| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import os |
| |
| from typing import Any, Dict, List, Optional, Tuple, Type, Union, cast, TYPE_CHECKING |
| |
| from pyspark import keyword_only, since |
| from pyspark.ml.base import Estimator, Model, Transformer |
| from pyspark.ml.param import Param, Params |
| from pyspark.ml.util import ( |
| MLReadable, |
| MLWritable, |
| JavaMLWriter, |
| DefaultParamsReader, |
| DefaultParamsWriter, |
| MLWriter, |
| MLReader, |
| JavaMLWritable, |
| try_remote_read, |
| try_remote_write, |
| ) |
| from pyspark.ml.wrapper import JavaParams |
| from pyspark.ml.common import inherit_doc |
| from pyspark.sql import SparkSession |
| from pyspark.sql.dataframe import DataFrame |
| |
| if TYPE_CHECKING: |
| from pyspark.ml._typing import ParamMap, PipelineStage |
| from py4j.java_gateway import JavaObject |
| from pyspark.core.context import SparkContext |
| |
| |
| @inherit_doc |
| class Pipeline(Estimator["PipelineModel"], MLReadable["Pipeline"], MLWritable): |
| """ |
| A simple pipeline, which acts as an estimator. A Pipeline consists |
| of a sequence of stages, each of which is either an |
| :py:class:`Estimator` or a :py:class:`Transformer`. When |
| :py:meth:`Pipeline.fit` is called, the stages are executed in |
| order. If a stage is an :py:class:`Estimator`, its |
| :py:meth:`Estimator.fit` method will be called on the input |
| dataset to fit a model. Then the model, which is a transformer, |
| will be used to transform the dataset as the input to the next |
| stage. If a stage is a :py:class:`Transformer`, its |
| :py:meth:`Transformer.transform` method will be called to produce |
| the dataset for the next stage. The fitted model from a |
| :py:class:`Pipeline` is a :py:class:`PipelineModel`, which |
| consists of fitted models and transformers, corresponding to the |
| pipeline stages. If stages is an empty list, the pipeline acts as an |
| identity transformer. |
| |
| .. versionadded:: 1.3.0 |
| """ |
| |
| stages: Param[List["PipelineStage"]] = Param( |
| Params._dummy(), "stages", "a list of pipeline stages" |
| ) |
| |
| _input_kwargs: Dict[str, Any] |
| |
| @keyword_only |
| def __init__(self, *, stages: Optional[List["PipelineStage"]] = None): |
| """ |
| __init__(self, \\*, stages=None) |
| """ |
| super(Pipeline, self).__init__() |
| kwargs = self._input_kwargs |
| self.setParams(**kwargs) |
| |
| def setStages(self, value: List["PipelineStage"]) -> "Pipeline": |
| """ |
| Set pipeline stages. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| value : list |
| of :py:class:`pyspark.ml.Transformer` |
| or :py:class:`pyspark.ml.Estimator` |
| |
| Returns |
| ------- |
| :py:class:`Pipeline` |
| the pipeline instance |
| """ |
| return self._set(stages=value) |
| |
| @since("1.3.0") |
| def getStages(self) -> List["PipelineStage"]: |
| """ |
| Get pipeline stages. |
| """ |
| return self.getOrDefault(self.stages) |
| |
| @keyword_only |
| @since("1.3.0") |
| def setParams(self, *, stages: Optional[List["PipelineStage"]] = None) -> "Pipeline": |
| """ |
| setParams(self, \\*, stages=None) |
| Sets params for Pipeline. |
| """ |
| kwargs = self._input_kwargs |
| return self._set(**kwargs) |
| |
| def _fit(self, dataset: DataFrame) -> "PipelineModel": |
| stages = self.getStages() |
| for stage in stages: |
| if not (isinstance(stage, Estimator) or isinstance(stage, Transformer)): |
| raise TypeError("Cannot recognize a pipeline stage of type %s." % type(stage)) |
| indexOfLastEstimator = -1 |
| for i, stage in enumerate(stages): |
| if isinstance(stage, Estimator): |
| indexOfLastEstimator = i |
| transformers: List[Transformer] = [] |
| for i, stage in enumerate(stages): |
| if i <= indexOfLastEstimator: |
| if isinstance(stage, Transformer): |
| transformers.append(stage) |
| dataset = stage.transform(dataset) |
| else: # must be an Estimator |
| model = stage.fit(dataset) |
| transformers.append(model) |
| if i < indexOfLastEstimator: |
| dataset = model.transform(dataset) |
| else: |
| transformers.append(cast(Transformer, stage)) |
| return PipelineModel(transformers) |
| |
| def copy(self, extra: Optional["ParamMap"] = None) -> "Pipeline": |
| """ |
| Creates a copy of this instance. |
| |
| .. versionadded:: 1.4.0 |
| |
| Parameters |
| ---------- |
| extra : dict, optional |
| extra parameters |
| |
| Returns |
| ------- |
| :py:class:`Pipeline` |
| new instance |
| """ |
| if extra is None: |
| extra = dict() |
| that = Params.copy(self, extra) |
| stages = [stage.copy(extra) for stage in that.getStages()] |
| return that.setStages(stages) |
| |
| @since("2.0.0") |
| @try_remote_write |
| def write(self) -> MLWriter: |
| """Returns an MLWriter instance for this ML instance.""" |
| allStagesAreJava = PipelineSharedReadWrite.checkStagesForJava(self.getStages()) |
| if allStagesAreJava: |
| return JavaMLWriter(self) # type: ignore[arg-type] |
| return PipelineWriter(self) |
| |
| @classmethod |
| @since("2.0.0") |
| @try_remote_read |
| def read(cls) -> "PipelineReader": |
| """Returns an MLReader instance for this class.""" |
| return PipelineReader(cls) |
| |
| @classmethod |
| def _from_java(cls, java_stage: "JavaObject") -> "Pipeline": |
| """ |
| Given a Java Pipeline, create and return a Python wrapper of it. |
| Used for ML persistence. |
| """ |
| # Create a new instance of this stage. |
| py_stage = cls() |
| # Load information from java_stage to the instance. |
| py_stages: List["PipelineStage"] = [ |
| JavaParams._from_java(s) for s in java_stage.getStages() |
| ] |
| py_stage.setStages(py_stages) |
| py_stage._resetUid(java_stage.uid()) |
| return py_stage |
| |
| def _to_java(self) -> "JavaObject": |
| """ |
| Transfer this instance to a Java Pipeline. Used for ML persistence. |
| |
| Returns |
| ------- |
| py4j.java_gateway.JavaObject |
| Java object equivalent to this instance. |
| """ |
| from pyspark.core.context import SparkContext |
| |
| gateway = SparkContext._gateway |
| assert gateway is not None and SparkContext._jvm is not None |
| |
| cls = getattr(SparkContext._jvm, "org.apache.spark.ml.PipelineStage") |
| java_stages = gateway.new_array(cls, len(self.getStages())) |
| for idx, stage in enumerate(self.getStages()): |
| java_stages[idx] = cast(JavaParams, stage)._to_java() |
| |
| _java_obj = JavaParams._new_java_obj("org.apache.spark.ml.Pipeline", self.uid) |
| _java_obj.setStages(java_stages) |
| |
| return _java_obj |
| |
| |
| @inherit_doc |
| class PipelineWriter(MLWriter): |
| """ |
| (Private) Specialization of :py:class:`MLWriter` for :py:class:`Pipeline` types |
| """ |
| |
| def __init__(self, instance: Pipeline): |
| super(PipelineWriter, self).__init__() |
| self.instance = instance |
| |
| def saveImpl(self, path: str) -> None: |
| stages = self.instance.getStages() |
| PipelineSharedReadWrite.validateStages(stages) |
| PipelineSharedReadWrite.saveImpl(self.instance, stages, self.sparkSession, path) |
| |
| |
| @inherit_doc |
| class PipelineReader(MLReader[Pipeline]): |
| """ |
| (Private) Specialization of :py:class:`MLReader` for :py:class:`Pipeline` types |
| """ |
| |
| def __init__(self, cls: Type[Pipeline]): |
| super(PipelineReader, self).__init__() |
| self.cls = cls |
| |
| def load(self, path: str) -> Pipeline: |
| metadata = DefaultParamsReader.loadMetadata(path, self.sparkSession) |
| uid, stages = PipelineSharedReadWrite.load(metadata, self.sparkSession, path) |
| return Pipeline(stages=stages)._resetUid(uid) |
| |
| |
| @inherit_doc |
| class PipelineModelWriter(MLWriter): |
| """ |
| (Private) Specialization of :py:class:`MLWriter` for :py:class:`PipelineModel` types |
| """ |
| |
| def __init__(self, instance: "PipelineModel"): |
| super(PipelineModelWriter, self).__init__() |
| self.instance = instance |
| |
| def saveImpl(self, path: str) -> None: |
| stages = self.instance.stages |
| PipelineSharedReadWrite.validateStages(cast(List["PipelineStage"], stages)) |
| PipelineSharedReadWrite.saveImpl( |
| self.instance, cast(List["PipelineStage"], stages), self.sparkSession, path |
| ) |
| |
| |
| @inherit_doc |
| class PipelineModelReader(MLReader["PipelineModel"]): |
| """ |
| (Private) Specialization of :py:class:`MLReader` for :py:class:`PipelineModel` types |
| """ |
| |
| def __init__(self, cls: Type["PipelineModel"]): |
| super(PipelineModelReader, self).__init__() |
| self.cls = cls |
| |
| def load(self, path: str) -> "PipelineModel": |
| metadata = DefaultParamsReader.loadMetadata(path, self.sparkSession) |
| uid, stages = PipelineSharedReadWrite.load(metadata, self.sparkSession, path) |
| return PipelineModel(stages=cast(List[Transformer], stages))._resetUid(uid) |
| |
| |
| @inherit_doc |
| class PipelineModel(Model, MLReadable["PipelineModel"], MLWritable): |
| """ |
| Represents a compiled pipeline with transformers and fitted models. |
| |
| .. versionadded:: 1.3.0 |
| """ |
| |
| def __init__(self, stages: List[Transformer]): |
| super(PipelineModel, self).__init__() |
| self.stages = stages |
| |
| def _transform(self, dataset: DataFrame) -> DataFrame: |
| for t in self.stages: |
| dataset = t.transform(dataset) |
| return dataset |
| |
| def copy(self, extra: Optional["ParamMap"] = None) -> "PipelineModel": |
| """ |
| Creates a copy of this instance. |
| |
| .. versionadded:: 1.4.0 |
| |
| :param extra: extra parameters |
| :returns: new instance |
| """ |
| if extra is None: |
| extra = dict() |
| stages = [stage.copy(extra) for stage in self.stages] |
| return PipelineModel(stages) |
| |
| @since("2.0.0") |
| @try_remote_write |
| def write(self) -> MLWriter: |
| """Returns an MLWriter instance for this ML instance.""" |
| allStagesAreJava = PipelineSharedReadWrite.checkStagesForJava( |
| cast(List["PipelineStage"], self.stages) |
| ) |
| if allStagesAreJava: |
| return JavaMLWriter(self) # type: ignore[arg-type] |
| return PipelineModelWriter(self) |
| |
| @classmethod |
| @since("2.0.0") |
| @try_remote_read |
| def read(cls) -> PipelineModelReader: |
| """Returns an MLReader instance for this class.""" |
| return PipelineModelReader(cls) |
| |
| @classmethod |
| def _from_java(cls, java_stage: "JavaObject") -> "PipelineModel": |
| """ |
| Given a Java PipelineModel, create and return a Python wrapper of it. |
| Used for ML persistence. |
| """ |
| # Load information from java_stage to the instance. |
| py_stages: List[Transformer] = [JavaParams._from_java(s) for s in java_stage.stages()] |
| # Create a new instance of this stage. |
| py_stage = cls(py_stages) |
| py_stage._resetUid(java_stage.uid()) |
| return py_stage |
| |
| def _to_java(self) -> "JavaObject": |
| """ |
| Transfer this instance to a Java PipelineModel. Used for ML persistence. |
| |
| :return: Java object equivalent to this instance. |
| """ |
| from pyspark.core.context import SparkContext |
| |
| gateway = SparkContext._gateway |
| assert gateway is not None and SparkContext._jvm is not None |
| |
| cls = getattr(SparkContext._jvm, "org.apache.spark.ml.Transformer") |
| java_stages = gateway.new_array(cls, len(self.stages)) |
| for idx, stage in enumerate(self.stages): |
| java_stages[idx] = cast(JavaParams, stage)._to_java() |
| |
| _java_obj = JavaParams._new_java_obj( |
| "org.apache.spark.ml.PipelineModel", self.uid, java_stages |
| ) |
| |
| return _java_obj |
| |
| |
| @inherit_doc |
| class PipelineSharedReadWrite: |
| """ |
| Functions for :py:class:`MLReader` and :py:class:`MLWriter` shared between |
| :py:class:`Pipeline` and :py:class:`PipelineModel` |
| |
| .. versionadded:: 2.3.0 |
| """ |
| |
| @staticmethod |
| def checkStagesForJava(stages: List["PipelineStage"]) -> bool: |
| return all(isinstance(stage, JavaMLWritable) for stage in stages) |
| |
| @staticmethod |
| def validateStages(stages: List["PipelineStage"]) -> None: |
| """ |
| Check that all stages are Writable |
| """ |
| for stage in stages: |
| if not isinstance(stage, MLWritable): |
| raise ValueError( |
| "Pipeline write will fail on this pipeline " |
| + "because stage %s of type %s is not MLWritable", |
| stage.uid, |
| type(stage), |
| ) |
| |
| @staticmethod |
| def saveImpl( |
| instance: Union[Pipeline, PipelineModel], |
| stages: List["PipelineStage"], |
| sc: Union["SparkContext", SparkSession], |
| path: str, |
| ) -> None: |
| """ |
| Save metadata and stages for a :py:class:`Pipeline` or :py:class:`PipelineModel` |
| - save metadata to path/metadata |
| - save stages to stages/IDX_UID |
| """ |
| stageUids = [stage.uid for stage in stages] |
| jsonParams = {"stageUids": stageUids, "language": "Python"} |
| spark = cast(SparkSession, sc) if hasattr(sc, "createDataFrame") else SparkSession.active() |
| DefaultParamsWriter.saveMetadata(instance, path, spark, paramMap=jsonParams) |
| stagesDir = os.path.join(path, "stages") |
| for index, stage in enumerate(stages): |
| cast(MLWritable, stage).write().session(spark).save( |
| PipelineSharedReadWrite.getStagePath(stage.uid, index, len(stages), stagesDir) |
| ) |
| |
| @staticmethod |
| def load( |
| metadata: Dict[str, Any], |
| sc: Union["SparkContext", SparkSession], |
| path: str, |
| ) -> Tuple[str, List["PipelineStage"]]: |
| """ |
| Load metadata and stages for a :py:class:`Pipeline` or :py:class:`PipelineModel` |
| |
| Returns |
| ------- |
| tuple |
| (UID, list of stages) |
| """ |
| stagesDir = os.path.join(path, "stages") |
| stageUids = metadata["paramMap"]["stageUids"] |
| spark = cast(SparkSession, sc) if hasattr(sc, "createDataFrame") else SparkSession.active() |
| stages = [] |
| for index, stageUid in enumerate(stageUids): |
| stagePath = PipelineSharedReadWrite.getStagePath( |
| stageUid, index, len(stageUids), stagesDir |
| ) |
| stage: "PipelineStage" = DefaultParamsReader.loadParamsInstance(stagePath, spark) |
| stages.append(stage) |
| return (metadata["uid"], stages) |
| |
| @staticmethod |
| def getStagePath(stageUid: str, stageIdx: int, numStages: int, stagesDir: str) -> str: |
| """ |
| Get path for saving the given stage. |
| """ |
| stageIdxDigits = len(str(numStages)) |
| stageDir = str(stageIdx).zfill(stageIdxDigits) + "_" + stageUid |
| stagePath = os.path.join(stagesDir, stageDir) |
| return stagePath |