| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| # $example on$ |
| from pyspark.mllib.regression import LabeledPoint, LinearRegressionWithSGD |
| from pyspark.mllib.evaluation import RegressionMetrics |
| from pyspark.mllib.linalg import DenseVector |
| # $example off$ |
| |
| from pyspark import SparkContext |
| |
| if __name__ == "__main__": |
| sc = SparkContext(appName="Regression Metrics Example") |
| |
| # $example on$ |
| # Load and parse the data |
| def parsePoint(line): |
| values = line.split() |
| return LabeledPoint(float(values[0]), |
| DenseVector([float(x.split(':')[1]) for x in values[1:]])) |
| |
| data = sc.textFile("data/mllib/sample_linear_regression_data.txt") |
| parsedData = data.map(parsePoint) |
| |
| # Build the model |
| model = LinearRegressionWithSGD.train(parsedData) |
| |
| # Get predictions |
| valuesAndPreds = parsedData.map(lambda p: (float(model.predict(p.features)), p.label)) |
| |
| # Instantiate metrics object |
| metrics = RegressionMetrics(valuesAndPreds) |
| |
| # Squared Error |
| print("MSE = %s" % metrics.meanSquaredError) |
| print("RMSE = %s" % metrics.rootMeanSquaredError) |
| |
| # R-squared |
| print("R-squared = %s" % metrics.r2) |
| |
| # Mean absolute error |
| print("MAE = %s" % metrics.meanAbsoluteError) |
| |
| # Explained variance |
| print("Explained variance = %s" % metrics.explainedVariance) |
| # $example off$ |