| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import unittest |
| |
| import py4j |
| |
| from pyspark.ml.linalg import DenseVector, Vectors |
| from pyspark.ml.regression import LinearRegression |
| from pyspark.ml.wrapper import ( |
| _java2py, |
| _py2java, |
| JavaParams, |
| JavaWrapper, |
| ) |
| from pyspark.testing.mllibutils import MLlibTestCase |
| from pyspark.testing.mlutils import SparkSessionTestCase |
| from pyspark.testing.utils import eventually |
| |
| |
| class JavaWrapperMemoryTests(SparkSessionTestCase): |
| def test_java_object_gets_detached(self): |
| df = self.spark.createDataFrame( |
| [(1.0, 2.0, Vectors.dense(1.0)), (0.0, 2.0, Vectors.sparse(1, [], []))], |
| ["label", "weight", "features"], |
| ) |
| lr = LinearRegression( |
| maxIter=1, regParam=0.0, solver="normal", weightCol="weight", fitIntercept=False |
| ) |
| |
| model = lr.fit(df) |
| summary = model.summary |
| |
| self.assertIsInstance(model, JavaWrapper) |
| self.assertIsInstance(summary, JavaWrapper) |
| self.assertIsInstance(model, JavaParams) |
| self.assertNotIsInstance(summary, JavaParams) |
| |
| error_no_object = "Target Object ID does not exist for this gateway" |
| |
| self.assertIn("LinearRegression_", model._java_obj.toString()) |
| self.assertIn("LinearRegressionTrainingSummary", summary._java_obj.toString()) |
| |
| model.__del__() |
| |
| def condition(): |
| with self.assertRaisesRegex(py4j.protocol.Py4JError, error_no_object): |
| model._java_obj.toString() |
| self.assertIn("LinearRegressionTrainingSummary", summary._java_obj.toString()) |
| return True |
| |
| eventually(timeout=10, catch_assertions=True)(condition)() |
| |
| try: |
| summary.__del__() |
| except BaseException: |
| pass |
| |
| def condition(): |
| with self.assertRaisesRegex(py4j.protocol.Py4JError, error_no_object): |
| model._java_obj.toString() |
| with self.assertRaisesRegex(py4j.protocol.Py4JError, error_no_object): |
| summary._java_obj.toString() |
| return True |
| |
| eventually(timeout=10, catch_assertions=True)(condition)() |
| |
| |
| class WrapperTests(MLlibTestCase): |
| def test_new_java_array(self): |
| # test array of strings |
| str_list = ["a", "b", "c"] |
| java_class = self.sc._gateway.jvm.java.lang.String |
| java_array = JavaWrapper._new_java_array(str_list, java_class) |
| self.assertEqual(_java2py(self.sc, java_array), str_list) |
| # test array of integers |
| int_list = [1, 2, 3] |
| java_class = self.sc._gateway.jvm.java.lang.Integer |
| java_array = JavaWrapper._new_java_array(int_list, java_class) |
| self.assertEqual(_java2py(self.sc, java_array), int_list) |
| # test array of floats |
| float_list = [0.1, 0.2, 0.3] |
| java_class = self.sc._gateway.jvm.java.lang.Double |
| java_array = JavaWrapper._new_java_array(float_list, java_class) |
| self.assertEqual(_java2py(self.sc, java_array), float_list) |
| # test array of bools |
| bool_list = [False, True, True] |
| java_class = self.sc._gateway.jvm.java.lang.Boolean |
| java_array = JavaWrapper._new_java_array(bool_list, java_class) |
| self.assertEqual(_java2py(self.sc, java_array), bool_list) |
| # test array of Java DenseVectors |
| v1 = DenseVector([0.0, 1.0]) |
| v2 = DenseVector([1.0, 0.0]) |
| vec_java_list = [_py2java(self.sc, v1), _py2java(self.sc, v2)] |
| java_class = self.sc._gateway.jvm.org.apache.spark.ml.linalg.DenseVector |
| java_array = JavaWrapper._new_java_array(vec_java_list, java_class) |
| self.assertEqual(_java2py(self.sc, java_array), [v1, v2]) |
| # test empty array |
| java_class = self.sc._gateway.jvm.java.lang.Integer |
| java_array = JavaWrapper._new_java_array([], java_class) |
| self.assertEqual(_java2py(self.sc, java_array), []) |
| # test array of array of strings |
| str_list = [["a", "b", "c"], ["d", "e"], ["f", "g", "h", "i"], []] |
| expected_str_list = [ |
| ("a", "b", "c", None), |
| ("d", "e", None, None), |
| ("f", "g", "h", "i"), |
| (None, None, None, None), |
| ] |
| java_class = self.sc._gateway.jvm.java.lang.String |
| java_array = JavaWrapper._new_java_array(str_list, java_class) |
| self.assertEqual(_java2py(self.sc, java_array), expected_str_list) |
| |
| |
| if __name__ == "__main__": |
| from pyspark.ml.tests.test_wrapper import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |