blob: f6c1010de71f35e545abd3d1800587b96326fc1c [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# $example on$
from pyspark.ml.feature import TargetEncoder
# $example off$
from pyspark.sql import SparkSession
if __name__ == "__main__":
spark = SparkSession.builder.appName("TargetEncoderExample").getOrCreate()
# Note: categorical features are usually first encoded with StringIndexer
# $example on$
df = spark.createDataFrame(
[
(0.0, 1.0, 0, 10.0),
(1.0, 0.0, 1, 20.0),
(2.0, 1.0, 0, 30.0),
(0.0, 2.0, 1, 40.0),
(0.0, 1.0, 0, 50.0),
(2.0, 0.0, 1, 60.0),
],
["categoryIndex1", "categoryIndex2", "binaryLabel", "continuousLabel"],
)
# binary target
encoder = TargetEncoder(
inputCols=["categoryIndex1", "categoryIndex2"],
outputCols=["categoryIndex1Target", "categoryIndex2Target"],
labelCol="binaryLabel",
targetType="binary"
)
model = encoder.fit(df)
encoded = model.transform(df)
encoded.show()
# continuous target
encoder = TargetEncoder(
inputCols=["categoryIndex1", "categoryIndex2"],
outputCols=["categoryIndex1Target", "categoryIndex2Target"],
labelCol="continuousLabel",
targetType="continuous"
)
model = encoder.fit(df)
encoded = model.transform(df)
encoded.show()
# $example off$
spark.stop()