| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| context("basic tests for CRAN") |
| |
| test_that("create DataFrame from list or data.frame", { |
| tryCatch(checkJavaVersion(), |
| error = function(e) { skip("error on Java check") }, |
| warning = function(e) { skip("warning on Java check") }) |
| |
| sparkR.session(master = sparkRTestMaster, enableHiveSupport = FALSE, |
| sparkConfig = sparkRTestConfig) |
| |
| i <- 4 |
| df <- createDataFrame(data.frame(dummy = 1:i)) |
| expect_equal(count(df), i) |
| |
| l <- list(list(a = 1, b = 2), list(a = 3, b = 4)) |
| df <- createDataFrame(l) |
| expect_equal(columns(df), c("a", "b")) |
| |
| a <- 1:3 |
| b <- c("a", "b", "c") |
| ldf <- data.frame(a, b) |
| df <- createDataFrame(ldf) |
| expect_equal(columns(df), c("a", "b")) |
| expect_equal(dtypes(df), list(c("a", "int"), c("b", "string"))) |
| expect_equal(count(df), 3) |
| ldf2 <- collect(df) |
| expect_equal(ldf$a, ldf2$a) |
| |
| mtcarsdf <- createDataFrame(mtcars) |
| expect_equivalent(collect(mtcarsdf), mtcars) |
| |
| bytes <- as.raw(c(1, 2, 3)) |
| df <- createDataFrame(list(list(bytes))) |
| expect_equal(collect(df)[[1]][[1]], bytes) |
| |
| sparkR.session.stop() |
| }) |
| |
| test_that("spark.glm and predict", { |
| tryCatch(checkJavaVersion(), |
| error = function(e) { skip("error on Java check") }, |
| warning = function(e) { skip("warning on Java check") }) |
| |
| sparkR.session(master = sparkRTestMaster, enableHiveSupport = FALSE, |
| sparkConfig = sparkRTestConfig) |
| |
| training <- suppressWarnings(createDataFrame(iris)) |
| # gaussian family |
| model <- spark.glm(training, Sepal_Width ~ Sepal_Length + Species) |
| prediction <- predict(model, training) |
| expect_equal(typeof(take(select(prediction, "prediction"), 1)$prediction), "double") |
| vals <- collect(select(prediction, "prediction")) |
| rVals <- predict(glm(Sepal.Width ~ Sepal.Length + Species, data = iris), iris) |
| expect_true(all(abs(rVals - vals) < 1e-6), rVals - vals) |
| |
| # Gamma family |
| x <- runif(100, -1, 1) |
| y <- rgamma(100, rate = 10 / exp(0.5 + 1.2 * x), shape = 10) |
| df <- as.DataFrame(as.data.frame(list(x = x, y = y))) |
| model <- glm(y ~ x, family = Gamma, df) |
| out <- capture.output(print(summary(model))) |
| expect_true(any(grepl("Dispersion parameter for gamma family", out))) |
| |
| # tweedie family |
| model <- spark.glm(training, Sepal_Width ~ Sepal_Length + Species, |
| family = "tweedie", var.power = 1.2, link.power = 0.0) |
| prediction <- predict(model, training) |
| expect_equal(typeof(take(select(prediction, "prediction"), 1)$prediction), "double") |
| vals <- collect(select(prediction, "prediction")) |
| |
| # manual calculation of the R predicted values to avoid dependence on statmod |
| #' library(statmod) |
| #' rModel <- glm(Sepal.Width ~ Sepal.Length + Species, data = iris, |
| #' family = tweedie(var.power = 1.2, link.power = 0.0)) |
| #' print(coef(rModel)) |
| |
| rCoef <- c(0.6455409, 0.1169143, -0.3224752, -0.3282174) |
| rVals <- exp(as.numeric(model.matrix(Sepal.Width ~ Sepal.Length + Species, |
| data = iris) %*% rCoef)) |
| expect_true(all(abs(rVals - vals) < 1e-5), rVals - vals) |
| |
| sparkR.session.stop() |
| }) |