| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import tempfile |
| import unittest |
| |
| import numpy as np |
| |
| from pyspark.ml.evaluation import ( |
| ClusteringEvaluator, |
| RegressionEvaluator, |
| BinaryClassificationEvaluator, |
| MulticlassClassificationEvaluator, |
| MultilabelClassificationEvaluator, |
| RankingEvaluator, |
| ) |
| from pyspark.ml.linalg import Vectors |
| from pyspark.sql import Row |
| from pyspark.testing.sqlutils import ReusedSQLTestCase |
| |
| |
| class EvaluatorTestsMixin: |
| def test_ranking_evaluator(self): |
| scoreAndLabels = [ |
| ([1.0, 6.0, 2.0, 7.0, 8.0, 3.0, 9.0, 10.0, 4.0, 5.0], [1.0, 2.0, 3.0, 4.0, 5.0]), |
| ([4.0, 1.0, 5.0, 6.0, 2.0, 7.0, 3.0, 8.0, 9.0, 10.0], [1.0, 2.0, 3.0]), |
| ([1.0, 2.0, 3.0, 4.0, 5.0], []), |
| ] |
| dataset = self.spark.createDataFrame(scoreAndLabels, ["prediction", "label"]) |
| |
| # Initialize RankingEvaluator |
| evaluator = RankingEvaluator().setPredictionCol("prediction") |
| self.assertTrue(evaluator.isLargerBetter()) |
| |
| # Evaluate the dataset using the default metric (mean average precision) |
| mean_average_precision = evaluator.evaluate(dataset) |
| self.assertTrue(np.allclose(mean_average_precision, 0.3550, atol=1e-4)) |
| |
| # Evaluate the dataset using precisionAtK for k=2 |
| precision_at_k = evaluator.evaluate( |
| dataset, {evaluator.metricName: "precisionAtK", evaluator.k: 2} |
| ) |
| self.assertTrue(np.allclose(precision_at_k, 0.3333, atol=1e-4)) |
| |
| # read/write |
| with tempfile.TemporaryDirectory(prefix="ranking_evaluator") as tmp_dir: |
| # Save the evaluator |
| evaluator.write().overwrite().save(tmp_dir) |
| # Load the saved evaluator |
| evaluator2 = RankingEvaluator.load(tmp_dir) |
| self.assertEqual(evaluator2.getPredictionCol(), "prediction") |
| self.assertEqual(str(evaluator), str(evaluator2)) |
| |
| def test_multilabel_classification_evaluator(self): |
| dataset = self.spark.createDataFrame( |
| [ |
| ([0.0, 1.0], [0.0, 2.0]), |
| ([0.0, 2.0], [0.0, 1.0]), |
| ([], [0.0]), |
| ([2.0], [2.0]), |
| ([2.0, 0.0], [2.0, 0.0]), |
| ([0.0, 1.0, 2.0], [0.0, 1.0]), |
| ([1.0], [1.0, 2.0]), |
| ], |
| ["prediction", "label"], |
| ) |
| |
| evaluator = MultilabelClassificationEvaluator().setPredictionCol("prediction") |
| |
| # Evaluate the dataset using the default metric (f1 measure by default) |
| f1_score = evaluator.evaluate(dataset) |
| self.assertTrue(np.allclose(f1_score, 0.6380, atol=1e-4)) |
| # Evaluate the dataset using accuracy |
| accuracy = evaluator.evaluate(dataset, {evaluator.metricName: "accuracy"}) |
| self.assertTrue(np.allclose(accuracy, 0.5476, atol=1e-4)) |
| |
| # read/write |
| with tempfile.TemporaryDirectory(prefix="multi_label_class_eval") as tmp_dir: |
| # Save the evaluator |
| evaluator.write().overwrite().save(tmp_dir) |
| # Load the saved evaluator |
| evaluator2 = MultilabelClassificationEvaluator.load(tmp_dir) |
| self.assertEqual(evaluator2.getPredictionCol(), "prediction") |
| self.assertEqual(str(evaluator), str(evaluator2)) |
| |
| for metric in [ |
| "subsetAccuracy", |
| "accuracy", |
| "precision", |
| "recall", |
| "f1Measure", |
| "precisionByLabel", |
| "recallByLabel", |
| "f1MeasureByLabel", |
| "microPrecision", |
| "microRecall", |
| "microF1Measure", |
| ]: |
| evaluator.setMetricName(metric) |
| self.assertTrue(evaluator.isLargerBetter()) |
| |
| evaluator.setMetricName("hammingLoss") |
| self.assertTrue(not evaluator.isLargerBetter()) |
| |
| def test_multiclass_classification_evaluator(self): |
| dataset = self.spark.createDataFrame( |
| [ |
| (0.0, 0.0, 1.0, [0.1, 0.8, 0.1]), |
| (0.0, 1.0, 1.0, [0.3, 0.4, 0.3]), |
| (0.0, 0.0, 1.0, [0.9, 0.05, 0.05]), |
| (1.0, 0.0, 1.0, [0.5, 0.2, 0.3]), |
| (1.0, 1.0, 1.0, [0.2, 0.7, 0.1]), |
| (1.0, 1.0, 1.0, [0.1, 0.3, 0.6]), |
| (1.0, 1.0, 1.0, [0.2, 0.1, 0.7]), |
| (2.0, 2.0, 1.0, [0.3, 0.2, 0.5]), |
| (2.0, 0.0, 1.0, [0.6, 0.2, 0.2]), |
| ], |
| ["prediction", "label", "weight", "probability"], |
| ) |
| |
| evaluator = MulticlassClassificationEvaluator().setPredictionCol("prediction") |
| |
| f1_score = evaluator.evaluate(dataset) |
| self.assertTrue(np.allclose(f1_score, 0.6613, atol=1e-4)) |
| |
| # Evaluate the dataset using accuracy |
| accuracy = evaluator.evaluate(dataset, {evaluator.metricName: "accuracy"}) |
| self.assertTrue(np.allclose(accuracy, 0.6666, atol=1e-4)) |
| |
| # Evaluate the true positive rate for label 1.0 |
| true_positive_rate_label_1 = evaluator.evaluate( |
| dataset, {evaluator.metricName: "truePositiveRateByLabel", evaluator.metricLabel: 1.0} |
| ) |
| self.assertEqual(true_positive_rate_label_1, 0.75) |
| |
| # Set the metric to Hamming loss |
| evaluator.setMetricName("hammingLoss") |
| |
| # Evaluate the dataset using Hamming loss |
| hamming_loss = evaluator.evaluate(dataset) |
| self.assertTrue(np.allclose(hamming_loss, 0.3333, atol=1e-4)) |
| |
| # read/write |
| with tempfile.TemporaryDirectory(prefix="multi_class_classification_evaluator") as tmp_dir: |
| # Save the evaluator |
| evaluator.write().overwrite().save(tmp_dir) |
| # Load the saved evaluator |
| evaluator2 = MulticlassClassificationEvaluator.load(tmp_dir) |
| self.assertEqual(evaluator2.getPredictionCol(), "prediction") |
| self.assertEqual(str(evaluator), str(evaluator2)) |
| |
| # Initialize MulticlassClassificationEvaluator with weight column |
| evaluator = MulticlassClassificationEvaluator( |
| predictionCol="prediction", weightCol="weight" |
| ) |
| |
| # Evaluate the dataset with weights using default metric (f1 score) |
| weighted_f1_score = evaluator.evaluate(dataset) |
| self.assertTrue(np.allclose(weighted_f1_score, 0.6613, atol=1e-4)) |
| |
| # Evaluate the dataset with weights using accuracy |
| weighted_accuracy = evaluator.evaluate(dataset, {evaluator.metricName: "accuracy"}) |
| self.assertTrue(np.allclose(weighted_accuracy, 0.6666, atol=1e-4)) |
| |
| evaluator = MulticlassClassificationEvaluator( |
| predictionCol="prediction", probabilityCol="probability" |
| ) |
| # Set the metric to log loss |
| evaluator.setMetricName("logLoss") |
| # Evaluate the dataset using log loss |
| log_loss = evaluator.evaluate(dataset) |
| self.assertTrue(np.allclose(log_loss, 1.0093, atol=1e-4)) |
| |
| for metric in [ |
| "f1", |
| "accuracy", |
| "weightedPrecision", |
| "weightedRecall", |
| "weightedTruePositiveRate", |
| "weightedFMeasure", |
| "truePositiveRateByLabel", |
| "precisionByLabel", |
| "recallByLabel", |
| "fMeasureByLabel", |
| ]: |
| evaluator.setMetricName(metric) |
| self.assertTrue(evaluator.isLargerBetter()) |
| for metric in [ |
| "weightedFalsePositiveRate", |
| "falsePositiveRateByLabel", |
| "logLoss", |
| "hammingLoss", |
| ]: |
| evaluator.setMetricName(metric) |
| self.assertTrue(not evaluator.isLargerBetter()) |
| |
| def test_binary_classification_evaluator(self): |
| # Define score and labels data |
| data = map( |
| lambda x: (Vectors.dense([1.0 - x[0], x[0]]), x[1], x[2]), |
| [ |
| (0.1, 0.0, 1.0), |
| (0.1, 1.0, 0.9), |
| (0.4, 0.0, 0.7), |
| (0.6, 0.0, 0.9), |
| (0.6, 1.0, 1.0), |
| (0.6, 1.0, 0.3), |
| (0.8, 1.0, 1.0), |
| ], |
| ) |
| dataset = self.spark.createDataFrame(data, ["raw", "label", "weight"]) |
| |
| evaluator = BinaryClassificationEvaluator().setRawPredictionCol("raw") |
| self.assertTrue(evaluator.isLargerBetter()) |
| |
| auc_roc = evaluator.evaluate(dataset) |
| self.assertTrue(np.allclose(auc_roc, 0.7083, atol=1e-4)) |
| |
| # Evaluate the dataset using the areaUnderPR metric |
| auc_pr = evaluator.evaluate(dataset, {evaluator.metricName: "areaUnderPR"}) |
| self.assertTrue(np.allclose(auc_pr, 0.8339, atol=1e-4)) |
| |
| # read/write |
| with tempfile.TemporaryDirectory(prefix="binary_classification_evaluator") as tmp_dir: |
| # Save the evaluator |
| evaluator.write().overwrite().save(tmp_dir) |
| # Load the saved evaluator |
| evaluator2 = BinaryClassificationEvaluator.load(tmp_dir) |
| self.assertEqual(evaluator2.getRawPredictionCol(), "raw") |
| self.assertEqual(str(evaluator), str(evaluator2)) |
| |
| evaluator = BinaryClassificationEvaluator(rawPredictionCol="raw", weightCol="weight") |
| |
| # Evaluate the dataset with weights using the default metric (areaUnderROC) |
| auc_roc_weighted = evaluator.evaluate(dataset) |
| self.assertTrue(np.allclose(auc_roc_weighted, 0.7025, atol=1e-4)) |
| |
| # Evaluate the dataset with weights using the areaUnderPR metric |
| auc_pr_weighted = evaluator.evaluate(dataset, {evaluator.metricName: "areaUnderPR"}) |
| self.assertTrue(np.allclose(auc_pr_weighted, 0.8221, atol=1e-4)) |
| |
| # Get the number of bins used to compute areaUnderROC |
| num_bins = evaluator.getNumBins() |
| self.assertEqual(num_bins, 1000) |
| |
| def test_clustering_evaluator(self): |
| # Define feature and predictions data |
| data = map( |
| lambda x: (Vectors.dense(x[0]), x[1], x[2]), |
| [ |
| ([0.0, 0.5], 0.0, 2.5), |
| ([0.5, 0.0], 0.0, 2.5), |
| ([10.0, 11.0], 1.0, 2.5), |
| ([10.5, 11.5], 1.0, 2.5), |
| ([1.0, 1.0], 0.0, 2.5), |
| ([8.0, 6.0], 1.0, 2.5), |
| ], |
| ) |
| dataset = self.spark.createDataFrame(data, ["features", "prediction", "weight"]) |
| |
| evaluator = ClusteringEvaluator().setPredictionCol("prediction") |
| self.assertTrue(evaluator.isLargerBetter()) |
| |
| score = evaluator.evaluate(dataset) |
| self.assertTrue(np.allclose(score, 0.9079, atol=1e-4)) |
| |
| evaluator.setWeightCol("weight") |
| |
| # Evaluate the dataset with weights |
| score_with_weight = evaluator.evaluate(dataset) |
| self.assertTrue(np.allclose(score_with_weight, 0.9079, atol=1e-4)) |
| |
| # read/write |
| with tempfile.TemporaryDirectory(prefix="clustering_evaluator") as tmp_dir: |
| # Save the evaluator |
| evaluator.write().overwrite().save(tmp_dir) |
| # Load the saved evaluator |
| evaluator2 = ClusteringEvaluator.load(tmp_dir) |
| self.assertEqual(evaluator2.getPredictionCol(), "prediction") |
| self.assertTrue(str(evaluator) == str(evaluator2)) |
| |
| def test_clustering_evaluator_with_cosine_distance(self): |
| featureAndPredictions = map( |
| lambda x: (Vectors.dense(x[0]), x[1]), |
| [ |
| ([1.0, 1.0], 1.0), |
| ([10.0, 10.0], 1.0), |
| ([1.0, 0.5], 2.0), |
| ([10.0, 4.4], 2.0), |
| ([-1.0, 1.0], 3.0), |
| ([-100.0, 90.0], 3.0), |
| ], |
| ) |
| dataset = self.spark.createDataFrame(featureAndPredictions, ["features", "prediction"]) |
| evaluator = ClusteringEvaluator(predictionCol="prediction", distanceMeasure="cosine") |
| self.assertEqual(evaluator.getDistanceMeasure(), "cosine") |
| self.assertTrue(np.isclose(evaluator.evaluate(dataset), 0.992671213, atol=1e-5)) |
| |
| def test_regression_evaluator(self): |
| dataset = self.spark.createDataFrame( |
| [ |
| (-28.98343821, -27.0, 1.0), |
| (20.21491975, 21.5, 0.8), |
| (-25.98418959, -22.0, 1.0), |
| (30.69731842, 33.0, 0.6), |
| (74.69283752, 71.0, 0.2), |
| ], |
| ["raw", "label", "weight"], |
| ) |
| |
| evaluator = RegressionEvaluator() |
| evaluator.setPredictionCol("raw") |
| |
| # Evaluate dataset with default metric (RMSE) |
| rmse = evaluator.evaluate(dataset) |
| self.assertTrue(np.allclose(rmse, 2.8424, atol=1e-4)) |
| # Evaluate dataset with R2 metric |
| r2 = evaluator.evaluate(dataset, {evaluator.metricName: "r2"}) |
| self.assertTrue(np.allclose(r2, 0.9939, atol=1e-4)) |
| # Evaluate dataset with MAE metric |
| mae = evaluator.evaluate(dataset, {evaluator.metricName: "mae"}) |
| self.assertTrue(np.allclose(mae, 2.6496, atol=1e-4)) |
| # read/write |
| with tempfile.TemporaryDirectory(prefix="save") as tmp_dir: |
| # Save the evaluator |
| evaluator.write().overwrite().save(tmp_dir) |
| # Load the saved evaluator |
| evaluator2 = RegressionEvaluator.load(tmp_dir) |
| self.assertEqual(evaluator2.getPredictionCol(), "raw") |
| self.assertTrue(str(evaluator) == str(evaluator2)) |
| |
| evaluator_with_weights = RegressionEvaluator(predictionCol="raw", weightCol="weight") |
| weighted_rmse = evaluator_with_weights.evaluate(dataset) |
| self.assertTrue(np.allclose(weighted_rmse, 2.7405, atol=1e-4)) |
| through_origin = evaluator_with_weights.getThroughOrigin() |
| self.assertEqual(through_origin, False) |
| |
| for metric in ["mse", "rmse", "mae"]: |
| evaluator.setMetricName(metric) |
| self.assertTrue(not evaluator.isLargerBetter()) |
| for metric in ["r2", "var"]: |
| evaluator.setMetricName(metric) |
| self.assertTrue(evaluator.isLargerBetter()) |
| |
| |
| class EvaluatorTests(EvaluatorTestsMixin, ReusedSQLTestCase): |
| def test_evaluate_invalid_type(self): |
| evaluator = RegressionEvaluator(metricName="r2") |
| df = self.spark.createDataFrame([Row(label=1.0, prediction=1.1)]) |
| invalid_type = "" |
| self.assertRaises(TypeError, evaluator.evaluate, df, invalid_type) |
| |
| def test_java_params(self): |
| """ |
| This tests a bug fixed by SPARK-18274 which causes multiple copies |
| of a Params instance in Python to be linked to the same Java instance. |
| """ |
| evaluator = RegressionEvaluator(metricName="r2") |
| df = self.spark.createDataFrame([Row(label=1.0, prediction=1.1)]) |
| evaluator.evaluate(df) |
| self.assertEqual(evaluator._java_obj.getMetricName(), "r2") |
| evaluatorCopy = evaluator.copy({evaluator.metricName: "mae"}) |
| evaluator.evaluate(df) |
| evaluatorCopy.evaluate(df) |
| self.assertEqual(evaluator._java_obj.getMetricName(), "r2") |
| self.assertEqual(evaluatorCopy._java_obj.getMetricName(), "mae") |
| |
| |
| if __name__ == "__main__": |
| from pyspark.ml.tests.test_evaluation import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |