| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| # $example on$ |
| from pyspark.ml.feature import TargetEncoder |
| |
| # $example off$ |
| from pyspark.sql import SparkSession |
| |
| if __name__ == "__main__": |
| spark = SparkSession.builder.appName("TargetEncoderExample").getOrCreate() |
| |
| # Note: categorical features are usually first encoded with StringIndexer |
| # $example on$ |
| df = spark.createDataFrame( |
| [ |
| (0.0, 1.0, 0, 10.0), |
| (1.0, 0.0, 1, 20.0), |
| (2.0, 1.0, 0, 30.0), |
| (0.0, 2.0, 1, 40.0), |
| (0.0, 1.0, 0, 50.0), |
| (2.0, 0.0, 1, 60.0), |
| ], |
| ["categoryIndex1", "categoryIndex2", "binaryLabel", "continuousLabel"], |
| ) |
| |
| # binary target |
| encoder = TargetEncoder( |
| inputCols=["categoryIndex1", "categoryIndex2"], |
| outputCols=["categoryIndex1Target", "categoryIndex2Target"], |
| labelCol="binaryLabel", |
| targetType="binary" |
| ) |
| model = encoder.fit(df) |
| encoded = model.transform(df) |
| encoded.show() |
| |
| # continuous target |
| encoder = TargetEncoder( |
| inputCols=["categoryIndex1", "categoryIndex2"], |
| outputCols=["categoryIndex1Target", "categoryIndex2Target"], |
| labelCol="continuousLabel", |
| targetType="continuous" |
| ) |
| |
| model = encoder.fit(df) |
| encoded = model.transform(df) |
| encoded.show() |
| # $example off$ |
| |
| spark.stop() |