| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import unittest |
| |
| from pyspark.ml.image import ImageSchema |
| from pyspark.testing.mlutils import SparkSessionTestCase |
| from pyspark.sql import Row |
| from pyspark.testing.utils import QuietTest, eventually |
| |
| |
| class ImageFileFormatTest(SparkSessionTestCase): |
| @eventually(timeout=60.0, catch_assertions=True) |
| def test_read_images(self): |
| data_path = "data/mllib/images/origin/kittens" |
| df = ( |
| self.spark.read.format("image") |
| .option("dropInvalid", True) |
| .option("recursiveFileLookup", True) |
| .load(data_path) |
| ) |
| self.assertEqual(df.count(), 4) |
| first_row = df.take(1)[0][0] |
| # compare `schema.simpleString()` instead of directly compare schema, |
| # because the df loaded from datasource may change schema column nullability. |
| self.assertEqual(df.schema.simpleString(), ImageSchema.imageSchema.simpleString()) |
| self.assertEqual( |
| df.schema["image"].dataType.simpleString(), ImageSchema.columnSchema.simpleString() |
| ) |
| array = ImageSchema.toNDArray(first_row) |
| self.assertEqual(len(array), first_row[1]) |
| self.assertEqual(ImageSchema.toImage(array, origin=first_row[0]), first_row) |
| expected = {"CV_8UC3": 16, "Undefined": -1, "CV_8U": 0, "CV_8UC1": 0, "CV_8UC4": 24} |
| self.assertEqual(ImageSchema.ocvTypes, expected) |
| expected = ["origin", "height", "width", "nChannels", "mode", "data"] |
| self.assertEqual(ImageSchema.imageFields, expected) |
| self.assertEqual(ImageSchema.undefinedImageType, "Undefined") |
| |
| with QuietTest(self.sc): |
| self.assertRaisesRegex( |
| TypeError, |
| "image argument should be pyspark.sql.types.Row; however", |
| lambda: ImageSchema.toNDArray("a"), |
| ) |
| |
| with QuietTest(self.sc): |
| self.assertRaisesRegex( |
| ValueError, |
| "image argument should have attributes specified in", |
| lambda: ImageSchema.toNDArray(Row(a=1)), |
| ) |
| |
| with QuietTest(self.sc): |
| self.assertRaisesRegex( |
| TypeError, |
| "array argument should be numpy.ndarray; however, it got", |
| lambda: ImageSchema.toImage("a"), |
| ) |
| |
| |
| if __name__ == "__main__": |
| from pyspark.ml.tests.test_image import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |