blob: b89fe485b26fd4a1deb558b2ae6db7ca1e4e31b8 [file] [log] [blame]
/*
* duk_heap allocation and freeing.
*/
#include "duk_internal.h"
/* Constants for built-in string data depacking. */
#define DUK__BITPACK_LETTER_LIMIT 26
#define DUK__BITPACK_UNDERSCORE 26
#define DUK__BITPACK_FF 27
#define DUK__BITPACK_SWITCH1 29
#define DUK__BITPACK_SWITCH 30
#define DUK__BITPACK_SEVENBIT 31
#if defined(DUK_USE_ROM_STRINGS)
/* Fixed seed value used with ROM strings. */
#define DUK__FIXED_HASH_SEED 0xabcd1234
#endif
/*
* Free a heap object.
*
* Free heap object and its internal (non-heap) pointers. Assumes that
* caller has removed the object from heap allocated list or the string
* intern table, and any weak references (which strings may have) have
* been already dealt with.
*/
DUK_INTERNAL void duk_free_hobject_inner(duk_heap *heap, duk_hobject *h) {
DUK_ASSERT(heap != NULL);
DUK_ASSERT(h != NULL);
DUK_FREE(heap, DUK_HOBJECT_GET_PROPS(heap, h));
if (DUK_HOBJECT_IS_COMPILEDFUNCTION(h)) {
duk_hcompiledfunction *f = (duk_hcompiledfunction *) h;
DUK_UNREF(f);
/* Currently nothing to free; 'data' is a heap object */
} else if (DUK_HOBJECT_IS_NATIVEFUNCTION(h)) {
duk_hnativefunction *f = (duk_hnativefunction *) h;
DUK_UNREF(f);
/* Currently nothing to free */
} else if (DUK_HOBJECT_IS_THREAD(h)) {
duk_hthread *t = (duk_hthread *) h;
DUK_FREE(heap, t->valstack);
DUK_FREE(heap, t->callstack);
DUK_FREE(heap, t->catchstack);
/* Don't free h->resumer because it exists in the heap.
* Callstack entries also contain function pointers which
* are not freed for the same reason.
*/
/* XXX: with 'caller' property the callstack would need
* to be unwound to update the 'caller' properties of
* functions in the callstack.
*/
}
}
DUK_INTERNAL void duk_free_hbuffer_inner(duk_heap *heap, duk_hbuffer *h) {
DUK_ASSERT(heap != NULL);
DUK_ASSERT(h != NULL);
if (DUK_HBUFFER_HAS_DYNAMIC(h) && !DUK_HBUFFER_HAS_EXTERNAL(h)) {
duk_hbuffer_dynamic *g = (duk_hbuffer_dynamic *) h;
DUK_DDD(DUK_DDDPRINT("free dynamic buffer %p", (void *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(heap, g)));
DUK_FREE(heap, DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(heap, g));
}
}
DUK_INTERNAL void duk_free_hstring_inner(duk_heap *heap, duk_hstring *h) {
DUK_ASSERT(heap != NULL);
DUK_ASSERT(h != NULL);
DUK_UNREF(heap);
DUK_UNREF(h);
#if defined(DUK_USE_HSTRING_EXTDATA) && defined(DUK_USE_EXTSTR_FREE)
if (DUK_HSTRING_HAS_EXTDATA(h)) {
DUK_DDD(DUK_DDDPRINT("free extstr: hstring %!O, extdata: %p",
h, DUK_HSTRING_GET_EXTDATA((duk_hstring_external *) h)));
DUK_USE_EXTSTR_FREE(heap->heap_udata, (const void *) DUK_HSTRING_GET_EXTDATA((duk_hstring_external *) h));
}
#endif
}
DUK_INTERNAL void duk_heap_free_heaphdr_raw(duk_heap *heap, duk_heaphdr *hdr) {
DUK_ASSERT(heap);
DUK_ASSERT(hdr);
DUK_DDD(DUK_DDDPRINT("free heaphdr %p, htype %ld", (void *) hdr, (long) DUK_HEAPHDR_GET_TYPE(hdr)));
switch ((int) DUK_HEAPHDR_GET_TYPE(hdr)) {
case DUK_HTYPE_STRING:
duk_free_hstring_inner(heap, (duk_hstring *) hdr);
break;
case DUK_HTYPE_OBJECT:
duk_free_hobject_inner(heap, (duk_hobject *) hdr);
break;
case DUK_HTYPE_BUFFER:
duk_free_hbuffer_inner(heap, (duk_hbuffer *) hdr);
break;
default:
DUK_UNREACHABLE();
}
DUK_FREE(heap, hdr);
}
/*
* Free the heap.
*
* Frees heap-related non-heap-tracked allocations such as the
* string intern table; then frees the heap allocated objects;
* and finally frees the heap structure itself. Reference counts
* and GC markers are ignored (and not updated) in this process,
* and finalizers won't be called.
*
* The heap pointer and heap object pointers must not be used
* after this call.
*/
DUK_LOCAL void duk__free_allocated(duk_heap *heap) {
duk_heaphdr *curr;
duk_heaphdr *next;
curr = heap->heap_allocated;
while (curr) {
/* We don't log or warn about freeing zero refcount objects
* because they may happen with finalizer processing.
*/
DUK_DDD(DUK_DDDPRINT("FINALFREE (allocated): %!iO",
(duk_heaphdr *) curr));
next = DUK_HEAPHDR_GET_NEXT(heap, curr);
duk_heap_free_heaphdr_raw(heap, curr);
curr = next;
}
}
#if defined(DUK_USE_REFERENCE_COUNTING)
DUK_LOCAL void duk__free_refzero_list(duk_heap *heap) {
duk_heaphdr *curr;
duk_heaphdr *next;
curr = heap->refzero_list;
while (curr) {
DUK_DDD(DUK_DDDPRINT("FINALFREE (refzero_list): %!iO",
(duk_heaphdr *) curr));
next = DUK_HEAPHDR_GET_NEXT(heap, curr);
duk_heap_free_heaphdr_raw(heap, curr);
curr = next;
}
}
#endif
#if defined(DUK_USE_MARK_AND_SWEEP)
DUK_LOCAL void duk__free_markandsweep_finalize_list(duk_heap *heap) {
duk_heaphdr *curr;
duk_heaphdr *next;
curr = heap->finalize_list;
while (curr) {
DUK_DDD(DUK_DDDPRINT("FINALFREE (finalize_list): %!iO",
(duk_heaphdr *) curr));
next = DUK_HEAPHDR_GET_NEXT(heap, curr);
duk_heap_free_heaphdr_raw(heap, curr);
curr = next;
}
}
#endif
DUK_LOCAL void duk__free_stringtable(duk_heap *heap) {
/* strings are only tracked by stringtable */
duk_heap_free_strtab(heap);
}
DUK_LOCAL void duk__free_run_finalizers(duk_heap *heap) {
duk_hthread *thr;
duk_heaphdr *curr;
duk_uint_t round_no;
duk_size_t count_all;
duk_size_t count_finalized;
duk_size_t curr_limit;
DUK_ASSERT(heap != NULL);
DUK_ASSERT(heap->heap_thread != NULL);
#if defined(DUK_USE_REFERENCE_COUNTING)
DUK_ASSERT(heap->refzero_list == NULL); /* refzero not running -> must be empty */
#endif
#if defined(DUK_USE_MARK_AND_SWEEP)
DUK_ASSERT(heap->finalize_list == NULL); /* mark-and-sweep not running -> must be empty */
#endif
/* XXX: here again finalizer thread is the heap_thread which needs
* to be coordinated with finalizer thread fixes.
*/
thr = heap->heap_thread;
DUK_ASSERT(thr != NULL);
/* Prevent mark-and-sweep for the pending finalizers, also prevents
* refzero handling from moving objects away from the heap_allocated
* list. (The flag meaning is slightly abused here.)
*/
DUK_ASSERT(!DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap));
DUK_HEAP_SET_MARKANDSWEEP_RUNNING(heap);
curr_limit = 0; /* suppress warning, not used */
for (round_no = 0; ; round_no++) {
curr = heap->heap_allocated;
count_all = 0;
count_finalized = 0;
while (curr) {
count_all++;
if (DUK_HEAPHDR_GET_TYPE(curr) == DUK_HTYPE_OBJECT) {
/* Only objects in heap_allocated may have finalizers. Check that
* the object itself has a _Finalizer property (own or inherited)
* so that we don't execute finalizers for e.g. Proxy objects.
*/
DUK_ASSERT(thr != NULL);
DUK_ASSERT(curr != NULL);
if (duk_hobject_hasprop_raw(thr, (duk_hobject *) curr, DUK_HTHREAD_STRING_INT_FINALIZER(thr))) {
if (!DUK_HEAPHDR_HAS_FINALIZED((duk_heaphdr *) curr)) {
DUK_ASSERT(DUK_HEAP_HAS_FINALIZER_NORESCUE(heap)); /* maps to finalizer 2nd argument */
duk_hobject_run_finalizer(thr, (duk_hobject *) curr);
count_finalized++;
}
}
}
curr = DUK_HEAPHDR_GET_NEXT(heap, curr);
}
/* Each round of finalizer execution may spawn new finalizable objects
* which is normal behavior for some applications. Allow multiple
* rounds of finalization, but use a shrinking limit based on the
* first round to detect the case where a runaway finalizer creates
* an unbounded amount of new finalizable objects. Finalizer rescue
* is not supported: the semantics are unclear because most of the
* objects being finalized here are already reachable. The finalizer
* is given a boolean to indicate that rescue is not possible.
*
* See discussion in: https://github.com/svaarala/duktape/pull/473
*/
if (round_no == 0) {
/* Cannot wrap: each object is at least 8 bytes so count is
* at most 1/8 of that.
*/
curr_limit = count_all * 2;
} else {
curr_limit = (curr_limit * 3) / 4; /* Decrease by 25% every round */
}
DUK_D(DUK_DPRINT("finalizer round %ld complete, %ld objects, tried to execute %ld finalizers, current limit is %ld",
(long) round_no, (long) count_all, (long) count_finalized, (long) curr_limit));
if (count_finalized == 0) {
DUK_D(DUK_DPRINT("no more finalizable objects, forced finalization finished"));
break;
}
if (count_finalized >= curr_limit) {
DUK_D(DUK_DPRINT("finalizer count above limit, potentially runaway finalizer; skip remaining finalizers"));
break;
}
}
DUK_ASSERT(DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap));
DUK_HEAP_CLEAR_MARKANDSWEEP_RUNNING(heap);
}
DUK_INTERNAL void duk_heap_free(duk_heap *heap) {
DUK_D(DUK_DPRINT("free heap: %p", (void *) heap));
#if defined(DUK_USE_DEBUG)
duk_heap_dump_strtab(heap);
#endif
#if defined(DUK_USE_DEBUGGER_SUPPORT)
/* Detach a debugger if attached (can be called multiple times)
* safely.
*/
/* XXX: Add a flag to reject an attempt to re-attach? Otherwise
* the detached callback may immediately reattach.
*/
duk_debug_do_detach(heap);
#endif
/* Execute finalizers before freeing the heap, even for reachable
* objects, and regardless of whether or not mark-and-sweep is
* enabled. This gives finalizers the chance to free any native
* resources like file handles, allocations made outside Duktape,
* etc. This is quite tricky to get right, so that all finalizer
* guarantees are honored.
*
* XXX: this perhaps requires an execution time limit.
*/
DUK_D(DUK_DPRINT("execute finalizers before freeing heap"));
#if defined(DUK_USE_MARK_AND_SWEEP)
/* Run mark-and-sweep a few times just in case (unreachable object
* finalizers run already here). The last round must rescue objects
* from the previous round without running any more finalizers. This
* ensures rescued objects get their FINALIZED flag cleared so that
* their finalizer is called once more in forced finalization to
* satisfy finalizer guarantees. However, we don't want to run any
* more finalizer because that'd required one more loop, and so on.
*/
DUK_D(DUK_DPRINT("forced gc #1 in heap destruction"));
duk_heap_mark_and_sweep(heap, 0);
DUK_D(DUK_DPRINT("forced gc #2 in heap destruction"));
duk_heap_mark_and_sweep(heap, 0);
DUK_D(DUK_DPRINT("forced gc #3 in heap destruction (don't run finalizers)"));
duk_heap_mark_and_sweep(heap, DUK_MS_FLAG_SKIP_FINALIZERS); /* skip finalizers; queue finalizable objects to heap_allocated */
#endif
DUK_HEAP_SET_FINALIZER_NORESCUE(heap); /* rescue no longer supported */
duk__free_run_finalizers(heap);
/* Note: heap->heap_thread, heap->curr_thread, and heap->heap_object
* are on the heap allocated list.
*/
DUK_D(DUK_DPRINT("freeing heap objects of heap: %p", (void *) heap));
duk__free_allocated(heap);
#if defined(DUK_USE_REFERENCE_COUNTING)
DUK_D(DUK_DPRINT("freeing refzero list of heap: %p", (void *) heap));
duk__free_refzero_list(heap);
#endif
#if defined(DUK_USE_MARK_AND_SWEEP)
DUK_D(DUK_DPRINT("freeing mark-and-sweep finalize list of heap: %p", (void *) heap));
duk__free_markandsweep_finalize_list(heap);
#endif
DUK_D(DUK_DPRINT("freeing string table of heap: %p", (void *) heap));
duk__free_stringtable(heap);
DUK_D(DUK_DPRINT("freeing heap structure: %p", (void *) heap));
heap->free_func(heap->heap_udata, heap);
}
/*
* Allocate a heap.
*
* String table is initialized with built-in strings from genbuiltins.py,
* either by dynamically creating the strings or by referring to ROM strings.
*/
#if defined(DUK_USE_ROM_STRINGS)
DUK_LOCAL duk_bool_t duk__init_heap_strings(duk_heap *heap) {
#if defined(DUK_USE_ASSERTIONS)
duk_small_uint_t i;
#endif
/* With ROM-based strings, heap->strs[] and thr->strs[] are omitted
* so nothing to initialize for strs[].
*/
#if defined(DUK_USE_ASSERTIONS)
for (i = 0; i < sizeof(duk_rom_strings) / sizeof(const duk_hstring *); i++) {
duk_uint32_t hash;
const duk_hstring *h;
h = duk_rom_strings[i];
DUK_ASSERT(h != NULL);
hash = duk_heap_hashstring(heap, (const duk_uint8_t *) DUK_HSTRING_GET_DATA(h), DUK_HSTRING_GET_BYTELEN(h));
DUK_DD(DUK_DDPRINT("duk_rom_strings[%d] -> hash 0x%08lx, computed 0x%08lx",
(int) i, (unsigned long) DUK_HSTRING_GET_HASH(h), (unsigned long) hash));
DUK_ASSERT(hash == (duk_uint32_t) DUK_HSTRING_GET_HASH(h));
}
#endif
return 1;
}
#else /* DUK_USE_ROM_STRINGS */
DUK_LOCAL duk_bool_t duk__init_heap_strings(duk_heap *heap) {
duk_bitdecoder_ctx bd_ctx;
duk_bitdecoder_ctx *bd = &bd_ctx; /* convenience */
duk_small_uint_t i, j;
DUK_MEMZERO(&bd_ctx, sizeof(bd_ctx));
bd->data = (const duk_uint8_t *) duk_strings_data;
bd->length = (duk_size_t) DUK_STRDATA_DATA_LENGTH;
for (i = 0; i < DUK_HEAP_NUM_STRINGS; i++) {
duk_uint8_t tmp[DUK_STRDATA_MAX_STRLEN];
duk_hstring *h;
duk_small_uint_t len;
duk_small_uint_t mode;
duk_small_uint_t t;
len = duk_bd_decode(bd, 5);
mode = 32; /* 0 = uppercase, 32 = lowercase (= 'a' - 'A') */
for (j = 0; j < len; j++) {
t = duk_bd_decode(bd, 5);
if (t < DUK__BITPACK_LETTER_LIMIT) {
t = t + DUK_ASC_UC_A + mode;
} else if (t == DUK__BITPACK_UNDERSCORE) {
t = DUK_ASC_UNDERSCORE;
} else if (t == DUK__BITPACK_FF) {
/* Internal keys are prefixed with 0xFF in the stringtable
* (which makes them invalid UTF-8 on purpose).
*/
t = 0xff;
} else if (t == DUK__BITPACK_SWITCH1) {
t = duk_bd_decode(bd, 5);
DUK_ASSERT_DISABLE(t >= 0); /* unsigned */
DUK_ASSERT(t <= 25);
t = t + DUK_ASC_UC_A + (mode ^ 32);
} else if (t == DUK__BITPACK_SWITCH) {
mode = mode ^ 32;
t = duk_bd_decode(bd, 5);
DUK_ASSERT_DISABLE(t >= 0);
DUK_ASSERT(t <= 25);
t = t + DUK_ASC_UC_A + mode;
} else if (t == DUK__BITPACK_SEVENBIT) {
t = duk_bd_decode(bd, 7);
}
tmp[j] = (duk_uint8_t) t;
}
/* No need to length check string: it will never exceed even
* the 16-bit length maximum.
*/
DUK_ASSERT(len <= 0xffffUL);
DUK_DDD(DUK_DDDPRINT("intern built-in string %ld", (long) i));
h = duk_heap_string_intern(heap, tmp, len);
if (!h) {
goto error;
}
DUK_ASSERT(!DUK_HEAPHDR_HAS_READONLY((duk_heaphdr *) h));
/* Special flags checks. Since these strings are always
* reachable and a string cannot appear twice in the string
* table, there's no need to check/set these flags elsewhere.
* The 'internal' flag is set by string intern code.
*/
if (i == DUK_STRIDX_EVAL || i == DUK_STRIDX_LC_ARGUMENTS) {
DUK_HSTRING_SET_EVAL_OR_ARGUMENTS(h);
}
if (i >= DUK_STRIDX_START_RESERVED && i < DUK_STRIDX_END_RESERVED) {
DUK_HSTRING_SET_RESERVED_WORD(h);
if (i >= DUK_STRIDX_START_STRICT_RESERVED) {
DUK_HSTRING_SET_STRICT_RESERVED_WORD(h);
}
}
DUK_DDD(DUK_DDDPRINT("interned: %!O", (duk_heaphdr *) h));
/* XXX: The incref macro takes a thread pointer but doesn't
* use it right now.
*/
DUK_HSTRING_INCREF(_never_referenced_, h);
#if defined(DUK_USE_HEAPPTR16)
heap->strs16[i] = DUK_USE_HEAPPTR_ENC16(heap->heap_udata, (void *) h);
#else
heap->strs[i] = h;
#endif
}
return 1;
error:
return 0;
}
#endif /* DUK_USE_ROM_STRINGS */
DUK_LOCAL duk_bool_t duk__init_heap_thread(duk_heap *heap) {
duk_hthread *thr;
DUK_DD(DUK_DDPRINT("heap init: alloc heap thread"));
thr = duk_hthread_alloc(heap,
DUK_HOBJECT_FLAG_EXTENSIBLE |
DUK_HOBJECT_FLAG_THREAD |
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_THREAD));
if (!thr) {
DUK_D(DUK_DPRINT("failed to alloc heap_thread"));
return 0;
}
thr->state = DUK_HTHREAD_STATE_INACTIVE;
#if defined(DUK_USE_ROM_STRINGS)
/* No strs[] pointer. */
#else /* DUK_USE_ROM_STRINGS */
#if defined(DUK_USE_HEAPPTR16)
thr->strs16 = heap->strs16;
#else
thr->strs = heap->strs;
#endif
#endif /* DUK_USE_ROM_STRINGS */
heap->heap_thread = thr;
DUK_HTHREAD_INCREF(thr, thr); /* Note: first argument not really used */
/* 'thr' is now reachable */
if (!duk_hthread_init_stacks(heap, thr)) {
return 0;
}
/* XXX: this may now fail, and is not handled correctly */
duk_hthread_create_builtin_objects(thr);
/* default prototype (Note: 'thr' must be reachable) */
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, (duk_hobject *) thr, thr->builtins[DUK_BIDX_THREAD_PROTOTYPE]);
return 1;
}
#if defined(DUK_USE_DEBUG)
#define DUK__DUMPSZ(t) do { \
DUK_D(DUK_DPRINT("" #t "=%ld", (long) sizeof(t))); \
} while (0)
/* These is not 100% because format would need to be non-portable "long long".
* Also print out as doubles to catch cases where the "long" type is not wide
* enough; the limits will then not be printed accurately but the magnitude
* will be correct.
*/
#define DUK__DUMPLM_SIGNED_RAW(t,a,b) do { \
DUK_D(DUK_DPRINT(t "=[%ld,%ld]=[%lf,%lf]", \
(long) (a), (long) (b), \
(double) (a), (double) (b))); \
} while (0)
#define DUK__DUMPLM_UNSIGNED_RAW(t,a,b) do { \
DUK_D(DUK_DPRINT(t "=[%lu,%lu]=[%lf,%lf]", \
(unsigned long) (a), (unsigned long) (b), \
(double) (a), (double) (b))); \
} while (0)
#define DUK__DUMPLM_SIGNED(t) do { \
DUK__DUMPLM_SIGNED_RAW("DUK_" #t "_{MIN,MAX}", DUK_##t##_MIN, DUK_##t##_MAX); \
} while (0)
#define DUK__DUMPLM_UNSIGNED(t) do { \
DUK__DUMPLM_UNSIGNED_RAW("DUK_" #t "_{MIN,MAX}", DUK_##t##_MIN, DUK_##t##_MAX); \
} while (0)
DUK_LOCAL void duk__dump_type_sizes(void) {
DUK_D(DUK_DPRINT("sizeof()"));
/* basic platform types */
DUK__DUMPSZ(char);
DUK__DUMPSZ(short);
DUK__DUMPSZ(int);
DUK__DUMPSZ(long);
DUK__DUMPSZ(double);
DUK__DUMPSZ(void *);
DUK__DUMPSZ(size_t);
/* basic types from duk_features.h */
DUK__DUMPSZ(duk_uint8_t);
DUK__DUMPSZ(duk_int8_t);
DUK__DUMPSZ(duk_uint16_t);
DUK__DUMPSZ(duk_int16_t);
DUK__DUMPSZ(duk_uint32_t);
DUK__DUMPSZ(duk_int32_t);
DUK__DUMPSZ(duk_uint64_t);
DUK__DUMPSZ(duk_int64_t);
DUK__DUMPSZ(duk_uint_least8_t);
DUK__DUMPSZ(duk_int_least8_t);
DUK__DUMPSZ(duk_uint_least16_t);
DUK__DUMPSZ(duk_int_least16_t);
DUK__DUMPSZ(duk_uint_least32_t);
DUK__DUMPSZ(duk_int_least32_t);
#if defined(DUK_USE_64BIT_OPS)
DUK__DUMPSZ(duk_uint_least64_t);
DUK__DUMPSZ(duk_int_least64_t);
#endif
DUK__DUMPSZ(duk_uint_fast8_t);
DUK__DUMPSZ(duk_int_fast8_t);
DUK__DUMPSZ(duk_uint_fast16_t);
DUK__DUMPSZ(duk_int_fast16_t);
DUK__DUMPSZ(duk_uint_fast32_t);
DUK__DUMPSZ(duk_int_fast32_t);
#if defined(DUK_USE_64BIT_OPS)
DUK__DUMPSZ(duk_uint_fast64_t);
DUK__DUMPSZ(duk_int_fast64_t);
#endif
DUK__DUMPSZ(duk_uintptr_t);
DUK__DUMPSZ(duk_intptr_t);
DUK__DUMPSZ(duk_uintmax_t);
DUK__DUMPSZ(duk_intmax_t);
DUK__DUMPSZ(duk_double_t);
/* important chosen base types */
DUK__DUMPSZ(duk_int_t);
DUK__DUMPSZ(duk_uint_t);
DUK__DUMPSZ(duk_int_fast_t);
DUK__DUMPSZ(duk_uint_fast_t);
DUK__DUMPSZ(duk_small_int_t);
DUK__DUMPSZ(duk_small_uint_t);
DUK__DUMPSZ(duk_small_int_fast_t);
DUK__DUMPSZ(duk_small_uint_fast_t);
/* some derived types */
DUK__DUMPSZ(duk_codepoint_t);
DUK__DUMPSZ(duk_ucodepoint_t);
DUK__DUMPSZ(duk_idx_t);
DUK__DUMPSZ(duk_errcode_t);
DUK__DUMPSZ(duk_uarridx_t);
/* tval */
DUK__DUMPSZ(duk_double_union);
DUK__DUMPSZ(duk_tval);
/* structs from duk_forwdecl.h */
DUK__DUMPSZ(duk_jmpbuf); /* just one 'int' for C++ exceptions */
DUK__DUMPSZ(duk_heaphdr);
DUK__DUMPSZ(duk_heaphdr_string);
DUK__DUMPSZ(duk_hstring);
DUK__DUMPSZ(duk_hstring_external);
DUK__DUMPSZ(duk_hobject);
DUK__DUMPSZ(duk_hcompiledfunction);
DUK__DUMPSZ(duk_hnativefunction);
DUK__DUMPSZ(duk_hthread);
DUK__DUMPSZ(duk_hbuffer);
DUK__DUMPSZ(duk_hbuffer_fixed);
DUK__DUMPSZ(duk_hbuffer_dynamic);
DUK__DUMPSZ(duk_hbuffer_external);
DUK__DUMPSZ(duk_propaccessor);
DUK__DUMPSZ(duk_propvalue);
DUK__DUMPSZ(duk_propdesc);
DUK__DUMPSZ(duk_heap);
#if defined(DUK_USE_STRTAB_CHAIN)
DUK__DUMPSZ(duk_strtab_entry);
#endif
DUK__DUMPSZ(duk_activation);
DUK__DUMPSZ(duk_catcher);
DUK__DUMPSZ(duk_strcache);
DUK__DUMPSZ(duk_ljstate);
DUK__DUMPSZ(duk_fixedbuffer);
DUK__DUMPSZ(duk_bitdecoder_ctx);
DUK__DUMPSZ(duk_bitencoder_ctx);
DUK__DUMPSZ(duk_token);
DUK__DUMPSZ(duk_re_token);
DUK__DUMPSZ(duk_lexer_point);
DUK__DUMPSZ(duk_lexer_ctx);
DUK__DUMPSZ(duk_compiler_instr);
DUK__DUMPSZ(duk_compiler_func);
DUK__DUMPSZ(duk_compiler_ctx);
DUK__DUMPSZ(duk_re_matcher_ctx);
DUK__DUMPSZ(duk_re_compiler_ctx);
}
DUK_LOCAL void duk__dump_type_limits(void) {
DUK_D(DUK_DPRINT("limits"));
/* basic types */
DUK__DUMPLM_SIGNED(INT8);
DUK__DUMPLM_UNSIGNED(UINT8);
DUK__DUMPLM_SIGNED(INT_FAST8);
DUK__DUMPLM_UNSIGNED(UINT_FAST8);
DUK__DUMPLM_SIGNED(INT_LEAST8);
DUK__DUMPLM_UNSIGNED(UINT_LEAST8);
DUK__DUMPLM_SIGNED(INT16);
DUK__DUMPLM_UNSIGNED(UINT16);
DUK__DUMPLM_SIGNED(INT_FAST16);
DUK__DUMPLM_UNSIGNED(UINT_FAST16);
DUK__DUMPLM_SIGNED(INT_LEAST16);
DUK__DUMPLM_UNSIGNED(UINT_LEAST16);
DUK__DUMPLM_SIGNED(INT32);
DUK__DUMPLM_UNSIGNED(UINT32);
DUK__DUMPLM_SIGNED(INT_FAST32);
DUK__DUMPLM_UNSIGNED(UINT_FAST32);
DUK__DUMPLM_SIGNED(INT_LEAST32);
DUK__DUMPLM_UNSIGNED(UINT_LEAST32);
#if defined(DUK_USE_64BIT_OPS)
DUK__DUMPLM_SIGNED(INT64);
DUK__DUMPLM_UNSIGNED(UINT64);
DUK__DUMPLM_SIGNED(INT_FAST64);
DUK__DUMPLM_UNSIGNED(UINT_FAST64);
DUK__DUMPLM_SIGNED(INT_LEAST64);
DUK__DUMPLM_UNSIGNED(UINT_LEAST64);
#endif
DUK__DUMPLM_SIGNED(INTPTR);
DUK__DUMPLM_UNSIGNED(UINTPTR);
DUK__DUMPLM_SIGNED(INTMAX);
DUK__DUMPLM_UNSIGNED(UINTMAX);
/* derived types */
DUK__DUMPLM_SIGNED(INT);
DUK__DUMPLM_UNSIGNED(UINT);
DUK__DUMPLM_SIGNED(INT_FAST);
DUK__DUMPLM_UNSIGNED(UINT_FAST);
DUK__DUMPLM_SIGNED(SMALL_INT);
DUK__DUMPLM_UNSIGNED(SMALL_UINT);
DUK__DUMPLM_SIGNED(SMALL_INT_FAST);
DUK__DUMPLM_UNSIGNED(SMALL_UINT_FAST);
}
#undef DUK__DUMPSZ
#undef DUK__DUMPLM_SIGNED_RAW
#undef DUK__DUMPLM_UNSIGNED_RAW
#undef DUK__DUMPLM_SIGNED
#undef DUK__DUMPLM_UNSIGNED
DUK_LOCAL void duk__dump_misc_options(void) {
DUK_D(DUK_DPRINT("DUK_VERSION: %ld", (long) DUK_VERSION));
DUK_D(DUK_DPRINT("DUK_GIT_DESCRIBE: %s", DUK_GIT_DESCRIBE));
DUK_D(DUK_DPRINT("OS string: %s", DUK_USE_OS_STRING));
DUK_D(DUK_DPRINT("architecture string: %s", DUK_USE_ARCH_STRING));
DUK_D(DUK_DPRINT("compiler string: %s", DUK_USE_COMPILER_STRING));
#if defined(DUK_USE_PACKED_TVAL)
DUK_D(DUK_DPRINT("DUK_USE_PACKED_TVAL: yes"));
#else
DUK_D(DUK_DPRINT("DUK_USE_PACKED_TVAL: no"));
#endif
#if defined(DUK_USE_VARIADIC_MACROS)
DUK_D(DUK_DPRINT("DUK_USE_VARIADIC_MACROS: yes"));
#else
DUK_D(DUK_DPRINT("DUK_USE_VARIADIC_MACROS: no"));
#endif
#if defined(DUK_USE_INTEGER_LE)
DUK_D(DUK_DPRINT("integer endianness: little"));
#elif defined(DUK_USE_INTEGER_ME)
DUK_D(DUK_DPRINT("integer endianness: mixed"));
#elif defined(DUK_USE_INTEGER_BE)
DUK_D(DUK_DPRINT("integer endianness: big"));
#else
DUK_D(DUK_DPRINT("integer endianness: ???"));
#endif
#if defined(DUK_USE_DOUBLE_LE)
DUK_D(DUK_DPRINT("IEEE double endianness: little"));
#elif defined(DUK_USE_DOUBLE_ME)
DUK_D(DUK_DPRINT("IEEE double endianness: mixed"));
#elif defined(DUK_USE_DOUBLE_BE)
DUK_D(DUK_DPRINT("IEEE double endianness: big"));
#else
DUK_D(DUK_DPRINT("IEEE double endianness: ???"));
#endif
}
#endif /* DUK_USE_DEBUG */
DUK_INTERNAL
duk_heap *duk_heap_alloc(duk_alloc_function alloc_func,
duk_realloc_function realloc_func,
duk_free_function free_func,
void *heap_udata,
duk_fatal_function fatal_func) {
duk_heap *res = NULL;
/* Silence a few global unused warnings here. */
DUK_UNREF(duk_str_unsupported);
DUK_D(DUK_DPRINT("allocate heap"));
/*
* Debug dump type sizes
*/
#if defined(DUK_USE_DEBUG)
duk__dump_misc_options();
duk__dump_type_sizes();
duk__dump_type_limits();
#endif
/*
* If selftests enabled, run them as early as possible
*/
#if defined(DUK_USE_SELF_TESTS)
DUK_D(DUK_DPRINT("running self tests"));
duk_selftest_run_tests();
DUK_D(DUK_DPRINT("self tests passed"));
#endif
/*
* Computed values (e.g. INFINITY)
*/
#if defined(DUK_USE_COMPUTED_NAN)
do {
/* Workaround for some exotic platforms where NAN is missing
* and the expression (0.0 / 0.0) does NOT result in a NaN.
* Such platforms use the global 'duk_computed_nan' which must
* be initialized at runtime. Use 'volatile' to ensure that
* the compiler will actually do the computation and not try
* to do constant folding which might result in the original
* problem.
*/
volatile double dbl1 = 0.0;
volatile double dbl2 = 0.0;
duk_computed_nan = dbl1 / dbl2;
} while (0);
#endif
#if defined(DUK_USE_COMPUTED_INFINITY)
do {
/* Similar workaround for INFINITY. */
volatile double dbl1 = 1.0;
volatile double dbl2 = 0.0;
duk_computed_infinity = dbl1 / dbl2;
} while (0);
#endif
/*
* Allocate heap struct
*
* Use a raw call, all macros expect the heap to be initialized
*/
res = (duk_heap *) alloc_func(heap_udata, sizeof(duk_heap));
if (!res) {
goto error;
}
/*
* Zero the struct, and start initializing roughly in order
*/
DUK_MEMZERO(res, sizeof(*res));
/* explicit NULL inits */
#if defined(DUK_USE_EXPLICIT_NULL_INIT)
res->heap_udata = NULL;
res->heap_allocated = NULL;
#if defined(DUK_USE_REFERENCE_COUNTING)
res->refzero_list = NULL;
res->refzero_list_tail = NULL;
#endif
#if defined(DUK_USE_MARK_AND_SWEEP)
res->finalize_list = NULL;
#endif
res->heap_thread = NULL;
res->curr_thread = NULL;
res->heap_object = NULL;
#if defined(DUK_USE_STRTAB_CHAIN)
/* nothing to NULL */
#elif defined(DUK_USE_STRTAB_PROBE)
#if defined(DUK_USE_HEAPPTR16)
res->strtable16 = (duk_uint16_t *) NULL;
#else
res->strtable = (duk_hstring **) NULL;
#endif
#endif
#if defined(DUK_USE_ROM_STRINGS)
/* no res->strs[] */
#else /* DUK_USE_ROM_STRINGS */
#if defined(DUK_USE_HEAPPTR16)
/* res->strs16[] is zeroed and zero decodes to NULL, so no NULL inits. */
#else
{
duk_small_uint_t i;
for (i = 0; i < DUK_HEAP_NUM_STRINGS; i++) {
res->strs[i] = NULL;
}
}
#endif
#endif /* DUK_USE_ROM_STRINGS */
#if defined(DUK_USE_DEBUGGER_SUPPORT)
res->dbg_read_cb = NULL;
res->dbg_write_cb = NULL;
res->dbg_peek_cb = NULL;
res->dbg_read_flush_cb = NULL;
res->dbg_write_flush_cb = NULL;
res->dbg_request_cb = NULL;
res->dbg_udata = NULL;
res->dbg_step_thread = NULL;
#endif
#endif /* DUK_USE_EXPLICIT_NULL_INIT */
res->alloc_func = alloc_func;
res->realloc_func = realloc_func;
res->free_func = free_func;
res->heap_udata = heap_udata;
res->fatal_func = fatal_func;
#if defined(DUK_USE_HEAPPTR16)
/* XXX: zero assumption */
res->heapptr_null16 = DUK_USE_HEAPPTR_ENC16(res->heap_udata, (void *) NULL);
res->heapptr_deleted16 = DUK_USE_HEAPPTR_ENC16(res->heap_udata, (void *) DUK_STRTAB_DELETED_MARKER(res));
#endif
/* res->mark_and_sweep_trigger_counter == 0 -> now causes immediate GC; which is OK */
res->call_recursion_depth = 0;
res->call_recursion_limit = DUK_USE_NATIVE_CALL_RECLIMIT;
/* XXX: use the pointer as a seed for now: mix in time at least */
/* The casts through duk_intr_pt is to avoid the following GCC warning:
*
* warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
*
* This still generates a /Wp64 warning on VS2010 when compiling for x86.
*/
#if defined(DUK_USE_ROM_STRINGS)
/* XXX: make a common DUK_USE_ option, and allow custom fixed seed? */
DUK_D(DUK_DPRINT("using rom strings, force heap hash_seed to fixed value 0x%08lx", (long) DUK__FIXED_HASH_SEED));
res->hash_seed = (duk_uint32_t) DUK__FIXED_HASH_SEED;
#else /* DUK_USE_ROM_STRINGS */
res->hash_seed = (duk_uint32_t) (duk_intptr_t) res;
res->rnd_state = (duk_uint32_t) (duk_intptr_t) res;
#if !defined(DUK_USE_STRHASH_DENSE)
res->hash_seed ^= 5381; /* Bernstein hash init value is normally 5381; XOR it in in case pointer low bits are 0 */
#endif
#endif /* DUK_USE_ROM_STRINGS */
#if defined(DUK_USE_EXPLICIT_NULL_INIT)
res->lj.jmpbuf_ptr = NULL;
#endif
DUK_ASSERT(res->lj.type == DUK_LJ_TYPE_UNKNOWN); /* zero */
DUK_TVAL_SET_UNDEFINED(&res->lj.value1);
DUK_TVAL_SET_UNDEFINED(&res->lj.value2);
#if (DUK_STRTAB_INITIAL_SIZE < DUK_UTIL_MIN_HASH_PRIME)
#error initial heap stringtable size is defined incorrectly
#endif
/*
* Init stringtable: fixed variant
*/
#if defined(DUK_USE_STRTAB_CHAIN)
DUK_MEMZERO(res->strtable, sizeof(duk_strtab_entry) * DUK_STRTAB_CHAIN_SIZE);
#if defined(DUK_USE_EXPLICIT_NULL_INIT)
{
duk_small_uint_t i;
for (i = 0; i < DUK_STRTAB_CHAIN_SIZE; i++) {
#if defined(DUK_USE_HEAPPTR16)
res->strtable[i].u.str16 = res->heapptr_null16;
#else
res->strtable[i].u.str = NULL;
#endif
}
}
#endif /* DUK_USE_EXPLICIT_NULL_INIT */
#endif /* DUK_USE_STRTAB_CHAIN */
/*
* Init stringtable: probe variant
*/
#if defined(DUK_USE_STRTAB_PROBE)
#if defined(DUK_USE_HEAPPTR16)
res->strtable16 = (duk_uint16_t *) alloc_func(heap_udata, sizeof(duk_uint16_t) * DUK_STRTAB_INITIAL_SIZE);
if (!res->strtable16) {
goto error;
}
#else /* DUK_USE_HEAPPTR16 */
res->strtable = (duk_hstring **) alloc_func(heap_udata, sizeof(duk_hstring *) * DUK_STRTAB_INITIAL_SIZE);
if (!res->strtable) {
goto error;
}
#endif /* DUK_USE_HEAPPTR16 */
res->st_size = DUK_STRTAB_INITIAL_SIZE;
#if defined(DUK_USE_EXPLICIT_NULL_INIT)
{
duk_small_uint_t i;
DUK_ASSERT(res->st_size == DUK_STRTAB_INITIAL_SIZE);
for (i = 0; i < DUK_STRTAB_INITIAL_SIZE; i++) {
#if defined(DUK_USE_HEAPPTR16)
res->strtable16[i] = res->heapptr_null16;
#else
res->strtable[i] = NULL;
#endif
}
}
#else /* DUK_USE_EXPLICIT_NULL_INIT */
#if defined(DUK_USE_HEAPPTR16)
DUK_MEMZERO(res->strtable16, sizeof(duk_uint16_t) * DUK_STRTAB_INITIAL_SIZE);
#else
DUK_MEMZERO(res->strtable, sizeof(duk_hstring *) * DUK_STRTAB_INITIAL_SIZE);
#endif
#endif /* DUK_USE_EXPLICIT_NULL_INIT */
#endif /* DUK_USE_STRTAB_PROBE */
/*
* Init stringcache
*/
#if defined(DUK_USE_EXPLICIT_NULL_INIT)
{
duk_small_uint_t i;
for (i = 0; i < DUK_HEAP_STRCACHE_SIZE; i++) {
res->strcache[i].h = NULL;
}
}
#endif
/* XXX: error handling is incomplete. It would be cleanest if
* there was a setjmp catchpoint, so that all init code could
* freely throw errors. If that were the case, the return code
* passing here could be removed.
*/
/*
* Init built-in strings
*/
DUK_DD(DUK_DDPRINT("HEAP: INIT STRINGS"));
if (!duk__init_heap_strings(res)) {
goto error;
}
/*
* Init the heap thread
*/
DUK_DD(DUK_DDPRINT("HEAP: INIT HEAP THREAD"));
if (!duk__init_heap_thread(res)) {
goto error;
}
/*
* Init the heap object
*/
DUK_DD(DUK_DDPRINT("HEAP: INIT HEAP OBJECT"));
DUK_ASSERT(res->heap_thread != NULL);
res->heap_object = duk_hobject_alloc(res, DUK_HOBJECT_FLAG_EXTENSIBLE |
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_OBJECT));
if (!res->heap_object) {
goto error;
}
DUK_HOBJECT_INCREF(res->heap_thread, res->heap_object);
/*
* All done
*/
DUK_D(DUK_DPRINT("allocated heap: %p", (void *) res));
return res;
error:
DUK_D(DUK_DPRINT("heap allocation failed"));
if (res) {
/* assumes that allocated pointers and alloc funcs are valid
* if res exists
*/
DUK_ASSERT(res->alloc_func != NULL);
DUK_ASSERT(res->realloc_func != NULL);
DUK_ASSERT(res->free_func != NULL);
duk_heap_free(res);
}
return NULL;
}
#undef DUK__BITPACK_LETTER_LIMIT
#undef DUK__BITPACK_UNDERSCORE
#undef DUK__BITPACK_FF
#undef DUK__BITPACK_SWITCH1
#undef DUK__BITPACK_SWITCH
#undef DUK__BITPACK_SEVENBIT
#undef DUK__FIXED_HASH_SEED