactor = float(decayFactor) |
| if timeUnit not in ["batches", "points"]: |
| raise ValueError("timeUnit should be 'batches' or 'points', got %s." % timeUnit) |
| vectorCenters = [_convert_to_vector(center) for center in self.centers] |
| updatedModel = callMLlibFunc( |
| "updateStreamingKMeansModel", |
| vectorCenters, |
| self._clusterWeights, |
| data, |
| decayFactor, |
| timeUnit, |
| ) |
| self.centers = array(updatedModel[0]) # type: ignore[assignment] |
| self._clusterWeights = list(updatedModel[1]) |
| return self |
| |
| |
| class StreamingKMeans: |
| """ |
| Provides methods to set k, decayFactor, timeUnit to configure the |
| KMeans algorithm for fitting and predicting on incoming dstreams. |
| More details on how the centroids are updated are provided under the |
| docs of StreamingKMeansModel. |
| |
| .. versionadded:: 1.5.0 |
| |
| Parameters |
| ---------- |
| k : int, optional |
| Number of clusters. |
| (default: 2) |
| decayFactor : float, optional |
| Forgetfulness of the previous centroids. |
| (default: 1.0) |
| timeUnit : str, optional |
| Can be "batches" or "points". If points, then the decay factor is |
| raised to the power of number of new points and if batches, then |
| decay factor will be used as is. |
| (default: "batches") |
| """ |
| |
| def __init__(self, k: int = 2, decayFactor: float = 1.0, timeUnit: str = "batches"): |
| self._k = k |
| self._decayFactor = decayFactor |
| if timeUnit not in ["batches", "points"]: |
| raise ValueError("timeUnit should be 'batches' or 'points', got %s." % timeUnit) |
| self._timeUnit = timeUnit |
| self._model: Optional[StreamingKMeansModel] = None |
| |
| @since("1.5.0") |
| def latestModel(self) -> Optional[StreamingKMeansModel]: |
| """Return the latest model""" |
| return self._model |
| |
| def _validate(self, dstream: Any) -> None: |
| if self._model is None: |
| raise ValueError( |
| "Initial centers should be set either by setInitialCenters " "or setRandomCenters." |
| ) |
| if not isinstance(dstream, DStream): |
| raise TypeError( |
| "Expected dstream to be of type DStream, " "got type %s" % type(dstream) |
| ) |
| |
| @since("1.5.0") |
| def setK(self, k: int) -> "StreamingKMeans": |
| """Set number of clusters.""" |
| self._k = k |
| return self |
| |
| @since("1.5.0") |
| def setDecayFactor(self, decayFactor: float) -> "StreamingKMeans": |
| """Set decay factor.""" |
| self._decayFactor = decayFactor |
| return self |
| |
| @since("1.5.0") |
| def setHalfLife(self, halfLife: float, timeUnit: str) -> "StreamingKMeans": |
| """ |
| Set number of batches after which the centroids of that |
| particular batch has half the weightage. |
| """ |
| self._timeUnit = timeUnit |
| self._decayFactor = exp(log(0.5) / halfLife) |
| return self |
| |
| @since("1.5.0") |
| def setInitialCenters( |
| self, centers: List["VectorLike"], weights: List[float] |
| ) -> "StreamingKMeans": |
| """ |
| Set initial centers. Should be set before calling trainOn. |
| """ |
| self._model = StreamingKMeansModel(centers, weights) |
| return self |
| |
| @since("1.5.0") |
| def setRandomCenters(self, dim: int, weight: float, seed: int) -> "StreamingKMeans": |
| """ |
| Set the initial centers to be random samples from |
| a gaussian population with constant weights. |
| """ |
| rng = random.RandomState(seed) |
| clusterCenters = rng.randn(self._k, dim) |
| clusterWeights = tile(weight, self._k) |
| self._model = StreamingKMeansModel(clusterCenters, clusterWeights) # type: ignore[arg-type] |
| return self |
| |
| @since("1.5.0") |
| def trainOn(self, dstream: "DStream[VectorLike]") -> None: |
| """Train the model on the incoming dstream.""" |
| self._validate(dstream) |
| |
| def update(rdd: RDD["VectorLike"]) -> None: |
| self._model.update(rdd, self._decayFactor, self._timeUnit) # type: ignore[union-attr] |
| |
| dstream.foreachRDD(update) |
| |
| @since("1.5.0") |
| def predictOn(self, dstream: "DStream[VectorLike]") -> "DStream[int]": |
| """ |
| Make predictions on a dstream. |
| Returns a transformed dstream object |
| """ |
| self._validate(dstream) |
| return dstream.map(lambda x: self._model.predict(x)) # type: ignore[union-attr] |
| |
| @since("1.5.0") |
| def predictOnValues(self, dstream: "DStream[Tuple[T, VectorLike]]") -> "DStream[Tuple[T, int]]": |
| """ |
| Make predictions on a keyed dstream. |
| Returns a transformed dstream object. |
| """ |
| self._validate(dstream) |
| return dstream.mapValues(lambda x: self._model.predict(x)) # type: ignore[union-attr] |
| |
| |
| class LDAModel(JavaModelWrapper, JavaSaveable, Loader["LDAModel"]): |
| |
| """A clustering model derived from the LDA method. |
| |
| Latent Dirichlet Allocation (LDA), a topic model designed for text documents. |
| Terminology |
| |
| - "word" = "term": an element of the vocabulary |
| - "token": instance of a term appearing in a document |
| - "topic": multinomial distribution over words representing some concept |
| |
| .. versionadded:: 1.5.0 |
| |
| Notes |
| ----- |
| See the original LDA paper (journal version) [1]_ |
| |
| .. [1] Blei, D. et al. "Latent Dirichlet Allocation." |
| J. Mach. Learn. Res. 3 (2003): 993-1022. |
| https://web.archive.org/web/20220128160306/https://www.jmlr.org/papers/v3/blei03a |
| |
| Examples |
| -------- |
| >>> from pyspark.mllib.linalg import Vectors |
| >>> from numpy.testing import assert_almost_equal, assert_equal |
| >>> data = [ |
| ... [1, Vectors.dense([0.0, 1.0])], |
| ... [2, SparseVector(2, {0: 1.0})], |
| ... ] |
| >>> rdd = sc.parallelize(data) |
| >>> model = LDA.train(rdd, k=2, seed=1) |
| >>> model.vocabSize() |
| 2 |
| >>> model.describeTopics() |
| [([1, 0], [0.5..., 0.49...]), ([0, 1], [0.5..., 0.49...])] |
| >>> model.describeTopics(1) |
| [([1], [0.5...]), ([0], [0.5...])] |
| |
| >>> topics = model.topicsMatrix() |
| >>> topics_expect = array([[0.5, 0.5], [0.5, 0.5]]) |
| >>> assert_almost_equal(topics, topics_expect, 1) |
| |
| >>> import os, tempfile |
| >>> from shutil import rmtree |
| >>> path = tempfile.mkdtemp() |
| >>> model.save(sc, path) |
| >>> sameModel = LDAModel.load(sc, path) |
| >>> assert_equal(sameModel.topicsMatrix(), model.topicsMatrix()) |
| >>> sameModel.vocabSize() == model.vocabSize() |
| True |
| >>> try: |
| ... rmtree(path) |
| ... except OSError: |
| ... pass |
| """ |
| |
| @since("1.5.0") |
| def topicsMatrix(self) -> np.ndarray: |
| """Inferred topics, where each topic is represented by a distribution over terms.""" |
| return self.call("topicsMatrix").toArray() |
| |
| @since("1.5.0") |
| def vocabSize(self) -> int: |
| """Vocabulary size (number of terms or terms in the vocabulary)""" |
| return self.call("vocabSize") |
| |
| def describeTopics( |
| self, maxTermsPerTopic: Optional[int] = None |
| ) -> List[Tuple[List[int], List[float]]]: |
| """Return the topics described by weighted terms. |
| |
| .. versionadded:: 1.6.0 |
| .. warning:: If vocabSize and k are large, this can return a large object! |
| |
| Parameters |
| ---------- |
| maxTermsPerTopic : int, optional |
| Maximum number of terms to collect for each topic. |
| (default: vocabulary size) |
| |
| Returns |
| ------- |
| list |
| Array over topics. Each topic is represented as a pair of |
| matching arrays: (term indices, term weights in topic). |
| Each topic's terms are sorted in order of decreasing weight. |
| """ |
| if maxTermsPerTopic is None: |
| topics = self.call("describeTopics") |
| else: |
| topics = self.call("describeTopics", maxTermsPerTopic) |
| return topics |
| |
| @classmethod |
| def load(cls, sc: SparkContext, path: str) -> "LDAModel": |
| """Load the LDAModel from disk. |
| |
| .. versionadded:: 1.5.0 |
| |
| Parameters |
| ---------- |
| sc : :py:class:`pyspark.SparkContext` |
| path : str |
| Path to where the model is stored. |
| """ |
| if not isinstance(sc, SparkContext): |
| raise TypeError("sc should be a SparkContext, got type %s" % type(sc)) |
| if not isinstance(path, str): |
| raise TypeError("path should be a string, got type %s" % type(path)) |
| model = callMLlibFunc("loadLDAModel", sc, path) |
| return LDAModel(model) |
| |
| |
| class LDA: |
| """ |
| Train Latent Dirichlet Allocation (LDA) model. |
| |
| .. versionadded:: 1.5.0 |
| """ |
| |
| @classmethod |
| def train( |
| cls, |
| rdd: RDD[Tuple[int, "VectorLike"]], |
| k: int = 10, |
| maxIterations: int = 20, |
| docConcentration: float = -1.0, |
| topicConcentration: float = -1.0, |
| seed: Optional[int] = None, |
| checkpointInterval: int = 10, |
| optimizer: str = "em", |
| ) -> LDAModel: |
| """Train a LDA model. |
| |
| .. versionadded:: 1.5.0 |
| |
| Parameters |
| ---------- |
| rdd : :py:class:`pyspark.RDD` |
| RDD of documents, which are tuples of document IDs and term |
| (word) count vectors. The term count vectors are "bags of |
| words" with a fixed-size vocabulary (where the vocabulary size |
| is the length of the vector). Document IDs must be unique |
| and >= 0. |
| k : int, optional |
| Number of topics to infer, i.e., the number of soft cluster |
| centers. |
| (default: 10) |
| maxIterations : int, optional |
| Maximum number of iterations allowed. |
| (default: 20) |
| docConcentration : float, optional |
| Concentration parameter (commonly named "alpha") for the prior |
| placed on documents' distributions over topics ("theta"). |
| (default: -1.0) |
| topicConcentration : float, optional |
| Concentration parameter (commonly named "beta" or "eta") for |
| the prior placed on topics' distributions over terms. |
| (default: -1.0) |
| seed : int, optional |
| Random seed for cluster initialization. Set as None to generate |
| seed based on system time. |
| (default: None) |
| checkpointInterval : int, optional |
| Period (in iterations) between checkpoints. |
| (default: 10) |
| optimizer : str, optional |
| LDAOptimizer used to perform the actual calculation. Currently |
| "em", "online" are supported. |
| (default: "em") |
| """ |
| model = callMLlibFunc( |
| "trainLDAModel", |
| rdd, |
| k, |
| maxIterations, |
| docConcentration, |
| topicConcentration, |
| seed, |
| checkpointInterval, |
| optimizer, |
| ) |
| return LDAModel(model) |
| |
| |
| def _test() -> None: |
| import doctest |
| import numpy |
| import pyspark.mllib.clustering |
| |
| try: |
| # Numpy 1.14+ changed it's string format. |
| numpy.set_printoptions(legacy="1.13") |
| except TypeError: |
| pass |
| globs = pyspark.mllib.clustering.__dict__.copy() |
| globs["sc"] = SparkContext("local[4]", "PythonTest", batchSize=2) |
| (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) |
| globs["sc"].stop() |
| if failure_count: |
| sys.exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |