blob: d033cba3242ac5c09145568dcfa13184228ac38c [file] [log] [blame]
// The MIT License (MIT)
// Copyright (c) 2013-2018 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// This file was generated with a script.
// Generated 2018-04-18 00:12:41.772355 UTC
// This header was generated with sol v2.20.0 (revision 8b77411)
// https://github.com/ThePhD/sol2
#ifndef SOL_SINGLE_INCLUDE_HPP
#define SOL_SINGLE_INCLUDE_HPP
// beginning of sol.hpp
#ifndef SOL_HPP
#define SOL_HPP
#if defined(UE_BUILD_DEBUG) || defined(UE_BUILD_DEVELOPMENT) || defined(UE_BUILD_TEST) || defined(UE_BUILD_SHIPPING) || defined(UE_SERVER)
#define SOL_INSIDE_UNREAL 1
#endif // Unreal Engine 4 bullshit
#if defined(SOL_INSIDE_UNREAL) && SOL_INSIDE_UNREAL
#ifdef check
#define SOL_INSIDE_UNREAL_REMOVED_CHECK
#undef check
#endif
#endif // Unreal Engine 4 Bullshit
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#pragma GCC diagnostic ignored "-Wconversion"
#if __GNUC__ > 6
#pragma GCC diagnostic ignored "-Wnoexcept-type"
#endif
#elif defined(__clang__)
#elif defined _MSC_VER
#pragma warning( push )
#pragma warning( disable : 4324 ) // structure was padded due to alignment specifier
#pragma warning( disable : 4503 ) // decorated name horse shit
#pragma warning( disable : 4702 ) // unreachable code
#pragma warning( disable: 4127 ) // 'conditional expression is constant' yeah that's the point your old compilers don't have `if constexpr` you jerk
#pragma warning( disable: 4505 ) // some other nonsense warning
#endif // clang++ vs. g++ vs. VC++
// beginning of sol/forward.hpp
// beginning of sol/feature_test.hpp
#if (defined(__cplusplus) && __cplusplus == 201703L) || (defined(_MSC_VER) && _MSC_VER > 1900 && ((defined(_HAS_CXX17) && _HAS_CXX17 == 1) || (defined(_MSVC_LANG) && (_MSVC_LANG > 201402L))))
#ifndef SOL_CXX17_FEATURES
#define SOL_CXX17_FEATURES 1
#endif // C++17 features macro
#endif // C++17 features check
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
#if defined(__cpp_noexcept_function_type) || ((defined(_MSC_VER) && _MSC_VER > 1911) && (defined(_MSVC_LANG) && ((_MSVC_LANG >= 201403L))))
#ifndef SOL_NOEXCEPT_FUNCTION_TYPE
#define SOL_NOEXCEPT_FUNCTION_TYPE 1
#endif // noexcept is part of a function's type
#endif // compiler-specific checks
#if defined(__clang__) && defined(__APPLE__)
#if defined(__has_include)
#if __has_include(<variant>)
#define SOL_STD_VARIANT 1
#endif // has include nonsense
#endif // __has_include
#else
#define SOL_STD_VARIANT 1
#endif // Clang screws up variant
#endif // C++17 only
// beginning of sol/config.hpp
#ifdef _MSC_VER
#if defined(_DEBUG) && !defined(NDEBUG)
#ifndef SOL_IN_DEBUG_DETECTED
#define SOL_IN_DEBUG_DETECTED 1
#endif
#endif // VC++ Debug macros
#ifndef _CPPUNWIND
#ifndef SOL_NO_EXCEPTIONS
#define SOL_NO_EXCEPTIONS 1
#endif
#endif // Automatic Exceptions
#ifndef _CPPRTTI
#ifndef SOL_NO_RTTI
#define SOL_NO_RTTI 1
#endif
#endif // Automatic RTTI
#elif defined(__GNUC__) || defined(__clang__)
#if !defined(NDEBUG) && !defined(__OPTIMIZE__)
#ifndef SOL_IN_DEBUG_DETECTED
#define SOL_IN_DEBUG_DETECTED 1
#endif
#endif // Not Debug && g++ optimizer flag
#ifndef __EXCEPTIONS
#ifndef SOL_NO_EXCEPTIONS
#define SOL_NO_EXCEPTIONS 1
#endif
#endif // No Exceptions
#ifndef __GXX_RTTI
#ifndef SOL_NO_RTII
#define SOL_NO_RTTI 1
#endif
#endif // No RTTI
#endif // vc++ || clang++/g++
#if defined(SOL_CHECK_ARGUMENTS) && SOL_CHECK_ARGUMENTS
// Checks low-level getter function
// (and thusly, affects nearly entire framework)
#if !defined(SOL_SAFE_GETTER)
#define SOL_SAFE_GETTER 1
#endif
// Checks access on usertype functions
// local my_obj = my_type.new()
// my_obj.my_member_function()
// -- bad syntax and crash
#if !defined(SOL_SAFE_USERTYPE)
#define SOL_SAFE_USERTYPE 1
#endif
// Checks sol::reference derived boundaries
// sol::function ref(L, 1);
// sol::userdata sref(L, 2);
#if !defined(SOL_SAFE_REFERENCES)
#define SOL_SAFE_REFERENCES 1
#endif
// Changes all typedefs of sol::function to point to the
// protected_function version, instead of unsafe_function
#if !defined(SOL_SAFE_FUNCTION)
#define SOL_SAFE_FUNCTION 1
#endif
// Checks function parameters and
// returns upon call into/from Lua
// local a = 1
// local b = "woof"
// my_c_function(a, b)
#if !defined(SOL_SAFE_FUNCTION_CALLS)
#define SOL_SAFE_FUNCTION_CALLS 1
#endif
// Checks conversions
// int v = lua["bark"];
// int v2 = my_sol_function();
#if !defined(SOL_SAFE_PROXIES)
#define SOL_SAFE_PROXIES 1
#endif
// Check overflowing number conversions
// for things like 64 bit integers that don't fit in a typical lua_Number
// for Lua 5.1 and 5.2
#if !defined(SOL_SAFE_NUMERICS)
#define SOL_SAFE_NUMERICS 1
#endif
// Turn off Number Precision Checks
// if this is defined, we do not do range
// checks on integers / unsigned integers that might
// be bigger than what Lua can represent
#if !defined(SOL_NO_CHECK_NUMBER_PRECISION)
// off by default
#define SOL_NO_CHECK_NUMBER_PRECISION 0
#endif
#endif // Turn on Safety for all if top-level macro is defined
#if defined(SOL_IN_DEBUG_DETECTED) && SOL_IN_DEBUG_DETECTED
#if !defined(SOL_SAFE_REFERENCES)
// Ensure that references are forcefully type-checked upon construction
#define SOL_SAFE_REFERENCES 1
#endif
// Safe usertypes checks for errors such as
// obj = my_type.new()
// obj.f() -- note the '.' instead of ':'
// usertypes should be safe no matter what
#if !defined(SOL_SAFE_USERTYPE)
#define SOL_SAFE_USERTYPE 1
#endif
#if !defined(SOL_SAFE_FUNCTION_CALLS)
// Function calls from Lua should be automatically safe in debug mode
#define SOL_SAFE_FUNCTION_CALLS 1
#endif
// Print any exceptions / errors that occur
// in debug mode to the default error stream / console
#if !defined(SOL_PRINT_ERRORS)
#define SOL_PRINT_ERRORS 1
#endif
#endif // DEBUG: Turn on all debug safety features for VC++ / g++ / clang++ and similar
#if !defined(SOL_PRINT_ERRORS)
#define SOL_PRINT_ERRORS 0
#endif
#if !defined(SOL_DEFAULT_PASS_ON_ERROR)
#define SOL_DEFAULT_PASS_ON_ERROR 0
#endif
#if !defined(SOL_ENABLE_INTEROP)
#define SOL_ENABLE_INTEROP 0
#endif
#if defined(__MAC_OS_X_VERSION_MAX_ALLOWED) || defined(__OBJC__) || defined(nil)
#if !defined(SOL_NO_NIL)
#define SOL_NO_NIL 1
#endif
#endif // avoiding nil defines / keywords
#if defined(SOL_USE_BOOST) && SOL_USE_BOOST
#ifndef SOL_UNORDERED_MAP_COMPATIBLE_HASH
#define SOL_UNORDERED_MAP_COMPATIBLE_HASH 1
#endif // SOL_UNORDERED_MAP_COMPATIBLE_HASH
#endif
#ifndef SOL_STACK_STRING_OPTIMIZATION_SIZE
#define SOL_STACK_STRING_OPTIMIZATION_SIZE 1024
#endif // Optimized conversion routines using a KB or so off the stack
// end of sol/config.hpp
// end of sol/feature_test.hpp
namespace sol {
template <bool b>
class basic_reference;
using reference = basic_reference<false>;
using main_reference = basic_reference<true>;
class stack_reference;
struct proxy_base_tag;
template <typename Super>
struct proxy_base;
template <typename Table, typename Key>
struct proxy;
template <typename T>
class usertype;
template <typename T>
class simple_usertype;
template <bool, typename T>
class basic_table_core;
template <bool b>
using table_core = basic_table_core<b, reference>;
template <bool b>
using main_table_core = basic_table_core<b, main_reference>;
template <bool b>
using stack_table_core = basic_table_core<b, stack_reference>;
template <typename T>
using basic_table = basic_table_core<false, T>;
typedef table_core<false> table;
typedef table_core<true> global_table;
typedef main_table_core<false> main_table;
typedef main_table_core<true> main_global_table;
typedef stack_table_core<false> stack_table;
typedef stack_table_core<true> stack_global_table;
template <typename base_t>
struct basic_environment;
using environment = basic_environment<reference>;
using main_environment = basic_environment<main_reference>;
using stack_environment = basic_environment<stack_reference>;
template <typename T, bool>
class basic_function;
template <typename T, bool, typename H>
class basic_protected_function;
using unsafe_function = basic_function<reference, false>;
using safe_function = basic_protected_function<reference, false, reference>;
using main_unsafe_function = basic_function<main_reference, false>;
using main_safe_function = basic_protected_function<main_reference, false, reference>;
using stack_unsafe_function = basic_function<stack_reference, false>;
using stack_safe_function = basic_protected_function<stack_reference, false, reference>;
using stack_aligned_unsafe_function = basic_function<stack_reference, true>;
using stack_aligned_safe_function = basic_protected_function<stack_reference, true, reference>;
using protected_function = safe_function;
using main_protected_function = main_safe_function;
using stack_protected_function = stack_safe_function;
using stack_aligned_protected_function = stack_aligned_safe_function;
#if defined(SOL_SAFE_FUNCTION) && SOL_SAFE_FUNCTION
using function = protected_function;
using main_function = main_protected_function;
using stack_function = stack_protected_function;
#else
using function = unsafe_function;
using main_function = main_unsafe_function;
using stack_function = stack_unsafe_function;
#endif
using stack_aligned_function = stack_aligned_unsafe_function;
using stack_aligned_stack_handler_function = basic_protected_function<stack_reference, true, stack_reference>;
struct unsafe_function_result;
struct protected_function_result;
using safe_function_result = protected_function_result;
#if defined(SOL_SAFE_FUNCTION) && SOL_SAFE_FUNCTION
using function_result = safe_function_result;
#else
using function_result = unsafe_function_result;
#endif
template <typename base_t>
class basic_object;
template <typename base_t>
class basic_userdata;
template <typename base_t>
class basic_lightuserdata;
template <typename base_t>
class basic_coroutine;
template <typename base_t>
class basic_thread;
using object = basic_object<reference>;
using userdata = basic_userdata<reference>;
using lightuserdata = basic_lightuserdata<reference>;
using thread = basic_thread<reference>;
using coroutine = basic_coroutine<reference>;
using main_object = basic_object<main_reference>;
using main_userdata = basic_userdata<main_reference>;
using main_lightuserdata = basic_lightuserdata<main_reference>;
using main_coroutine = basic_coroutine<main_reference>;
using stack_object = basic_object<stack_reference>;
using stack_userdata = basic_userdata<stack_reference>;
using stack_lightuserdata = basic_lightuserdata<stack_reference>;
using stack_thread = basic_thread<stack_reference>;
using stack_coroutine = basic_coroutine<stack_reference>;
struct stack_proxy_base;
struct stack_proxy;
struct variadic_args;
struct variadic_results;
struct stack_count;
struct this_state;
struct this_main_state;
struct this_environment;
template <typename T>
struct as_table_t;
template <typename T>
struct as_container_t;
template <typename T>
struct nested;
template <typename T>
struct light;
template <typename T>
struct user;
template <typename T>
struct as_args_t;
template <typename T>
struct protect_t;
template <typename F, typename... Filters>
struct filter_wrapper;
} // namespace sol
// end of sol/forward.hpp
// beginning of sol/state.hpp
// beginning of sol/state_view.hpp
// beginning of sol/error.hpp
#include <stdexcept>
#include <string>
namespace sol {
namespace detail {
struct direct_error_tag {};
const auto direct_error = direct_error_tag{};
} // namespace detail
class error : public std::runtime_error {
private:
// Because VC++ is upsetting, most of the time!
std::string w;
public:
error(const std::string& str)
: error(detail::direct_error, "lua: error: " + str) {
}
error(std::string&& str)
: error(detail::direct_error, "lua: error: " + std::move(str)) {
}
error(detail::direct_error_tag, const std::string& str)
: std::runtime_error(""), w(str) {
}
error(detail::direct_error_tag, std::string&& str)
: std::runtime_error(""), w(std::move(str)) {
}
error(const error& e) = default;
error(error&& e) = default;
error& operator=(const error& e) = default;
error& operator=(error&& e) = default;
virtual const char* what() const noexcept override {
return w.c_str();
}
};
} // namespace sol
// end of sol/error.hpp
// beginning of sol/table.hpp
// beginning of sol/table_core.hpp
// beginning of sol/proxy.hpp
// beginning of sol/traits.hpp
// beginning of sol/tuple.hpp
#include <tuple>
#include <cstddef>
namespace sol {
namespace detail {
using swallow = std::initializer_list<int>;
} // namespace detail
template <typename... Args>
struct types {
typedef std::make_index_sequence<sizeof...(Args)> indices;
static constexpr std::size_t size() {
return sizeof...(Args);
}
};
namespace meta {
namespace detail {
template <typename... Args>
struct tuple_types_ { typedef types<Args...> type; };
template <typename... Args>
struct tuple_types_<std::tuple<Args...>> { typedef types<Args...> type; };
} // namespace detail
template <typename T>
using unqualified = std::remove_cv<std::remove_reference_t<T>>;
template <typename T>
using unqualified_t = typename unqualified<T>::type;
template <typename... Args>
using tuple_types = typename detail::tuple_types_<Args...>::type;
template <typename Arg>
struct pop_front_type;
template <typename Arg>
using pop_front_type_t = typename pop_front_type<Arg>::type;
template <typename... Args>
struct pop_front_type<types<Args...>> {
typedef void front_type;
typedef types<Args...> type;
};
template <typename Arg, typename... Args>
struct pop_front_type<types<Arg, Args...>> {
typedef Arg front_type;
typedef types<Args...> type;
};
template <std::size_t N, typename Tuple>
using tuple_element = std::tuple_element<N, std::remove_reference_t<Tuple>>;
template <std::size_t N, typename Tuple>
using tuple_element_t = std::tuple_element_t<N, std::remove_reference_t<Tuple>>;
template <std::size_t N, typename Tuple>
using unqualified_tuple_element = unqualified<tuple_element_t<N, Tuple>>;
template <std::size_t N, typename Tuple>
using unqualified_tuple_element_t = unqualified_t<tuple_element_t<N, Tuple>>;
} // namespace meta
} // namespace sol
// end of sol/tuple.hpp
// beginning of sol/bind_traits.hpp
namespace sol {
namespace meta {
namespace meta_detail {
template <class F>
struct check_deducible_signature {
struct nat {};
template <class G>
static auto test(int) -> decltype(&G::operator(), void());
template <class>
static auto test(...) -> nat;
using type = std::is_void<decltype(test<F>(0))>;
};
} // namespace meta_detail
template <class F>
struct has_deducible_signature : meta_detail::check_deducible_signature<F>::type {};
namespace meta_detail {
template <std::size_t I, typename T>
struct void_tuple_element : meta::tuple_element<I, T> {};
template <std::size_t I>
struct void_tuple_element<I, std::tuple<>> { typedef void type; };
template <std::size_t I, typename T>
using void_tuple_element_t = typename void_tuple_element<I, T>::type;
template <bool it_is_noexcept, bool has_c_variadic, typename T, typename R, typename... Args>
struct basic_traits {
private:
typedef std::conditional_t<std::is_void<T>::value, int, T>& first_type;
public:
static const bool is_noexcept = it_is_noexcept;
static const bool is_member_function = std::is_void<T>::value;
static const bool has_c_var_arg = has_c_variadic;
static const std::size_t arity = sizeof...(Args);
static const std::size_t free_arity = sizeof...(Args) + static_cast<std::size_t>(!std::is_void<T>::value);
typedef types<Args...> args_list;
typedef std::tuple<Args...> args_tuple;
typedef T object_type;
typedef R return_type;
typedef tuple_types<R> returns_list;
typedef R(function_type)(Args...);
typedef std::conditional_t<std::is_void<T>::value, args_list, types<first_type, Args...>> free_args_list;
typedef std::conditional_t<std::is_void<T>::value, R(Args...), R(first_type, Args...)> free_function_type;
typedef std::conditional_t<std::is_void<T>::value, R (*)(Args...), R (*)(first_type, Args...)> free_function_pointer_type;
typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
template <std::size_t i>
using arg_at = void_tuple_element_t<i, args_tuple>;
};
template <typename Signature, bool b = has_deducible_signature<Signature>::value>
struct fx_traits : basic_traits<false, false, void, void> {};
// Free Functions
template <typename R, typename... Args>
struct fx_traits<R(Args...), false> : basic_traits<false, false, void, R, Args...> {
typedef R (*function_pointer_type)(Args...);
};
template <typename R, typename... Args>
struct fx_traits<R (*)(Args...), false> : basic_traits<false, false, void, R, Args...> {
typedef R (*function_pointer_type)(Args...);
};
template <typename R, typename... Args>
struct fx_traits<R(Args..., ...), false> : basic_traits<false, true, void, R, Args...> {
typedef R (*function_pointer_type)(Args..., ...);
};
template <typename R, typename... Args>
struct fx_traits<R (*)(Args..., ...), false> : basic_traits<false, true, void, R, Args...> {
typedef R (*function_pointer_type)(Args..., ...);
};
// Member Functions
/* C-Style Variadics */
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...);
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...), false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...);
};
/* Const Volatile */
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const volatile;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const volatile;
};
/* Member Function Qualifiers */
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) &;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...)&, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) &;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const&, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const volatile&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile&, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const volatile&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) &&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...)&&, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) &&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const&&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const&&, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const&&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const volatile&&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile&&, false> : basic_traits<false, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const volatile&&;
};
#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE
template <typename R, typename... Args>
struct fx_traits<R(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
typedef R (*function_pointer_type)(Args...) noexcept;
};
template <typename R, typename... Args>
struct fx_traits<R (*)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
typedef R (*function_pointer_type)(Args...) noexcept;
};
template <typename R, typename... Args>
struct fx_traits<R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
typedef R (*function_pointer_type)(Args..., ...) noexcept;
};
template <typename R, typename... Args>
struct fx_traits<R (*)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
typedef R (*function_pointer_type)(Args..., ...) noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) noexcept;
};
/* Const Volatile */
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const volatile noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const volatile noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) & noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) & noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const volatile& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const volatile& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) && noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) && noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const&& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const&& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args...) const volatile&& noexcept;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (T::*function_pointer_type)(Args..., ...) const volatile&& noexcept;
};
#endif // noexcept is part of a function's type
#if defined(_MSC_VER) && defined(_M_IX86)
template <typename R, typename... Args>
struct fx_traits<R __stdcall(Args...), false> : basic_traits<false, false, void, R, Args...> {
typedef R(__stdcall* function_pointer_type)(Args...);
};
template <typename R, typename... Args>
struct fx_traits<R(__stdcall*)(Args...), false> : basic_traits<false, false, void, R, Args...> {
typedef R(__stdcall* function_pointer_type)(Args...);
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...);
};
/* Const Volatile */
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile;
};
/* Member Function Qualifiers */
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) &;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) &&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const&&;
};
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&&;
};
#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE
template <typename R, typename... Args>
struct fx_traits<R __stdcall(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
typedef R(__stdcall* function_pointer_type)(Args...) noexcept;
};
template <typename R, typename... Args>
struct fx_traits<R (__stdcall *)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
typedef R(__stdcall* function_pointer_type)(Args...) noexcept;
};
/* __stdcall cannot be applied to functions with varargs*/
/*template <typename R, typename... Args>
struct fx_traits<__stdcall R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept;
};
template <typename R, typename... Args>
struct fx_traits<R (__stdcall *)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) noexcept;
};*/
/* Const Volatile */
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) & noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) & noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const& noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const& noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile& noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile& noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) && noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) && noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const&& noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const&& noexcept;
};*/
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&& noexcept;
};
/* __stdcall does not work with varargs */
/*template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile&& noexcept;
};*/
#endif // noexcept is part of a function's type
#endif // __stdcall x86 VC++ bug
template <typename Signature>
struct fx_traits<Signature, true> : fx_traits<typename fx_traits<decltype(&Signature::operator())>::function_type, false> {};
template <typename Signature, bool b = std::is_member_object_pointer<Signature>::value>
struct callable_traits : fx_traits<std::decay_t<Signature>> {
};
template <typename R, typename T>
struct callable_traits<R(T::*), true> {
typedef std::conditional_t<std::is_array<R>::value, std::add_lvalue_reference_t<T>, R> return_type;
typedef return_type Arg;
typedef T object_type;
using signature_type = R(T::*);
static const bool is_noexcept = false;
static const bool is_member_function = false;
static const std::size_t arity = 1;
static const std::size_t free_arity = 2;
typedef std::tuple<Arg> args_tuple;
typedef types<Arg> args_list;
typedef types<T, Arg> free_args_list;
typedef meta::tuple_types<return_type> returns_list;
typedef return_type(function_type)(T&, return_type);
typedef return_type(*function_pointer_type)(T&, Arg);
typedef return_type(*free_function_pointer_type)(T&, Arg);
template <std::size_t i>
using arg_at = void_tuple_element_t<i, args_tuple>;
};
} // namespace meta_detail
template <typename Signature>
struct bind_traits : meta_detail::callable_traits<Signature> {};
template <typename Signature>
using function_args_t = typename bind_traits<Signature>::args_list;
template <typename Signature>
using function_signature_t = typename bind_traits<Signature>::signature_type;
template <typename Signature>
using function_return_t = typename bind_traits<Signature>::return_type;
}
} // namespace sol::meta
// end of sol/bind_traits.hpp
// beginning of sol/string_view.hpp
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
#include <string_view>
#endif // C++17 features
#include <functional>
#if defined(SOL_USE_BOOST) && SOL_USE_BOOST
#include <boost/functional/hash.hpp>
#endif
namespace sol {
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
template <typename C, typename T = std::char_traits<C>>
using basic_string_view = std::basic_string_view<C, T>;
typedef std::string_view string_view;
typedef std::wstring_view wstring_view;
typedef std::u16string_view u16string_view;
typedef std::u32string_view u32string_view;
typedef std::hash<std::string_view> string_view_hash;
#else
template <typename Char, typename Traits = std::char_traits<Char>>
struct basic_string_view {
std::size_t s;
const Char* p;
basic_string_view(const std::string& r)
: basic_string_view(r.data(), r.size()) {
}
basic_string_view(const Char* ptr)
: basic_string_view(ptr, Traits::length(ptr)) {
}
basic_string_view(const Char* ptr, std::size_t sz)
: s(sz), p(ptr) {
}
static int compare(const Char* lhs_p, std::size_t lhs_sz, const Char* rhs_p, std::size_t rhs_sz) {
int result = Traits::compare(lhs_p, rhs_p, lhs_sz < rhs_sz ? lhs_sz : rhs_sz);
if (result != 0)
return result;
if (lhs_sz < rhs_sz)
return -1;
if (lhs_sz > rhs_sz)
return 1;
return 0;
}
const Char* begin() const {
return p;
}
const Char* end() const {
return p + s;
}
const Char* cbegin() const {
return p;
}
const Char* cend() const {
return p + s;
}
const Char* data() const {
return p;
}
std::size_t size() const {
return s;
}
std::size_t length() const {
return size();
}
operator std::basic_string<Char, Traits>() const {
return std::basic_string<Char, Traits>(data(), size());
}
bool operator==(const basic_string_view& r) const {
return compare(p, s, r.data(), r.size()) == 0;
}
bool operator==(const Char* r) const {
return compare(r, Traits::length(r), p, s) == 0;
}
bool operator==(const std::basic_string<Char, Traits>& r) const {
return compare(r.data(), r.size(), p, s) == 0;
}
bool operator!=(const basic_string_view& r) const {
return !(*this == r);
}
bool operator!=(const char* r) const {
return !(*this == r);
}
bool operator!=(const std::basic_string<Char, Traits>& r) const {
return !(*this == r);
}
};
template <typename Ch, typename Tr = std::char_traits<Ch>>
struct basic_string_view_hash {
typedef basic_string_view<Ch, Tr> argument_type;
typedef std::size_t result_type;
template <typename Al>
result_type operator()(const std::basic_string<Ch, Tr, Al>& r) const {
return (*this)(argument_type(r.c_str(), r.size()));
}
result_type operator()(const argument_type& r) const {
#if defined(SOL_USE_BOOST) && SOL_USE_BOOST
return boost::hash_range(r.begin(), r.end());
#else
// Modified, from libstdc++
// An implementation attempt at Fowler No Voll, 1a.
// Supposedly, used in MSVC,
// GCC (libstdc++) uses MurmurHash of some sort for 64-bit though...?
// But, well. Can't win them all, right?
// This should normally only apply when NOT using boost,
// so this should almost never be tapped into...
std::size_t hash = 0;
const unsigned char* cptr = reinterpret_cast<const unsigned char*>(r.data());
for (std::size_t sz = r.size(); sz != 0; --sz) {
hash ^= static_cast<size_t>(*cptr++);
hash *= static_cast<size_t>(1099511628211ULL);
}
return hash;
#endif
}
};
} // namespace sol
namespace std {
template <typename Ch, typename Tr>
struct hash< ::sol::basic_string_view<Ch, Tr> > : ::sol::basic_string_view_hash<Ch, Tr> {};
} // namespace std
namespace sol {
using string_view = basic_string_view<char>;
using wstring_view = basic_string_view<wchar_t>;
using u16string_view = basic_string_view<char16_t>;
using u32string_view = basic_string_view<char32_t>;
using string_view_hash = std::hash<string_view>;
#endif // C++17 Support
} // namespace sol
// end of sol/string_view.hpp
#include <type_traits>
#include <cstdint>
#include <memory>
#include <iterator>
#include <iosfwd>
namespace sol {
template <std::size_t I>
using index_value = std::integral_constant<std::size_t, I>;
namespace meta {
template <typename T>
struct identity { typedef T type; };
template <typename T>
using identity_t = typename identity<T>::type;
template <typename... Args>
struct is_tuple : std::false_type {};
template <typename... Args>
struct is_tuple<std::tuple<Args...>> : std::true_type {};
template <typename T>
struct is_builtin_type : std::integral_constant<bool, std::is_arithmetic<T>::value || std::is_pointer<T>::value || std::is_array<T>::value> {};
template <typename T>
struct unwrapped {
typedef T type;
};
template <typename T>
struct unwrapped<std::reference_wrapper<T>> {
typedef T type;
};
template <typename T>
using unwrapped_t = typename unwrapped<T>::type;
template <typename T>
struct unwrap_unqualified : unwrapped<unqualified_t<T>> {};
template <typename T>
using unwrap_unqualified_t = typename unwrap_unqualified<T>::type;
template <typename T>
struct remove_member_pointer;
template <typename R, typename T>
struct remove_member_pointer<R T::*> {
typedef R type;
};
template <typename R, typename T>
struct remove_member_pointer<R T::*const> {
typedef R type;
};
template <typename T>
using remove_member_pointer_t = remove_member_pointer<T>;
namespace meta_detail {
template <typename T, template <typename...> class Templ>
struct is_specialization_of : std::false_type {};
template <typename... T, template <typename...> class Templ>
struct is_specialization_of<Templ<T...>, Templ> : std::true_type {};
}
template <typename T, template <typename...> class Templ>
using is_specialization_of = meta_detail::is_specialization_of<std::remove_cv_t<T>, Templ>;
template <class T, class...>
struct all_same : std::true_type {};
template <class T, class U, class... Args>
struct all_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value && all_same<T, Args...>::value> {};
template <class T, class...>
struct any_same : std::false_type {};
template <class T, class U, class... Args>
struct any_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value || any_same<T, Args...>::value> {};
template <bool B>
using boolean = std::integral_constant<bool, B>;
template <typename T>
using invoke_t = typename T::type;
template <typename T>
using invoke_b = boolean<T::value>;
template <typename T>
using neg = boolean<!T::value>;
template <typename Condition, typename Then, typename Else>
using condition = std::conditional_t<Condition::value, Then, Else>;
template <typename... Args>
struct all : boolean<true> {};
template <typename T, typename... Args>
struct all<T, Args...> : condition<T, all<Args...>, boolean<false>> {};
template <typename... Args>
struct any : boolean<false> {};
template <typename T, typename... Args>
struct any<T, Args...> : condition<T, boolean<true>, any<Args...>> {};
enum class enable_t {
_
};
constexpr const auto enabler = enable_t::_;
template <bool value, typename T = void>
using disable_if_t = std::enable_if_t<!value, T>;
template <typename... Args>
using enable = std::enable_if_t<all<Args...>::value, enable_t>;
template <typename... Args>
using disable = std::enable_if_t<neg<all<Args...>>::value, enable_t>;
template <typename... Args>
using enable_any = std::enable_if_t<any<Args...>::value, enable_t>;
template <typename... Args>
using disable_any = std::enable_if_t<neg<any<Args...>>::value, enable_t>;
template <typename V, typename... Vs>
struct find_in_pack_v : boolean<false> {};
template <typename V, typename Vs1, typename... Vs>
struct find_in_pack_v<V, Vs1, Vs...> : any<boolean<(V::value == Vs1::value)>, find_in_pack_v<V, Vs...>> {};
namespace meta_detail {
template <std::size_t I, typename T, typename... Args>
struct index_in_pack : std::integral_constant<std::size_t, SIZE_MAX> {};
template <std::size_t I, typename T, typename T1, typename... Args>
struct index_in_pack<I, T, T1, Args...> : std::conditional_t<std::is_same<T, T1>::value, std::integral_constant<std::ptrdiff_t, I>, index_in_pack<I + 1, T, Args...>> {};
} // namespace meta_detail
template <typename T, typename... Args>
struct index_in_pack : meta_detail::index_in_pack<0, T, Args...> {};
template <typename T, typename List>
struct index_in : meta_detail::index_in_pack<0, T, List> {};
template <typename T, typename... Args>
struct index_in<T, types<Args...>> : meta_detail::index_in_pack<0, T, Args...> {};
template <std::size_t I, typename... Args>
struct at_in_pack {};
template <std::size_t I, typename... Args>
using at_in_pack_t = typename at_in_pack<I, Args...>::type;
template <std::size_t I, typename Arg, typename... Args>
struct at_in_pack<I, Arg, Args...> : std::conditional<I == 0, Arg, at_in_pack_t<I - 1, Args...>> {};
template <typename Arg, typename... Args>
struct at_in_pack<0, Arg, Args...> { typedef Arg type; };
namespace meta_detail {
template <std::size_t Limit, std::size_t I, template <typename...> class Pred, typename... Ts>
struct count_for_pack : std::integral_constant<std::size_t, 0> {};
template <std::size_t Limit, std::size_t I, template <typename...> class Pred, typename T, typename... Ts>
struct count_for_pack<Limit, I, Pred, T, Ts...> : std::conditional_t < sizeof...(Ts)
== 0
|| Limit<2,
std::integral_constant<std::size_t, I + static_cast<std::size_t>(Limit != 0 && Pred<T>::value)>,
count_for_pack<Limit - 1, I + static_cast<std::size_t>(Pred<T>::value), Pred, Ts...>> {};
template <std::size_t I, template <typename...> class Pred, typename... Ts>
struct count_2_for_pack : std::integral_constant<std::size_t, 0> {};
template <std::size_t I, template <typename...> class Pred, typename T, typename U, typename... Ts>
struct count_2_for_pack<I, Pred, T, U, Ts...> : std::conditional_t<sizeof...(Ts) == 0,
std::integral_constant<std::size_t, I + static_cast<std::size_t>(Pred<T>::value)>,
count_2_for_pack<I + static_cast<std::size_t>(Pred<T>::value), Pred, Ts...>> {};
} // namespace meta_detail
template <template <typename...> class Pred, typename... Ts>
struct count_for_pack : meta_detail::count_for_pack<sizeof...(Ts), 0, Pred, Ts...> {};
template <template <typename...> class Pred, typename List>
struct count_for;
template <template <typename...> class Pred, typename... Args>
struct count_for<Pred, types<Args...>> : count_for_pack<Pred, Args...> {};
template <std::size_t Limit, template <typename...> class Pred, typename... Ts>
struct count_for_to_pack : meta_detail::count_for_pack<Limit, 0, Pred, Ts...> {};
template <template <typename...> class Pred, typename... Ts>
struct count_2_for_pack : meta_detail::count_2_for_pack<0, Pred, Ts...> {};
template <typename... Args>
struct return_type {
typedef std::tuple<Args...> type;
};
template <typename T>
struct return_type<T> {
typedef T type;
};
template <>
struct return_type<> {
typedef void type;
};
template <typename... Args>
using return_type_t = typename return_type<Args...>::type;
namespace meta_detail {
template <typename>
struct always_true : std::true_type {};
struct is_invokable_tester {
template <typename Fun, typename... Args>
static always_true<decltype(std::declval<Fun>()(std::declval<Args>()...))> test(int);
template <typename...>
static std::false_type test(...);
};
} // namespace meta_detail
template <typename T>
struct is_invokable;
template <typename Fun, typename... Args>
struct is_invokable<Fun(Args...)> : decltype(meta_detail::is_invokable_tester::test<Fun, Args...>(0)) {};
namespace meta_detail {
template <typename T, typename = void>
struct is_callable : std::is_function<std::remove_pointer_t<T>> {};
template <typename T>
struct is_callable<T, std::enable_if_t<std::is_final<unqualified_t<T>>::value
&& std::is_class<unqualified_t<T>>::value
&& std::is_same<decltype(void(&T::operator())), void>::value>> {
};
template <typename T>
struct is_callable<T, std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value && std::is_destructible<unqualified_t<T>>::value>> {
using yes = char;
using no = struct { char s[2]; };
struct F {
void operator()();
};
struct Derived : T, F {};
template <typename U, U>
struct Check;
template <typename V>
static no test(Check<void (F::*)(), &V::operator()>*);
template <typename>
static yes test(...);
static const bool value = sizeof(test<Derived>(0)) == sizeof(yes);
};
template <typename T>
struct is_callable<T, std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value && !std::is_destructible<unqualified_t<T>>::value>> {
using yes = char;
using no = struct { char s[2]; };
struct F {
void operator()();
};
struct Derived : T, F {
~Derived() = delete;
};
template <typename U, U>
struct Check;
template <typename V>
static no test(Check<void (F::*)(), &V::operator()>*);
template <typename>
static yes test(...);
static const bool value = sizeof(test<Derived>(0)) == sizeof(yes);
};
struct has_begin_end_impl {
template <typename T, typename U = unqualified_t<T>,
typename B = decltype(std::declval<U&>().begin()),
typename E = decltype(std::declval<U&>().end())>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
struct has_key_type_impl {
template <typename T, typename U = unqualified_t<T>,
typename V = typename U::key_type>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
struct has_mapped_type_impl {
template <typename T, typename U = unqualified_t<T>,
typename V = typename U::mapped_type>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
struct has_value_type_impl {
template <typename T, typename U = unqualified_t<T>,
typename V = typename U::value_type>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
struct has_iterator_impl {
template <typename T, typename U = unqualified_t<T>,
typename V = typename U::iterator>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
struct has_key_value_pair_impl {
template <typename T, typename U = unqualified_t<T>,
typename V = typename U::value_type,
typename F = decltype(std::declval<V&>().first),
typename S = decltype(std::declval<V&>().second)>
static std::true_type test(int);
template <typename...>
static std::false_type test(...);
};
template <typename T>
struct has_push_back_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(std::declval<C>().push_back(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_insert_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(std::declval<C>().insert(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(), std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_insert_after_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(std::declval<C>().insert_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(), std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_size_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(std::declval<C>().size())*);
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_to_string_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(std::declval<C>().to_string())*);
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
#if defined(_MSC_VER) && _MSC_VER <= 1910
template <typename T, typename U, typename = decltype(std::declval<T&>() < std::declval<U&>())>
std::true_type supports_op_less_test(std::reference_wrapper<T>, std::reference_wrapper<U>);
std::false_type supports_op_less_test(...);
template <typename T, typename U, typename = decltype(std::declval<T&>() == std::declval<U&>())>
std::true_type supports_op_equal_test(std::reference_wrapper<T>, std::reference_wrapper<U>);
std::false_type supports_op_equal_test(...);
template <typename T, typename U, typename = decltype(std::declval<T&>() <= std::declval<U&>())>
std::true_type supports_op_less_equal_test(std::reference_wrapper<T>, std::reference_wrapper<U>);
std::false_type supports_op_less_equal_test(...);
template <typename T, typename OS, typename = decltype(std::declval<OS&>() << std::declval<T&>())>
std::true_type supports_ostream_op(std::reference_wrapper<T>, std::reference_wrapper<OS>);
std::false_type supports_ostream_op(...);
template <typename T, typename = decltype(to_string(std::declval<T&>()))>
std::true_type supports_adl_to_string(std::reference_wrapper<T>);
std::false_type supports_adl_to_string(...);
#else
template <typename T, typename U, typename = decltype(std::declval<T&>() < std::declval<U&>())>
std::true_type supports_op_less_test(const T&, const U&);
std::false_type supports_op_less_test(...);
template <typename T, typename U, typename = decltype(std::declval<T&>() == std::declval<U&>())>
std::true_type supports_op_equal_test(const T&, const U&);
std::false_type supports_op_equal_test(...);
template <typename T, typename U, typename = decltype(std::declval<T&>() <= std::declval<U&>())>
std::true_type supports_op_less_equal_test(const T&, const U&);
std::false_type supports_op_less_equal_test(...);
template <typename T, typename OS, typename = decltype(std::declval<OS&>() << std::declval<T&>())>
std::true_type supports_ostream_op(const T&, const OS&);
std::false_type supports_ostream_op(...);
template <typename T, typename = decltype(to_string(std::declval<T&>()))>
std::true_type supports_adl_to_string(const T&);
std::false_type supports_adl_to_string(...);
#endif
template <typename T, bool b>
struct is_matched_lookup_impl : std::false_type {};
template <typename T>
struct is_matched_lookup_impl<T, true> : std::is_same<typename T::key_type, typename T::value_type> {};
} // namespace meta_detail
#if defined(_MSC_VER) && _MSC_VER <= 1910
template <typename T, typename U = T>
using supports_op_less = decltype(meta_detail::supports_op_less_test(std::ref(std::declval<T&>()), std::ref(std::declval<U&>())));
template <typename T, typename U = T>
using supports_op_equal = decltype(meta_detail::supports_op_equal_test(std::ref(std::declval<T&>()), std::ref(std::declval<U&>())));
template <typename T, typename U = T>
using supports_op_less_equal = decltype(meta_detail::supports_op_less_equal_test(std::ref(std::declval<T&>()), std::ref(std::declval<U&>())));
template <typename T, typename U = std::ostream>
using supports_ostream_op = decltype(meta_detail::supports_ostream_op(std::ref(std::declval<T&>()), std::ref(std::declval<U&>())));
template <typename T>
using supports_adl_to_string = decltype(meta_detail::supports_adl_to_string(std::ref(std::declval<T&>())));
#else
template <typename T, typename U = T>
using supports_op_less = decltype(meta_detail::supports_op_less_test(std::declval<T&>(), std::declval<U&>()));
template <typename T, typename U = T>
using supports_op_equal = decltype(meta_detail::supports_op_equal_test(std::declval<T&>(), std::declval<U&>()));
template <typename T, typename U = T>
using supports_op_less_equal = decltype(meta_detail::supports_op_less_equal_test(std::declval<T&>(), std::declval<U&>()));
template <typename T, typename U = std::ostream>
using supports_ostream_op = decltype(meta_detail::supports_ostream_op(std::declval<T&>(), std::declval<U&>()));
template <typename T>
using supports_adl_to_string = decltype(meta_detail::supports_adl_to_string(std::declval<T&>()));
#endif
template <typename T>
using supports_to_string_member = meta::boolean<meta_detail::has_to_string_test<T>::value>;
template <typename T>
struct is_callable : boolean<meta_detail::is_callable<T>::value> {};
template <typename T>
struct has_begin_end : decltype(meta_detail::has_begin_end_impl::test<T>(0)) {};
template <typename T>
struct has_key_value_pair : decltype(meta_detail::has_key_value_pair_impl::test<T>(0)) {};
template <typename T>
struct has_key_type : decltype(meta_detail::has_key_type_impl::test<T>(0)) {};
template <typename T>
struct has_mapped_type : decltype(meta_detail::has_mapped_type_impl::test<T>(0)) {};
template <typename T>
struct has_iterator : decltype(meta_detail::has_iterator_impl::test<T>(0)) {};
template <typename T>
struct has_value_type : decltype(meta_detail::has_value_type_impl::test<T>(0)) {};
template <typename T>
using has_push_back = meta::boolean<meta_detail::has_push_back_test<T>::value>;
template <typename T>
using has_insert = meta::boolean<meta_detail::has_insert_test<T>::value>;
template <typename T>
using has_insert_after = meta::boolean<meta_detail::has_insert_after_test<T>::value>;
template <typename T>
using has_size = meta::boolean<meta_detail::has_size_test<T>::value || meta_detail::has_size_test<const T>::value>;
template <typename T>
struct is_associative : meta::all<has_key_type<T>, has_key_value_pair<T>, has_mapped_type<T>> {};
template <typename T>
struct is_lookup : meta::all<has_key_type<T>, has_value_type<T>> {};
template <typename T>
struct is_matched_lookup : meta_detail::is_matched_lookup_impl<T, is_lookup<T>::value> {};
template <typename T>
using is_string_like = any<
is_specialization_of<meta::unqualified_t<T>, std::basic_string>,
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
is_specialization_of<meta::unqualified_t<T>, std::basic_string_view>,
#else
is_specialization_of<meta::unqualified_t<T>, basic_string_view>,
#endif
meta::all<std::is_array<unqualified_t<T>>, meta::any_same<meta::unqualified_t<std::remove_all_extents_t<meta::unqualified_t<T>>>, char, char16_t, char32_t, wchar_t>>
>;
template <typename T>
using is_string_constructible = any<
meta::all<std::is_array<unqualified_t<T>>, std::is_same<meta::unqualified_t<std::remove_all_extents_t<meta::unqualified_t<T>>>, char>>,
std::is_same<unqualified_t<T>, const char*>,
std::is_same<unqualified_t<T>, char>, std::is_same<unqualified_t<T>, std::string>, std::is_same<unqualified_t<T>, std::initializer_list<char>>
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
, std::is_same<unqualified_t<T>, std::string_view>
#endif
>;
template <typename T>
struct is_pair : std::false_type {};
template <typename T1, typename T2>
struct is_pair<std::pair<T1, T2>> : std::true_type {};
template <typename T>
using is_c_str = any<
std::is_same<std::decay_t<unqualified_t<T>>, const char*>,
std::is_same<std::decay_t<unqualified_t<T>>, char*>,
std::is_same<unqualified_t<T>, std::string>>;
template <typename T>
struct is_move_only : all<
neg<std::is_reference<T>>,
neg<std::is_copy_constructible<unqualified_t<T>>>,
std::is_move_constructible<unqualified_t<T>>> {};
template <typename T>
using is_not_move_only = neg<is_move_only<T>>;
namespace meta_detail {
template <typename T, meta::disable<meta::is_specialization_of<meta::unqualified_t<T>, std::tuple>> = meta::enabler>
decltype(auto) force_tuple(T&& x) {
return std::tuple<std::decay_t<T>>(std::forward<T>(x));
}
template <typename T, meta::enable<meta::is_specialization_of<meta::unqualified_t<T>, std::tuple>> = meta::enabler>
decltype(auto) force_tuple(T&& x) {
return std::forward<T>(x);
}
} // namespace meta_detail
template <typename... X>
decltype(auto) tuplefy(X&&... x) {
return std::tuple_cat(meta_detail::force_tuple(std::forward<X>(x))...);
}
template <typename T, typename = void>
struct iterator_tag {
using type = std::input_iterator_tag;
};
template <typename T>
struct iterator_tag<T, std::conditional_t<false, typename T::iterator_category, void>> {
using type = typename T::iterator_category;
};
} // namespace meta
namespace detail {
template <typename T>
struct is_pointer_like : std::is_pointer<T> {};
template <typename T, typename D>
struct is_pointer_like<std::unique_ptr<T, D>> : std::true_type {};
template <typename T>
struct is_pointer_like<std::shared_ptr<T>> : std::true_type {};
template <std::size_t I, typename Tuple>
decltype(auto) forward_get(Tuple&& tuple) {
return std::forward<meta::tuple_element_t<I, Tuple>>(std::get<I>(tuple));
}
template <std::size_t... I, typename Tuple>
auto forward_tuple_impl(std::index_sequence<I...>, Tuple&& tuple) -> decltype(std::tuple<decltype(forward_get<I>(tuple))...>(forward_get<I>(tuple)...)) {
return std::tuple<decltype(forward_get<I>(tuple))...>(std::move(std::get<I>(tuple))...);
}
template <typename Tuple>
auto forward_tuple(Tuple&& tuple) {
auto x = forward_tuple_impl(std::make_index_sequence<std::tuple_size<meta::unqualified_t<Tuple>>::value>(), std::forward<Tuple>(tuple));
return x;
}
template <typename T>
auto unwrap(T&& item) -> decltype(std::forward<T>(item)) {
return std::forward<T>(item);
}
template <typename T>
T& unwrap(std::reference_wrapper<T> arg) {
return arg.get();
}
template <typename T, meta::enable<meta::neg<is_pointer_like<meta::unqualified_t<T>>>> = meta::enabler>
auto deref(T&& item) -> decltype(std::forward<T>(item)) {
return std::forward<T>(item);
}
template <typename T, meta::enable<is_pointer_like<meta::unqualified_t<T>>> = meta::enabler>
inline auto deref(T&& item) -> decltype(*std::forward<T>(item)) {
return *std::forward<T>(item);
}
template <typename T, meta::disable<is_pointer_like<meta::unqualified_t<T>>, meta::neg<std::is_pointer<meta::unqualified_t<T>>>> = meta::enabler>
auto deref_non_pointer(T&& item) -> decltype(std::forward<T>(item)) {
return std::forward<T>(item);
}
template <typename T, meta::enable<is_pointer_like<meta::unqualified_t<T>>, meta::neg<std::is_pointer<meta::unqualified_t<T>>>> = meta::enabler>
inline auto deref_non_pointer(T&& item) -> decltype(*std::forward<T>(item)) {
return *std::forward<T>(item);
}
template <typename T>
inline T* ptr(T& val) {
return std::addressof(val);
}
template <typename T>
inline T* ptr(std::reference_wrapper<T> val) {
return std::addressof(val.get());
}
template <typename T>
inline T* ptr(T* val) {
return val;
}
} // namespace detail
} // namespace sol
// end of sol/traits.hpp
// beginning of sol/function.hpp
// beginning of sol/stack.hpp
// beginning of sol/trampoline.hpp
// beginning of sol/types.hpp
// beginning of sol/optional.hpp
// beginning of sol/compatibility.hpp
// beginning of sol/compatibility/version.hpp
#if defined(SOL_USING_CXX_LUA) && SOL_USING_CXX_LUA
#include <lua.h>
#include <lualib.h>
#include <lauxlib.h>
#if defined(SOL_USING_CXX_LUAJIT) && SOL_USING_CXX_LUAJIT
#include <luajit.h>
#endif // C++ LuaJIT ... whatever that means
#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !(SOL_EXCEPTIONS_SAFE_PROPAGATION)) && (!defined(SOL_EXCEPTIONS_ALWAYS_UNSAFE) || !(SOL_EXCEPTIONS_ALWAYS_UNSAFE))
#define SOL_EXCEPTIONS_SAFE_PROPAGATION 1
#endif // Exceptions can be propagated safely using C++-compiled Lua
#else
#include <lua.hpp>
#endif // C++ Mangling for Lua
#ifdef LUAJIT_VERSION
#ifndef SOL_LUAJIT
#define SOL_LUAJIT 1
#ifndef SOL_LUAJIT_VERSION
#define SOL_LUAJIT_VERSION LUAJIT_VERSION_NUM
#endif // SOL_LUAJIT_VERSION definition, if not present
#endif // sol luajit
#endif // luajit
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM >= 502
#define SOL_LUA_VERSION LUA_VERSION_NUM
#elif defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
#define SOL_LUA_VERSION LUA_VERSION_NUM
#elif !defined(LUA_VERSION_NUM) || !(LUA_VERSION_NUM)
#define SOL_LUA_VERSION 500
#else
#define SOL_LUA_VERSION 502
#endif // Lua Version 502, 501 || luajit, 500
// end of sol/compatibility/version.hpp
#if !defined(SOL_NO_COMPAT) || !(SOL_NO_COMPAT)
#if defined(SOL_USING_CXX_LUA) && SOL_USING_CXX_LUA
#ifndef COMPAT53_LUA_CPP
#define COMPAT53_LUA_CPP 1
#endif // Build Lua Compat layer as C++
#endif
#ifndef COMPAT53_INCLUDE_SOURCE
#define COMPAT53_INCLUDE_SOURCE 1
#endif // Build Compat Layer Inline
// beginning of sol/compatibility/compat-5.3.h
#ifndef KEPLER_PROJECT_COMPAT53_H_
#define KEPLER_PROJECT_COMPAT53_H_
#include <stddef.h>
#include <limits.h>
#include <string.h>
#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
extern "C" {
#endif
#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
}
#endif
#ifndef COMPAT53_PREFIX
/* we chose this name because many other lua bindings / libs have
* their own compatibility layer, and that use the compat53 declaration
* frequently, causing all kinds of linker / compiler issues
*/
# define COMPAT53_PREFIX kp_compat53
#endif // COMPAT53_PREFIX
#ifndef COMPAT53_API
# if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE
# if defined(__GNUC__) || defined(__clang__)
# define COMPAT53_API __attribute__((__unused__)) static
# else
# define COMPAT53_API static
# endif /* Clang/GCC */
# else /* COMPAT53_INCLUDE_SOURCE */
/* we are not including source, so everything is extern */
# define COMPAT53_API extern
# endif /* COMPAT53_INCLUDE_SOURCE */
#endif /* COMPAT53_PREFIX */
#define COMPAT53_CONCAT_HELPER(a, b) a##b
#define COMPAT53_CONCAT(a, b) COMPAT53_CONCAT_HELPER(a, b)
/* declarations for Lua 5.1 */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
/* XXX not implemented:
* lua_arith (new operators)
* lua_upvalueid
* lua_upvaluejoin
* lua_version
* lua_yieldk
*/
#ifndef LUA_OK
# define LUA_OK 0
#endif
#ifndef LUA_OPADD
# define LUA_OPADD 0
#endif
#ifndef LUA_OPSUB
# define LUA_OPSUB 1
#endif
#ifndef LUA_OPMUL
# define LUA_OPMUL 2
#endif
#ifndef LUA_OPDIV
# define LUA_OPDIV 3
#endif
#ifndef LUA_OPMOD
# define LUA_OPMOD 4
#endif
#ifndef LUA_OPPOW
# define LUA_OPPOW 5
#endif
#ifndef LUA_OPUNM
# define LUA_OPUNM 6
#endif
#ifndef LUA_OPEQ
# define LUA_OPEQ 0
#endif
#ifndef LUA_OPLT
# define LUA_OPLT 1
#endif
#ifndef LUA_OPLE
# define LUA_OPLE 2
#endif
/* LuaJIT/Lua 5.1 does not have the updated
* error codes for thread status/function returns (but some patched versions do)
* define it only if it's not found
*/
#if !defined(LUA_ERRGCMM)
/* Use + 2 because in some versions of Lua (Lua 5.1)
* LUA_ERRFILE is defined as (LUA_ERRERR+1)
* so we need to avoid it (LuaJIT might have something at this
* integer value too)
*/
# define LUA_ERRGCMM (LUA_ERRERR + 2)
#endif /* LUA_ERRGCMM define */
typedef size_t lua_Unsigned;
typedef struct luaL_Buffer_53 {
luaL_Buffer b; /* make incorrect code crash! */
char *ptr;
size_t nelems;
size_t capacity;
lua_State *L2;
} luaL_Buffer_53;
#define luaL_Buffer luaL_Buffer_53
/* In PUC-Rio 5.1, userdata is a simple FILE*
* In LuaJIT, it's a struct where the first member is a FILE*
* We can't support the `closef` member
*/
typedef struct luaL_Stream {
FILE *f;
} luaL_Stream;
#define lua_absindex COMPAT53_CONCAT(COMPAT53_PREFIX, _absindex)
COMPAT53_API int lua_absindex(lua_State *L, int i);
#define lua_arith COMPAT53_CONCAT(COMPAT53_PREFIX, _arith)
COMPAT53_API void lua_arith(lua_State *L, int op);
#define lua_compare COMPAT53_CONCAT(COMPAT53_PREFIX, _compare)
COMPAT53_API int lua_compare(lua_State *L, int idx1, int idx2, int op);
#define lua_copy COMPAT53_CONCAT(COMPAT53_PREFIX, _copy)
COMPAT53_API void lua_copy(lua_State *L, int from, int to);
#define lua_getuservalue(L, i) \
(lua_getfenv((L), (i)), lua_type((L), -1))
#define lua_setuservalue(L, i) \
(luaL_checktype((L), -1, LUA_TTABLE), lua_setfenv((L), (i)))
#define lua_len COMPAT53_CONCAT(COMPAT53_PREFIX, _len)
COMPAT53_API void lua_len(lua_State *L, int i);
#define lua_pushstring(L, s) \
(lua_pushstring((L), (s)), lua_tostring((L), -1))
#define lua_pushlstring(L, s, len) \
((((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len))), lua_tostring((L), -1))
#ifndef luaL_newlibtable
# define luaL_newlibtable(L, l) \
(lua_createtable((L), 0, sizeof((l))/sizeof(*(l))-1))
#endif
#ifndef luaL_newlib
# define luaL_newlib(L, l) \
(luaL_newlibtable((L), (l)), luaL_register((L), NULL, (l)))
#endif
#define lua_pushglobaltable(L) \
lua_pushvalue((L), LUA_GLOBALSINDEX)
#define lua_rawgetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawgetp)
COMPAT53_API int lua_rawgetp(lua_State *L, int i, const void *p);
#define lua_rawsetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawsetp)
COMPAT53_API void lua_rawsetp(lua_State *L, int i, const void *p);
#define lua_rawlen(L, i) lua_objlen((L), (i))
#define lua_tointeger(L, i) lua_tointegerx((L), (i), NULL)
#define lua_tonumberx COMPAT53_CONCAT(COMPAT53_PREFIX, _tonumberx)
COMPAT53_API lua_Number lua_tonumberx(lua_State *L, int i, int *isnum);
#define luaL_checkversion COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkversion)
COMPAT53_API void luaL_checkversion(lua_State *L);
#define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53)
COMPAT53_API int lua_load(lua_State *L, lua_Reader reader, void *data, const char* source, const char* mode);
#define luaL_loadfilex COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadfilex)
COMPAT53_API int luaL_loadfilex(lua_State *L, const char *filename, const char *mode);
#define luaL_loadbufferx COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadbufferx)
COMPAT53_API int luaL_loadbufferx(lua_State *L, const char *buff, size_t sz, const char *name, const char *mode);
#define luaL_checkstack COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkstack_53)
COMPAT53_API void luaL_checkstack(lua_State *L, int sp, const char *msg);
#define luaL_getsubtable COMPAT53_CONCAT(COMPAT53_PREFIX, L_getsubtable)
COMPAT53_API int luaL_getsubtable(lua_State* L, int i, const char *name);
#define luaL_len COMPAT53_CONCAT(COMPAT53_PREFIX, L_len)
COMPAT53_API lua_Integer luaL_len(lua_State *L, int i);
#define luaL_setfuncs COMPAT53_CONCAT(COMPAT53_PREFIX, L_setfuncs)
COMPAT53_API void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup);
#define luaL_setmetatable COMPAT53_CONCAT(COMPAT53_PREFIX, L_setmetatable)
COMPAT53_API void luaL_setmetatable(lua_State *L, const char *tname);
#define luaL_testudata COMPAT53_CONCAT(COMPAT53_PREFIX, L_testudata)
COMPAT53_API void *luaL_testudata(lua_State *L, int i, const char *tname);
#define luaL_traceback COMPAT53_CONCAT(COMPAT53_PREFIX, L_traceback)
COMPAT53_API void luaL_traceback(lua_State *L, lua_State *L1, const char *msg, int level);
#define luaL_fileresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_fileresult)
COMPAT53_API int luaL_fileresult(lua_State *L, int stat, const char *fname);
#define luaL_execresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_execresult)
COMPAT53_API int luaL_execresult(lua_State *L, int stat);
#define lua_callk(L, na, nr, ctx, cont) \
((void)(ctx), (void)(cont), lua_call((L), (na), (nr)))
#define lua_pcallk(L, na, nr, err, ctx, cont) \
((void)(ctx), (void)(cont), lua_pcall((L), (na), (nr), (err)))
#define lua_resume(L, from, nargs) \
((void)(from), lua_resume((L), (nargs)))
#define luaL_buffinit COMPAT53_CONCAT(COMPAT53_PREFIX, _buffinit_53)
COMPAT53_API void luaL_buffinit(lua_State *L, luaL_Buffer_53 *B);
#define luaL_prepbuffsize COMPAT53_CONCAT(COMPAT53_PREFIX, _prepbufsize_53)
COMPAT53_API char *luaL_prepbuffsize(luaL_Buffer_53 *B, size_t s);
#define luaL_addlstring COMPAT53_CONCAT(COMPAT53_PREFIX, _addlstring_53)
COMPAT53_API void luaL_addlstring(luaL_Buffer_53 *B, const char *s, size_t l);
#define luaL_addvalue COMPAT53_CONCAT(COMPAT53_PREFIX, _addvalue_53)
COMPAT53_API void luaL_addvalue(luaL_Buffer_53 *B);
#define luaL_pushresult COMPAT53_CONCAT(COMPAT53_PREFIX, _pushresult_53)
COMPAT53_API void luaL_pushresult(luaL_Buffer_53 *B);
#undef luaL_buffinitsize
#define luaL_buffinitsize(L, B, s) \
(luaL_buffinit((L), (B)), luaL_prepbuffsize((B), (s)))
#undef luaL_prepbuffer
#define luaL_prepbuffer(B) \
luaL_prepbuffsize((B), LUAL_BUFFERSIZE)
#undef luaL_addchar
#define luaL_addchar(B, c) \
((void)((B)->nelems < (B)->capacity || luaL_prepbuffsize((B), 1)), \
((B)->ptr[(B)->nelems++] = (c)))
#undef luaL_addsize
#define luaL_addsize(B, s) \
((B)->nelems += (s))
#undef luaL_addstring
#define luaL_addstring(B, s) \
luaL_addlstring((B), (s), strlen((s)))
#undef luaL_pushresultsize
#define luaL_pushresultsize(B, s) \
(luaL_addsize((B), (s)), luaL_pushresult((B)))
#if defined(LUA_COMPAT_APIINTCASTS)
#define lua_pushunsigned(L, n) \
lua_pushinteger((L), (lua_Integer)(n))
#define lua_tounsignedx(L, i, is) \
((lua_Unsigned)lua_tointegerx((L), (i), (is)))
#define lua_tounsigned(L, i) \
lua_tounsignedx((L), (i), NULL)
#define luaL_checkunsigned(L, a) \
((lua_Unsigned)luaL_checkinteger((L), (a)))
#define luaL_optunsigned(L, a, d) \
((lua_Unsigned)luaL_optinteger((L), (a), (lua_Integer)(d)))
#endif
#endif /* Lua 5.1 only */
/* declarations for Lua 5.1 and 5.2 */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM <= 502
typedef int lua_KContext;
typedef int(*lua_KFunction)(lua_State *L, int status, lua_KContext ctx);
#define lua_dump(L, w, d, s) \
((void)(s), lua_dump((L), (w), (d)))
#define lua_getfield(L, i, k) \
(lua_getfield((L), (i), (k)), lua_type((L), -1))
#define lua_gettable(L, i) \
(lua_gettable((L), (i)), lua_type((L), -1))
#define lua_geti COMPAT53_CONCAT(COMPAT53_PREFIX, _geti)
COMPAT53_API int lua_geti(lua_State *L, int index, lua_Integer i);
#define lua_isinteger COMPAT53_CONCAT(COMPAT53_PREFIX, _isinteger)
COMPAT53_API int lua_isinteger(lua_State *L, int index);
#define lua_tointegerx COMPAT53_CONCAT(COMPAT53_PREFIX, _tointegerx_53)
COMPAT53_API lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum);
#define lua_numbertointeger(n, p) \
((*(p) = (lua_Integer)(n)), 1)
#define lua_rawget(L, i) \
(lua_rawget((L), (i)), lua_type((L), -1))
#define lua_rawgeti(L, i, n) \
(lua_rawgeti((L), (i), (n)), lua_type((L), -1))
#define lua_rotate COMPAT53_CONCAT(COMPAT53_PREFIX, _rotate)
COMPAT53_API void lua_rotate(lua_State *L, int idx, int n);
#define lua_seti COMPAT53_CONCAT(COMPAT53_PREFIX, _seti)
COMPAT53_API void lua_seti(lua_State *L, int index, lua_Integer i);
#define lua_stringtonumber COMPAT53_CONCAT(COMPAT53_PREFIX, _stringtonumber)
COMPAT53_API size_t lua_stringtonumber(lua_State *L, const char *s);
#define luaL_tolstring COMPAT53_CONCAT(COMPAT53_PREFIX, L_tolstring)
COMPAT53_API const char *luaL_tolstring(lua_State *L, int idx, size_t *len);
#define luaL_getmetafield(L, o, e) \
(luaL_getmetafield((L), (o), (e)) ? lua_type((L), -1) : LUA_TNIL)
#define luaL_newmetatable(L, tn) \
(luaL_newmetatable((L), (tn)) ? (lua_pushstring((L), (tn)), lua_setfield((L), -2, "__name"), 1) : 0)
#define luaL_requiref COMPAT53_CONCAT(COMPAT53_PREFIX, L_requiref_53)
COMPAT53_API void luaL_requiref(lua_State *L, const char *modname,
lua_CFunction openf, int glb);
#endif /* Lua 5.1 and Lua 5.2 */
/* declarations for Lua 5.2 */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 502
/* XXX not implemented:
* lua_isyieldable
* lua_getextraspace
* lua_arith (new operators)
* lua_pushfstring (new formats)
*/
#define lua_getglobal(L, n) \
(lua_getglobal((L), (n)), lua_type((L), -1))
#define lua_getuservalue(L, i) \
(lua_getuservalue((L), (i)), lua_type((L), -1))
#define lua_pushlstring(L, s, len) \
(((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len)))
#define lua_rawgetp(L, i, p) \
(lua_rawgetp((L), (i), (p)), lua_type((L), -1))
#define LUA_KFUNCTION(_name) \
static int (_name)(lua_State *L, int status, lua_KContext ctx); \
static int (_name ## _52)(lua_State *L) { \
lua_KContext ctx; \
int status = lua_getctx(L, &ctx); \
return (_name)(L, status, ctx); \
} \
static int (_name)(lua_State *L, int status, lua_KContext ctx)
#define lua_pcallk(L, na, nr, err, ctx, cont) \
lua_pcallk((L), (na), (nr), (err), (ctx), cont ## _52)
#define lua_callk(L, na, nr, ctx, cont) \
lua_callk((L), (na), (nr), (ctx), cont ## _52)
#define lua_yieldk(L, nr, ctx, cont) \
lua_yieldk((L), (nr), (ctx), cont ## _52)
#ifdef lua_call
# undef lua_call
# define lua_call(L, na, nr) \
(lua_callk)((L), (na), (nr), 0, NULL)
#endif
#ifdef lua_pcall
# undef lua_pcall
# define lua_pcall(L, na, nr, err) \
(lua_pcallk)((L), (na), (nr), (err), 0, NULL)
#endif
#ifdef lua_yield
# undef lua_yield
# define lua_yield(L, nr) \
(lua_yieldk)((L), (nr), 0, NULL)
#endif
#endif /* Lua 5.2 only */
/* other Lua versions */
#if !defined(LUA_VERSION_NUM) || LUA_VERSION_NUM < 501 || LUA_VERSION_NUM > 503
# error "unsupported Lua version (i.e. not Lua 5.1, 5.2, or 5.3)"
#endif /* other Lua versions except 5.1, 5.2, and 5.3 */
/* helper macro for defining continuation functions (for every version
* *except* Lua 5.2) */
#ifndef LUA_KFUNCTION
#define LUA_KFUNCTION(_name) \
static int (_name)(lua_State *L, int status, lua_KContext ctx)
#endif
#if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE == 1
// beginning of sol/compatibility/compat-5.3.c
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
/* don't compile it again if it already is included via compat53.h */
#ifndef KEPLER_PROJECT_COMPAT53_C_
#define KEPLER_PROJECT_COMPAT53_C_
/* definitions for Lua 5.1 only */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
#ifndef COMPAT53_FOPEN_NO_LOCK
# if defined(_MSC_VER)
# define COMPAT53_FOPEN_NO_LOCK 1
# else /* otherwise */
# define COMPAT53_FOPEN_NO_LOCK 0
# endif /* VC++ only so far */
#endif /* No-lock fopen_s usage if possible */
#if defined(_MSC_VER) && COMPAT53_FOPEN_NO_LOCK
# include <share.h>
#endif /* VC++ _fsopen for share-allowed file read */
#ifndef COMPAT53_HAVE_STRERROR_R
# if defined(__GLIBC__) || defined(_POSIX_VERSION) || defined(__APPLE__) || \
(!defined (__MINGW32__) && defined(__GNUC__) && (__GNUC__ < 6))
# define COMPAT53_HAVE_STRERROR_R 1
# else /* none of the defines matched: define to 0 */
# define COMPAT53_HAVE_STRERROR_R 0
# endif /* have strerror_r of some form */
#endif /* strerror_r */
#ifndef COMPAT53_HAVE_STRERROR_S
# if defined(_MSC_VER) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L) || \
(defined(__STDC_LIB_EXT1__) && __STDC_LIB_EXT1__)
# define COMPAT53_HAVE_STRERROR_S 1
# else /* not VC++ or C11 */
# define COMPAT53_HAVE_STRERROR_S 0
# endif /* strerror_s from VC++ or C11 */
#endif /* strerror_s */
#ifndef COMPAT53_LUA_FILE_BUFFER_SIZE
# define COMPAT53_LUA_FILE_BUFFER_SIZE 4096
#endif /* Lua File Buffer Size */
static char* compat53_strerror(int en, char* buff, size_t sz) {
#if COMPAT53_HAVE_STRERROR_R
/* use strerror_r here, because it's available on these specific platforms */
if (sz > 0) {
buff[0] = '\0';
/* we don't care whether the GNU version or the XSI version is used: */
if (strerror_r(en, buff, sz)) {
/* Yes, we really DO want to ignore the return value!
* GCC makes that extra hard, not even a (void) cast will do. */
}
if (buff[0] == '\0') {
/* Buffer is unchanged, so we probably have called GNU strerror_r which
* returned a static constant string. Chances are that strerror will
* return the same static constant string and therefore be thread-safe. */
return strerror(en);
}
}
return buff; /* sz is 0 *or* strerror_r wrote into the buffer */
#elif COMPAT53_HAVE_STRERROR_S
/* for MSVC and other C11 implementations, use strerror_s since it's
* provided by default by the libraries */
strerror_s(buff, sz, en);
return buff;
#else
/* fallback, but strerror is not guaranteed to be threadsafe due to modifying
* errno itself and some impls not locking a static buffer for it ... but most
* known systems have threadsafe errno: this might only change if the locale
* is changed out from under someone while this function is being called */
(void)buff;
(void)sz;
return strerror(en);
#endif
}
COMPAT53_API int lua_absindex(lua_State *L, int i) {
if (i < 0 && i > LUA_REGISTRYINDEX)
i += lua_gettop(L) + 1;
return i;
}
static void compat53_call_lua(lua_State *L, char const code[], size_t len,
int nargs, int nret) {
lua_rawgetp(L, LUA_REGISTRYINDEX, (void*)code);
if (lua_type(L, -1) != LUA_TFUNCTION) {
lua_pop(L, 1);
if (luaL_loadbuffer(L, code, len, "=none"))
lua_error(L);
lua_pushvalue(L, -1);
lua_rawsetp(L, LUA_REGISTRYINDEX, (void*)code);
}
lua_insert(L, -nargs - 1);
lua_call(L, nargs, nret);
}
static const char compat53_arith_code[] =
"local op,a,b=...\n"
"if op==0 then return a+b\n"
"elseif op==1 then return a-b\n"
"elseif op==2 then return a*b\n"
"elseif op==3 then return a/b\n"
"elseif op==4 then return a%b\n"
"elseif op==5 then return a^b\n"
"elseif op==6 then return -a\n"
"end\n";
COMPAT53_API void lua_arith(lua_State *L, int op) {
if (op < LUA_OPADD || op > LUA_OPUNM)
luaL_error(L, "invalid 'op' argument for lua_arith");
luaL_checkstack(L, 5, "not enough stack slots");
if (op == LUA_OPUNM)
lua_pushvalue(L, -1);
lua_pushnumber(L, op);
lua_insert(L, -3);
compat53_call_lua(L, compat53_arith_code,
sizeof(compat53_arith_code) - 1, 3, 1);
}
static const char compat53_compare_code[] =
"local a,b=...\n"
"return a<=b\n";
COMPAT53_API int lua_compare(lua_State *L, int idx1, int idx2, int op) {
int result = 0;
switch (op) {
case LUA_OPEQ:
return lua_equal(L, idx1, idx2);
case LUA_OPLT:
return lua_lessthan(L, idx1, idx2);
case LUA_OPLE:
luaL_checkstack(L, 5, "not enough stack slots");
idx1 = lua_absindex(L, idx1);
idx2 = lua_absindex(L, idx2);
lua_pushvalue(L, idx1);
lua_pushvalue(L, idx2);
compat53_call_lua(L, compat53_compare_code,
sizeof(compat53_compare_code) - 1, 2, 1);
result = lua_toboolean(L, -1);
lua_pop(L, 1);
return result;
default:
luaL_error(L, "invalid 'op' argument for lua_compare");
}
return 0;
}
COMPAT53_API void lua_copy(lua_State *L, int from, int to) {
int abs_to = lua_absindex(L, to);
luaL_checkstack(L, 1, "not enough stack slots");
lua_pushvalue(L, from);
lua_replace(L, abs_to);
}
COMPAT53_API void lua_len(lua_State *L, int i) {
switch (lua_type(L, i)) {
case LUA_TSTRING:
lua_pushnumber(L, (lua_Number)lua_objlen(L, i));
break;
case LUA_TTABLE:
if (!luaL_callmeta(L, i, "__len"))
lua_pushnumber(L, (lua_Number)lua_objlen(L, i));
break;
case LUA_TUSERDATA:
if (luaL_callmeta(L, i, "__len"))
break;
/* FALLTHROUGH */
default:
luaL_error(L, "attempt to get length of a %s value",
lua_typename(L, lua_type(L, i)));
}
}
COMPAT53_API int lua_rawgetp(lua_State *L, int i, const void *p) {
int abs_i = lua_absindex(L, i);
lua_pushlightuserdata(L, (void*)p);
lua_rawget(L, abs_i);
return lua_type(L, -1);
}
COMPAT53_API void lua_rawsetp(lua_State *L, int i, const void *p) {
int abs_i = lua_absindex(L, i);
luaL_checkstack(L, 1, "not enough stack slots");
lua_pushlightuserdata(L, (void*)p);
lua_insert(L, -2);
lua_rawset(L, abs_i);
}
COMPAT53_API lua_Number lua_tonumberx(lua_State *L, int i, int *isnum) {
lua_Number n = lua_tonumber(L, i);
if (isnum != NULL) {
*isnum = (n != 0 || lua_isnumber(L, i));
}
return n;
}
COMPAT53_API void luaL_checkversion(lua_State *L) {
(void)L;
}
COMPAT53_API void luaL_checkstack(lua_State *L, int sp, const char *msg) {
if (!lua_checkstack(L, sp + LUA_MINSTACK)) {
if (msg != NULL)
luaL_error(L, "stack overflow (%s)", msg);
else {
lua_pushliteral(L, "stack overflow");
lua_error(L);
}
}
}
COMPAT53_API int luaL_getsubtable(lua_State *L, int i, const char *name) {
int abs_i = lua_absindex(L, i);
luaL_checkstack(L, 3, "not enough stack slots");
lua_pushstring(L, name);
lua_gettable(L, abs_i);
if (lua_istable(L, -1))
return 1;
lua_pop(L, 1);
lua_newtable(L);
lua_pushstring(L, name);
lua_pushvalue(L, -2);
lua_settable(L, abs_i);
return 0;
}
COMPAT53_API lua_Integer luaL_len(lua_State *L, int i) {
lua_Integer res = 0;
int isnum = 0;
luaL_checkstack(L, 1, "not enough stack slots");
lua_len(L, i);
res = lua_tointegerx(L, -1, &isnum);
lua_pop(L, 1);
if (!isnum)
luaL_error(L, "object length is not an integer");
return res;
}
COMPAT53_API void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup) {
luaL_checkstack(L, nup + 1, "too many upvalues");
for (; l->name != NULL; l++) { /* fill the table with given functions */
int i;
lua_pushstring(L, l->name);
for (i = 0; i < nup; i++) /* copy upvalues to the top */
lua_pushvalue(L, -(nup + 1));
lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */
lua_settable(L, -(nup + 3)); /* table must be below the upvalues, the name and the closure */
}
lua_pop(L, nup); /* remove upvalues */
}
COMPAT53_API void luaL_setmetatable(lua_State *L, const char *tname) {
luaL_checkstack(L, 1, "not enough stack slots");
luaL_getmetatable(L, tname);
lua_setmetatable(L, -2);
}
COMPAT53_API void *luaL_testudata(lua_State *L, int i, const char *tname) {
void *p = lua_touserdata(L, i);
luaL_checkstack(L, 2, "not enough stack slots");
if (p == NULL || !lua_getmetatable(L, i))
return NULL;
else {
int res = 0;
luaL_getmetatable(L, tname);
res = lua_rawequal(L, -1, -2);
lua_pop(L, 2);
if (!res)
p = NULL;
}
return p;
}
static int compat53_countlevels(lua_State *L) {
lua_Debug ar;
int li = 1, le = 1;
/* find an upper bound */
while (lua_getstack(L, le, &ar)) { li = le; le *= 2; }
/* do a binary search */
while (li < le) {
int m = (li + le) / 2;
if (lua_getstack(L, m, &ar)) li = m + 1;
else le = m;
}
return le - 1;
}
static int compat53_findfield(lua_State *L, int objidx, int level) {
if (level == 0 || !lua_istable(L, -1))
return 0; /* not found */
lua_pushnil(L); /* start 'next' loop */
while (lua_next(L, -2)) { /* for each pair in table */
if (lua_type(L, -2) == LUA_TSTRING) { /* ignore non-string keys */
if (lua_rawequal(L, objidx, -1)) { /* found object? */
lua_pop(L, 1); /* remove value (but keep name) */
return 1;
}
else if (compat53_findfield(L, objidx, level - 1)) { /* try recursively */
lua_remove(L, -2); /* remove table (but keep name) */
lua_pushliteral(L, ".");
lua_insert(L, -2); /* place '.' between the two names */
lua_concat(L, 3);
return 1;
}
}
lua_pop(L, 1); /* remove value */
}
return 0; /* not found */
}
static int compat53_pushglobalfuncname(lua_State *L, lua_Debug *ar) {
int top = lua_gettop(L);
lua_getinfo(L, "f", ar); /* push function */
lua_pushvalue(L, LUA_GLOBALSINDEX);
if (compat53_findfield(L, top + 1, 2)) {
lua_copy(L, -1, top + 1); /* move name to proper place */
lua_pop(L, 2); /* remove pushed values */
return 1;
}
else {
lua_settop(L, top); /* remove function and global table */
return 0;
}
}
static void compat53_pushfuncname(lua_State *L, lua_Debug *ar) {
if (*ar->namewhat != '\0') /* is there a name? */
lua_pushfstring(L, "function " LUA_QS, ar->name);
else if (*ar->what == 'm') /* main? */
lua_pushliteral(L, "main chunk");
else if (*ar->what == 'C') {
if (compat53_pushglobalfuncname(L, ar)) {
lua_pushfstring(L, "function " LUA_QS, lua_tostring(L, -1));
lua_remove(L, -2); /* remove name */
}
else
lua_pushliteral(L, "?");
}
else
lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined);
}
#define COMPAT53_LEVELS1 12 /* size of the first part of the stack */
#define COMPAT53_LEVELS2 10 /* size of the second part of the stack */
COMPAT53_API void luaL_traceback(lua_State *L, lua_State *L1,
const char *msg, int level) {
lua_Debug ar;
int top = lua_gettop(L);
int numlevels = compat53_countlevels(L1);
int mark = (numlevels > COMPAT53_LEVELS1 + COMPAT53_LEVELS2) ? COMPAT53_LEVELS1 : 0;
if (msg) lua_pushfstring(L, "%s\n", msg);
lua_pushliteral(L, "stack traceback:");
while (lua_getstack(L1, level++, &ar)) {
if (level == mark) { /* too many levels? */
lua_pushliteral(L, "\n\t..."); /* add a '...' */
level = numlevels - COMPAT53_LEVELS2; /* and skip to last ones */
}
else {
lua_getinfo(L1, "Slnt", &ar);
lua_pushfstring(L, "\n\t%s:", ar.short_src);
if (ar.currentline > 0)
lua_pushfstring(L, "%d:", ar.currentline);
lua_pushliteral(L, " in ");
compat53_pushfuncname(L, &ar);
lua_concat(L, lua_gettop(L) - top);
}
}
lua_concat(L, lua_gettop(L) - top);
}
COMPAT53_API int luaL_fileresult(lua_State *L, int stat, const char *fname) {
const char *serr = NULL;
int en = errno; /* calls to Lua API may change this value */
char buf[512] = { 0 };
if (stat) {
lua_pushboolean(L, 1);
return 1;
}
else {
lua_pushnil(L);
serr = compat53_strerror(en, buf, sizeof(buf));
if (fname)
lua_pushfstring(L, "%s: %s", fname, serr);
else
lua_pushstring(L, serr);
lua_pushnumber(L, (lua_Number)en);
return 3;
}
}
static int compat53_checkmode(lua_State *L, const char *mode, const char *modename, int err) {
if (mode && strchr(mode, modename[0]) == NULL) {
lua_pushfstring(L, "attempt to load a %s chunk (mode is '%s')", modename, mode);
return err;
}
return LUA_OK;
}
typedef struct {
lua_Reader reader;
void *ud;
int has_peeked_data;
const char *peeked_data;
size_t peeked_data_size;
} compat53_reader_data;
static const char *compat53_reader(lua_State *L, void *ud, size_t *size) {
compat53_reader_data *data = (compat53_reader_data *)ud;
if (data->has_peeked_data) {
data->has_peeked_data = 0;
*size = data->peeked_data_size;
return data->peeked_data;
}
else
return data->reader(L, data->ud, size);
}
COMPAT53_API int lua_load(lua_State *L, lua_Reader reader, void *data, const char *source, const char *mode) {
int status = LUA_OK;
compat53_reader_data compat53_data = { reader, data, 1, 0, 0 };
compat53_data.peeked_data = reader(L, data, &(compat53_data.peeked_data_size));
if (compat53_data.peeked_data && compat53_data.peeked_data_size &&
compat53_data.peeked_data[0] == LUA_SIGNATURE[0]) /* binary file? */
status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX);
else
status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX);
if (status != LUA_OK)
return status;
/* we need to call the original 5.1 version of lua_load! */
#undef lua_load
return lua_load(L, compat53_reader, &compat53_data, source);
#define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53)
}
typedef struct {
int n; /* number of pre-read characters */
FILE *f; /* file being read */
char buff[COMPAT53_LUA_FILE_BUFFER_SIZE]; /* area for reading file */
} compat53_LoadF;
static const char *compat53_getF(lua_State *L, void *ud, size_t *size) {
compat53_LoadF *lf = (compat53_LoadF *)ud;
(void)L; /* not used */
if (lf->n > 0) { /* are there pre-read characters to be read? */
*size = lf->n; /* return them (chars already in buffer) */
lf->n = 0; /* no more pre-read characters */
}
else { /* read a block from file */
/* 'fread' can return > 0 *and* set the EOF flag. If next call to
'compat53_getF' called 'fread', it might still wait for user input.
The next check avoids this problem. */
if (feof(lf->f)) return NULL;
*size = fread(lf->buff, 1, sizeof(lf->buff), lf->f); /* read block */
}
return lf->buff;
}
static int compat53_errfile(lua_State *L, const char *what, int fnameindex) {
char buf[512] = { 0 };
const char *serr = compat53_strerror(errno, buf, sizeof(buf));
const char *filename = lua_tostring(L, fnameindex) + 1;
lua_pushfstring(L, "cannot %s %s: %s", what, filename, serr);
lua_remove(L, fnameindex);
return LUA_ERRFILE;
}
static int compat53_skipBOM(compat53_LoadF *lf) {
const char *p = "\xEF\xBB\xBF"; /* UTF-8 BOM mark */
int c;
lf->n = 0;
do {
c = getc(lf->f);
if (c == EOF || c != *(const unsigned char *)p++) return c;
lf->buff[lf->n++] = (char)c; /* to be read by the parser */
} while (*p != '\0');
lf->n = 0; /* prefix matched; discard it */
return getc(lf->f); /* return next character */
}
/*
** reads the first character of file 'f' and skips an optional BOM mark
** in its beginning plus its first line if it starts with '#'. Returns
** true if it skipped the first line. In any case, '*cp' has the
** first "valid" character of the file (after the optional BOM and
** a first-line comment).
*/
static int compat53_skipcomment(compat53_LoadF *lf, int *cp) {
int c = *cp = compat53_skipBOM(lf);
if (c == '#') { /* first line is a comment (Unix exec. file)? */
do { /* skip first line */
c = getc(lf->f);
} while (c != EOF && c != '\n');
*cp = getc(lf->f); /* skip end-of-line, if present */
return 1; /* there was a comment */
}
else return 0; /* no comment */
}
COMPAT53_API int luaL_loadfilex(lua_State *L, const char *filename, const char *mode) {
compat53_LoadF lf;
int status, readstatus;
int c;
int fnameindex = lua_gettop(L) + 1; /* index of filename on the stack */
if (filename == NULL) {
lua_pushliteral(L, "=stdin");
lf.f = stdin;
}
else {
lua_pushfstring(L, "@%s", filename);
#if defined(_MSC_VER)
/* This code is here to stop a deprecation error that stops builds
* if a certain macro is defined. While normally not caring would
* be best, some header-only libraries and builds can't afford to
* dictate this to the user. A quick check shows that fopen_s this
* goes back to VS 2005, and _fsopen goes back to VS 2003 .NET,
* possibly even before that so we don't need to do any version
* number checks, since this has been there since forever. */
/* TO USER: if you want the behavior of typical fopen_s/fopen,
* which does lock the file on VC++, define the macro used below to 0 */
#if COMPAT53_FOPEN_NO_LOCK
lf.f = _fsopen(filename, "r", _SH_DENYNO); /* do not lock the file in any way */
if (lf.f == NULL)
return compat53_errfile(L, "open", fnameindex);
#else /* use default locking version */
if (fopen_s(&lf.f, filename, "r") != 0)
return compat53_errfile(L, "open", fnameindex);
#endif /* Locking vs. No-locking fopen variants */
#else
lf.f = fopen(filename, "r"); /* default stdlib doesn't forcefully lock files here */
if (lf.f == NULL) return compat53_errfile(L, "open", fnameindex);
#endif
}
if (compat53_skipcomment(&lf, &c)) /* read initial portion */
lf.buff[lf.n++] = '\n'; /* add line to correct line numbers */
if (c == LUA_SIGNATURE[0] && filename) { /* binary file? */
#if defined(_MSC_VER)
if (freopen_s(&lf.f, filename, "rb", lf.f) != 0)
return compat53_errfile(L, "reopen", fnameindex);
#else
lf.f = freopen(filename, "rb", lf.f); /* reopen in binary mode */
if (lf.f == NULL) return compat53_errfile(L, "reopen", fnameindex);
#endif
compat53_skipcomment(&lf, &c); /* re-read initial portion */
}
if (c != EOF)
lf.buff[lf.n++] = (char)c; /* 'c' is the first character of the stream */
status = lua_load(L, &compat53_getF, &lf, lua_tostring(L, -1), mode);
readstatus = ferror(lf.f);
if (filename) fclose(lf.f); /* close file (even in case of errors) */
if (readstatus) {
lua_settop(L, fnameindex); /* ignore results from 'lua_load' */
return compat53_errfile(L, "read", fnameindex);
}
lua_remove(L, fnameindex);
return status;
}
COMPAT53_API int luaL_loadbufferx(lua_State *L, const char *buff, size_t sz, const char *name, const char *mode) {
int status = LUA_OK;
if (sz > 0 && buff[0] == LUA_SIGNATURE[0]) {
status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX);
}
else {
status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX);
}
if (status != LUA_OK)
return status;
return luaL_loadbuffer(L, buff, sz, name);
}
#if !defined(l_inspectstat) && \
(defined(unix) || defined(__unix) || defined(__unix__) || \
defined(__TOS_AIX__) || defined(_SYSTYPE_BSD) || \
(defined(__APPLE__) && defined(__MACH__)))
/* some form of unix; check feature macros in unistd.h for details */
# include <unistd.h>
/* check posix version; the relevant include files and macros probably
* were available before 2001, but I'm not sure */
# if defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L
# include <sys/wait.h>
# define l_inspectstat(stat,what) \
if (WIFEXITED(stat)) { stat = WEXITSTATUS(stat); } \
else if (WIFSIGNALED(stat)) { stat = WTERMSIG(stat); what = "signal"; }
# endif
#endif
/* provide default (no-op) version */
#if !defined(l_inspectstat)
# define l_inspectstat(stat,what) ((void)0)
#endif
COMPAT53_API int luaL_execresult(lua_State *L, int stat) {
const char *what = "exit";
if (stat == -1)
return luaL_fileresult(L, 0, NULL);
else {
l_inspectstat(stat, what);
if (*what == 'e' && stat == 0)
lua_pushboolean(L, 1);
else
lua_pushnil(L);
lua_pushstring(L, what);
lua_pushinteger(L, stat);
return 3;
}
}
COMPAT53_API void luaL_buffinit(lua_State *L, luaL_Buffer_53 *B) {
/* make it crash if used via pointer to a 5.1-style luaL_Buffer */
B->b.p = NULL;
B->b.L = NULL;
B->b.lvl = 0;
/* reuse the buffer from the 5.1-style luaL_Buffer though! */
B->ptr = B->b.buffer;
B->capacity = LUAL_BUFFERSIZE;
B->nelems = 0;
B->L2 = L;
}
COMPAT53_API char *luaL_prepbuffsize(luaL_Buffer_53 *B, size_t s) {
if (B->capacity - B->nelems < s) { /* needs to grow */
char* newptr = NULL;
size_t newcap = B->capacity * 2;
if (newcap - B->nelems < s)
newcap = B->nelems + s;
if (newcap < B->capacity) /* overflow */
luaL_error(B->L2, "buffer too large");
newptr = (char*)lua_newuserdata(B->L2, newcap);
memcpy(newptr, B->ptr, B->nelems);
if (B->ptr != B->b.buffer)
lua_replace(B->L2, -2); /* remove old buffer */
B->ptr = newptr;
B->capacity = newcap;
}
return B->ptr + B->nelems;
}
COMPAT53_API void luaL_addlstring(luaL_Buffer_53 *B, const char *s, size_t l) {
memcpy(luaL_prepbuffsize(B, l), s, l);
luaL_addsize(B, l);
}
COMPAT53_API void luaL_addvalue(luaL_Buffer_53 *B) {
size_t len = 0;
const char *s = lua_tolstring(B->L2, -1, &len);
if (!s)
luaL_error(B->L2, "cannot convert value to string");
if (B->ptr != B->b.buffer)
lua_insert(B->L2, -2); /* userdata buffer must be at stack top */
luaL_addlstring(B, s, len);
lua_remove(B->L2, B->ptr != B->b.buffer ? -2 : -1);
}
void luaL_pushresult(luaL_Buffer_53 *B) {
lua_pushlstring(B->L2, B->ptr, B->nelems);
if (B->ptr != B->b.buffer)
lua_replace(B->L2, -2); /* remove userdata buffer */
}
#endif /* Lua 5.1 */
/* definitions for Lua 5.1 and Lua 5.2 */
#if defined( LUA_VERSION_NUM ) && LUA_VERSION_NUM <= 502
COMPAT53_API int lua_geti(lua_State *L, int index, lua_Integer i) {
index = lua_absindex(L, index);
lua_pushinteger(L, i);
lua_gettable(L, index);
return lua_type(L, -1);
}
COMPAT53_API int lua_isinteger(lua_State *L, int index) {
if (lua_type(L, index) == LUA_TNUMBER) {
lua_Number n = lua_tonumber(L, index);
lua_Integer i = lua_tointeger(L, index);
if (i == n)
return 1;
}
return 0;
}
COMPAT53_API lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum) {
int ok = 0;
lua_Number n = lua_tonumberx(L, i, &ok);
if (ok) {
if (n == (lua_Integer)n) {
if (isnum)
*isnum = 1;
return (lua_Integer)n;
}
}
if (isnum)
*isnum = 0;
return 0;
}
static void compat53_reverse(lua_State *L, int a, int b) {
for (; a < b; ++a, --b) {
lua_pushvalue(L, a);
lua_pushvalue(L, b);
lua_replace(L, a);
lua_replace(L, b);
}
}
COMPAT53_API void lua_rotate(lua_State *L, int idx, int n) {
int n_elems = 0;
idx = lua_absindex(L, idx);
n_elems = lua_gettop(L) - idx + 1;
if (n < 0)
n += n_elems;
if (n > 0 && n < n_elems) {
luaL_checkstack(L, 2, "not enough stack slots available");
n = n_elems - n;
compat53_reverse(L, idx, idx + n - 1);
compat53_reverse(L, idx + n, idx + n_elems - 1);
compat53_reverse(L, idx, idx + n_elems - 1);
}
}
COMPAT53_API void lua_seti(lua_State *L, int index, lua_Integer i) {
luaL_checkstack(L, 1, "not enough stack slots available");
index = lua_absindex(L, index);
lua_pushinteger(L, i);
lua_insert(L, -2);
lua_settable(L, index);
}
#if !defined(lua_str2number)
# define lua_str2number(s, p) strtod((s), (p))
#endif
COMPAT53_API size_t lua_stringtonumber(lua_State *L, const char *s) {
char* endptr;
lua_Number n = lua_str2number(s, &endptr);
if (endptr != s) {
while (*endptr != '\0' && isspace((unsigned char)*endptr))
++endptr;
if (*endptr == '\0') {
lua_pushnumber(L, n);
return endptr - s + 1;
}
}
return 0;
}
COMPAT53_API const char *luaL_tolstring(lua_State *L, int idx, size_t *len) {
if (!luaL_callmeta(L, idx, "__tostring")) {
int t = lua_type(L, idx), tt = 0;
char const* name = NULL;
switch (t) {
case LUA_TNIL:
lua_pushliteral(L, "nil");
break;
case LUA_TSTRING:
case LUA_TNUMBER:
lua_pushvalue(L, idx);
break;
case LUA_TBOOLEAN:
if (lua_toboolean(L, idx))
lua_pushliteral(L, "true");
else
lua_pushliteral(L, "false");
break;
default:
tt = luaL_getmetafield(L, idx, "__name");
name = (tt == LUA_TSTRING) ? lua_tostring(L, -1) : lua_typename(L, t);
lua_pushfstring(L, "%s: %p", name, lua_topointer(L, idx));
if (tt != LUA_TNIL)
lua_replace(L, -2);
break;
}
}
else {
if (!lua_isstring(L, -1))
luaL_error(L, "'__tostring' must return a string");
}
return lua_tolstring(L, -1, len);
}
COMPAT53_API void luaL_requiref(lua_State *L, const char *modname,
lua_CFunction openf, int glb) {
luaL_checkstack(L, 3, "not enough stack slots available");
luaL_getsubtable(L, LUA_REGISTRYINDEX, "_LOADED");
if (lua_getfield(L, -1, modname) == LUA_TNIL) {
lua_pop(L, 1);
lua_pushcfunction(L, openf);
lua_pushstring(L, modname);
lua_call(L, 1, 1);
lua_pushvalue(L, -1);
lua_setfield(L, -3, modname);
}
if (glb) {
lua_pushvalue(L, -1);
lua_setglobal(L, modname);
}
lua_replace(L, -2);
}
#endif /* Lua 5.1 and 5.2 */
#endif /* KEPLER_PROJECT_COMPAT53_C_ */
/*********************************************************************
* This file contains parts of Lua 5.2's and Lua 5.3's source code:
*
* Copyright (C) 1994-2014 Lua.org, PUC-Rio.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*********************************************************************/
// end of sol/compatibility/compat-5.3.c
#endif
#endif /* KEPLER_PROJECT_COMPAT53_H_ */
// end of sol/compatibility/compat-5.3.h
#endif // SOL_NO_COMPAT
// end of sol/compatibility.hpp
// beginning of sol/in_place.hpp
#include <utility>
namespace sol {
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
using in_place_t = std::in_place_t;
constexpr std::in_place_t in_place{};
constexpr std::in_place_t in_place_of{};
template <typename T>
using in_place_type_t = std::in_place_type_t<T>;
template <typename T>
constexpr std::in_place_type_t<T> in_place_type{};
template <size_t I>
using in_place_index_t = std::in_place_index_t<I>;
template <size_t I>
constexpr in_place_index_t<I> in_place_index{};
#else
namespace detail {
struct in_place_of_tag {};
template <std::size_t I>
struct in_place_of_i {};
template <typename T>
struct in_place_of_t {};
} // namespace detail
struct in_place_tag {
constexpr in_place_tag() = default;
};
constexpr inline in_place_tag in_place(detail::in_place_of_tag) {
return in_place_tag();
}
template <typename T>
constexpr inline in_place_tag in_place(detail::in_place_of_t<T>) {
return in_place_tag();
}
template <std::size_t I>
constexpr inline in_place_tag in_place(detail::in_place_of_i<I>) {
return in_place_tag();
}
constexpr inline in_place_tag in_place_of(detail::in_place_of_tag) {
return in_place_tag();
}
template <typename T>
constexpr inline in_place_tag in_place_type(detail::in_place_of_t<T>) {
return in_place_tag();
}
template <std::size_t I>
constexpr inline in_place_tag in_place_index(detail::in_place_of_i<I>) {
return in_place_tag();
}
using in_place_t = in_place_tag (&)(detail::in_place_of_tag);
template <typename T>
using in_place_type_t = in_place_tag (&)(detail::in_place_of_t<T>);
template <std::size_t I>
using in_place_index_t = in_place_tag (&)(detail::in_place_of_i<I>);
#endif
} // namespace sol
// end of sol/in_place.hpp
#if defined(SOL_USE_BOOST) && SOL_USE_BOOST
#include <boost/optional.hpp>
#else
// beginning of sol/optional_implementation.hpp
#include <initializer_list>
#include <cassert>
#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS
#include <cstdlib>
#endif // Exceptions
#define TR2_OPTIONAL_REQUIRES(...) typename ::std::enable_if<__VA_ARGS__::value, bool>::type = false
#if defined __GNUC__ // NOTE: GNUC is also defined for Clang
#if (__GNUC__ >= 5)
#define TR2_OPTIONAL_GCC_5_0_AND_HIGHER___
#define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
#elif (__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)
#define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
#elif (__GNUC__ > 4)
#define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
#endif
#
#if (__GNUC__ == 4) && (__GNUC_MINOR__ >= 7)
#define TR2_OPTIONAL_GCC_4_7_AND_HIGHER___
#elif (__GNUC__ > 4)
#define TR2_OPTIONAL_GCC_4_7_AND_HIGHER___
#endif
#
#if (__GNUC__ == 4) && (__GNUC_MINOR__ == 8) && (__GNUC_PATCHLEVEL__ >= 1)
#define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
#elif (__GNUC__ == 4) && (__GNUC_MINOR__ >= 9)
#define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
#elif (__GNUC__ > 4)
#define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
#endif
#endif
#
#if defined __clang_major__
#if (__clang_major__ == 3 && __clang_minor__ >= 5)
#define TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_
#elif (__clang_major__ > 3)
#define TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_
#endif
#if defined TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_
#define TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
#elif (__clang_major__ == 3 && __clang_minor__ == 4 && __clang_patchlevel__ >= 2)
#define TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
#endif
#endif
#
#if defined _MSC_VER
#if (_MSC_VER >= 1900)
#define TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
#endif
#endif
#if defined __clang__
#if (__clang_major__ > 2) || (__clang_major__ == 2) && (__clang_minor__ >= 9)
#define OPTIONAL_HAS_THIS_RVALUE_REFS 1
#else
#define OPTIONAL_HAS_THIS_RVALUE_REFS 0
#endif
#elif defined TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
#define OPTIONAL_HAS_THIS_RVALUE_REFS 1
#elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
#define OPTIONAL_HAS_THIS_RVALUE_REFS 1
#else
#define OPTIONAL_HAS_THIS_RVALUE_REFS 0
#endif
#if defined TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
#define OPTIONAL_HAS_CONSTEXPR_INIT_LIST 1
#define OPTIONAL_CONSTEXPR_INIT_LIST constexpr
#else
#define OPTIONAL_HAS_CONSTEXPR_INIT_LIST 0
#define OPTIONAL_CONSTEXPR_INIT_LIST
#endif
#if defined(TR2_OPTIONAL_MSVC_2015_AND_HIGHER___) || (defined TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_ && (defined __cplusplus) && (__cplusplus != 201103L))
#define OPTIONAL_HAS_MOVE_ACCESSORS 1
#else
#define OPTIONAL_HAS_MOVE_ACCESSORS 0
#endif
#// In C++11 constexpr implies const, so we need to make non-const members also non-constexpr
#if defined(TR2_OPTIONAL_MSVC_2015_AND_HIGHER___) || ((defined __cplusplus) && (__cplusplus == 201103L))
#define OPTIONAL_MUTABLE_CONSTEXPR
#else
#define OPTIONAL_MUTABLE_CONSTEXPR constexpr
#endif
#if defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
#pragma warning(push)
#pragma warning(disable : 4814)
#endif
namespace sol {
// BEGIN workaround for missing is_trivially_destructible
#if defined TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
// leave it: it is already there
#elif defined TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
// leave it: it is already there
#elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
// leave it: it is already there
#elif defined TR2_OPTIONAL_DISABLE_EMULATION_OF_TYPE_TRAITS
// leave it: the user doesn't want it
#else
template <typename T>
using is_trivially_destructible = ::std::has_trivial_destructor<T>;
#endif
// END workaround for missing is_trivially_destructible
#if (defined TR2_OPTIONAL_GCC_4_7_AND_HIGHER___)
// leave it; our metafunctions are already defined.
#elif defined TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
// leave it; our metafunctions are already defined.
#elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
// leave it: it is already there
#elif defined TR2_OPTIONAL_DISABLE_EMULATION_OF_TYPE_TRAITS
// leave it: the user doesn't want it
#else
// workaround for missing traits in GCC and CLANG
template <class T>
struct is_nothrow_move_constructible {
static constexprbool value = ::std::is_nothrow_constructible<T, T&&>::value;
};
template <class T, class U>
struct is_assignable {
template <class X, class Y>
static constexprbool has_assign(...) {
return false;
}
template <class X, class Y, size_t S = sizeof((::std::declval<X>() = ::std::declval<Y>(), true))>
// the comma operator is necessary for the cases where operator= returns void
static constexprbool has_assign(bool) {
return true;
}
static constexprbool value = has_assign<T, U>(true);
};
template <class T>
struct is_nothrow_move_assignable {
template <class X, bool has_any_move_assign>
struct has_nothrow_move_assign {
static constexprbool value = false;
};
template <class X>
struct has_nothrow_move_assign<X, true> {
static constexprbool value = noexcept(::std::declval<X&>() = ::std::declval<X&&>());
};
static constexprbool value = has_nothrow_move_assign<T, is_assignable<T&, T&&>::value>::value;
};
// end workaround
#endif
// 20.5.4, optional for object types
template <class T>
class optional;
// 20.5.5, optional for lvalue reference types
template <class T>
class optional<T&>;
// workaround: std utility functions aren't constexpr yet
template <class T>
inline constexpr T&& constexpr_forward(typename ::std::remove_reference<T>::type& t) noexcept {
return static_cast<T&&>(t);
}
template <class T>
inline constexpr T&& constexpr_forward(typename ::std::remove_reference<T>::type&& t) noexcept {
static_assert(!::std::is_lvalue_reference<T>::value, "!!");
return static_cast<T&&>(t);
}
template <class T>
inline constexpr typename ::std::remove_reference<T>::type&& constexpr_move(T&& t) noexcept {
return static_cast<typename ::std::remove_reference<T>::type&&>(t);
}
#if defined NDEBUG
#define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) (EXPR)
#else
#define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) ((CHECK) ? (EXPR) : ([] { assert(!#CHECK); }(), (EXPR)))
#endif
namespace detail_ {
// static_addressof: a constexpr version of addressof
template <typename T>
struct has_overloaded_addressof {
template <class X>
static constexpr bool has_overload(...) {
return false;
}
template <class X, size_t S = sizeof(::std::declval<X&>().operator&())>
static constexpr bool has_overload(bool) {
return true;
}
static constexpr bool value = has_overload<T>(true);
};
template <typename T, TR2_OPTIONAL_REQUIRES(!has_overloaded_addressof<T>)>
constexpr T* static_addressof(T& ref) {
return &ref;
}
template <typename T, TR2_OPTIONAL_REQUIRES(has_overloaded_addressof<T>)>
T* static_addressof(T& ref) {
return ::std::addressof(ref);
}
// the call to convert<A>(b) has return type A and converts b to type A iff b decltype(b) is implicitly convertible to A
template <class U>
constexpr U convert(U v) {
return v;
}
} // namespace detail_
constexpr struct trivial_init_t {
} trivial_init{};
// 20.5.7, Disengaged state indicator
struct nullopt_t {
struct init {};
constexpr explicit nullopt_t(init) {
}
};
constexpr nullopt_t nullopt{nullopt_t::init()};
// 20.5.8, class bad_optional_access
class bad_optional_access : public ::std::logic_error {
public:
explicit bad_optional_access(const ::std::string& what_arg)
: ::std::logic_error{what_arg} {
}
explicit bad_optional_access(const char* what_arg)
: ::std::logic_error{what_arg} {
}
};
template <class T>
struct alignas(T) optional_base {
char storage_[sizeof(T)];
bool init_;
constexpr optional_base() noexcept
: storage_(), init_(false){};
explicit optional_base(const T& v)
: storage_(), init_(true) {
new (&storage()) T(v);
}
explicit optional_base(T&& v)
: storage_(), init_(true) {
new (&storage()) T(constexpr_move(v));
}
template <class... Args>
explicit optional_base(in_place_t, Args&&... args)
: init_(true), storage_() {
new (&storage()) T(constexpr_forward<Args>(args)...);
}
template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)>
explicit optional_base(in_place_t, ::std::initializer_list<U> il, Args&&... args)
: init_(true), storage_() {
new (&storage()) T(il, constexpr_forward<Args>(args)...);
}
#if defined __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
T& storage() {
return *reinterpret_cast<T*>(&storage_[0]);
}
constexpr const T& storage() const {
return *reinterpret_cast<T const*>(&storage_[0]);
}
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif
~optional_base() {
if (init_) {
storage().T::~T();
}
}
};
#if defined __GNUC__ && !defined TR2_OPTIONAL_GCC_5_0_AND_HIGHER___
// Sorry, GCC 4.x; you're just a piece of shit
template <typename T>
using constexpr_optional_base = optional_base<T>;
#else
template <class T>
struct alignas(T) constexpr_optional_base {
char storage_[sizeof(T)];
bool init_;
constexpr constexpr_optional_base() noexcept
: storage_(), init_(false) {
}
explicit constexpr constexpr_optional_base(const T& v)
: storage_(), init_(true) {
new (&storage()) T(v);
}
explicit constexpr constexpr_optional_base(T&& v)
: storage_(), init_(true) {
new (&storage()) T(constexpr_move(v));
}
template <class... Args>
explicit constexpr constexpr_optional_base(in_place_t, Args&&... args)
: init_(true), storage_() {
new (&storage()) T(constexpr_forward<Args>(args)...);
}
template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)>
OPTIONAL_CONSTEXPR_INIT_LIST explicit constexpr_optional_base(in_place_t, ::std::initializer_list<U> il, Args&&... args)
: init_(true), storage_() {
new (&storage()) T(il, constexpr_forward<Args>(args)...);
}
#if defined __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
T& storage() {
return (*reinterpret_cast<T*>(&storage_[0]));
}
constexpr const T& storage() const {
return (*reinterpret_cast<T const*>(&storage_[0]));
}
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif
~constexpr_optional_base() = default;
};
#endif
template <class T>
using OptionalBase = typename ::std::conditional<
::std::is_trivially_destructible<T>::value,
constexpr_optional_base<typename ::std::remove_const<T>::type>,
optional_base<typename ::std::remove_const<T>::type>>::type;
template <class T>
class optional : private OptionalBase<T> {
static_assert(!::std::is_same<typename ::std::decay<T>::type, nullopt_t>::value, "bad T");
static_assert(!::std::is_same<typename ::std::decay<T>::type, in_place_t>::value, "bad T");
constexpr bool initialized() const noexcept {
return OptionalBase<T>::init_;
}
typename ::std::remove_const<T>::type* dataptr() {
return ::std::addressof(OptionalBase<T>::storage());
}
constexpr const T* dataptr() const {
return detail_::static_addressof(OptionalBase<T>::storage());
}
#if OPTIONAL_HAS_THIS_RVALUE_REFS == 1
constexpr const T& contained_val() const& {
return OptionalBase<T>::storage();
}
#if OPTIONAL_HAS_MOVE_ACCESSORS == 1
OPTIONAL_MUTABLE_CONSTEXPR T&& contained_val() && {
return ::std::move(OptionalBase<T>::storage());
}
OPTIONAL_MUTABLE_CONSTEXPR T& contained_val() & {
return OptionalBase<T>::storage();
}
#else
T& contained_val() & {
return OptionalBase<T>::storage();
}
T&& contained_val() && {
return ::std::move(OptionalBase<T>::storage());
}
#endif
#else
constexpr const T& contained_val() const {
return OptionalBase<T>::storage();
}
T& contained_val() {
return OptionalBase<T>::storage();
}
#endif
void clear() noexcept {
if (initialized())
dataptr()->T::~T();
OptionalBase<T>::init_ = false;
}
template <class... Args>
void initialize(Args&&... args) noexcept(noexcept(T(::std::forward<Args>(args)...))) {
assert(!OptionalBase<T>::init_);
::new (static_cast<void*>(dataptr())) T(::std::forward<Args>(args)...);
OptionalBase<T>::init_ = true;
}
template <class U, class... Args>
void initialize(::std::initializer_list<U> il, Args&&... args) noexcept(noexcept(T(il, ::std::forward<Args>(args)...))) {
assert(!OptionalBase<T>::init_);
::new (static_cast<void*>(dataptr())) T(il, ::std::forward<Args>(args)...);
OptionalBase<T>::init_ = true;
}
public:
typedef T value_type;
// 20.5.5.1, constructors
constexpr optional() noexcept
: OptionalBase<T>(){};
constexpr optional(nullopt_t) noexcept
: OptionalBase<T>(){};
optional(const optional& rhs)
: OptionalBase<T>() {
if (rhs.initialized()) {
::new (static_cast<void*>(dataptr())) T(*rhs);
OptionalBase<T>::init_ = true;
}
}
optional(const optional<T&>& rhs)
: optional() {
if (rhs) {
::new (static_cast<void*>(dataptr())) T(*rhs);
OptionalBase<T>::init_ = true;
}
}
optional(optional&& rhs) noexcept(::std::is_nothrow_move_constructible<T>::value)
: OptionalBase<T>() {
if (rhs.initialized()) {
::new (static_cast<void*>(dataptr())) T(::std::move(*rhs));
OptionalBase<T>::init_ = true;
}
}
constexpr optional(const T& v)
: OptionalBase<T>(v) {
}
constexpr optional(T&& v)
: OptionalBase<T>(constexpr_move(v)) {
}
template <class... Args>
explicit constexpr optional(in_place_t, Args&&... args)
: OptionalBase<T>(in_place, constexpr_forward<Args>(args)...) {
}
template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)>
OPTIONAL_CONSTEXPR_INIT_LIST explicit optional(in_place_t, ::std::initializer_list<U> il, Args&&... args)
: OptionalBase<T>(in_place, il, constexpr_forward<Args>(args)...) {
}
// 20.5.4.2, Destructor
~optional() = default;
// 20.5.4.3, assignment
optional& operator=(nullopt_t) noexcept {
clear();
return *this;
}
optional& operator=(const optional& rhs) {
if (initialized() == true && rhs.initialized() == false)
clear();
else if (initialized() == false && rhs.initialized() == true)
initialize(*rhs);
else if (initialized() == true && rhs.initialized() == true)
contained_val() = *rhs;
return *this;
}
optional& operator=(optional&& rhs) noexcept(::std::is_nothrow_move_assignable<T>::value&& ::std::is_nothrow_move_constructible<T>::value) {
if (initialized() == true && rhs.initialized() == false)
clear();
else if (initialized() == false && rhs.initialized() == true)
initialize(::std::move(*rhs));
else if (initialized() == true && rhs.initialized() == true)
contained_val() = ::std::move(*rhs);
return *this;
}
template <class U>
auto operator=(U&& v)
-> typename ::std::enable_if<
::std::is_same<typename ::std::decay<U>::type, T>::value,
optional&>::type {
if (initialized()) {
contained_val() = ::std::forward<U>(v);
}
else {
initialize(::std::forward<U>(v));
}
return *this;
}
template <class... Args>
void emplace(Args&&... args) {
clear();
initialize(::std::forward<Args>(args)...);
}
template <class U, class... Args>
void emplace(::std::initializer_list<U> il, Args&&... args) {
clear();
initialize<U, Args...>(il, ::std::forward<Args>(args)...);
}
// 20.5.4.4, Swap
void swap(optional<T>& rhs) noexcept(::std::is_nothrow_move_constructible<T>::value&& noexcept(swap(::std::declval<T&>(), ::std::declval<T&>()))) {
if (initialized() == true && rhs.initialized() == false) {
rhs.initialize(::std::move(**this));
clear();
}
else if (initialized() == false && rhs.initialized() == true) {
initialize(::std::move(*rhs));
rhs.clear();
}
else if (initialized() == true && rhs.initialized() == true) {
using ::std::swap;
swap(**this, *rhs);
}
}
// 20.5.4.5, Observers
explicit constexpr operator bool() const noexcept {
return initialized();
}
constexpr T const* operator->() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), dataptr());
}
#if OPTIONAL_HAS_MOVE_ACCESSORS == 1
OPTIONAL_MUTABLE_CONSTEXPR T* operator->() {
assert(initialized());
return dataptr();
}
constexpr T const& operator*() const& {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val());
}
OPTIONAL_MUTABLE_CONSTEXPR T& operator*() & {
assert(initialized());
return contained_val();
}
OPTIONAL_MUTABLE_CONSTEXPR T&& operator*() && {
assert(initialized());
return constexpr_move(contained_val());
}
constexpr T const& value() const& {
return initialized() ? contained_val()
#ifdef SOL_NO_EXCEPTIONS
// we can't abort here
// because there's no constexpr abort
: *static_cast<T*>(nullptr);
#else
: (throw bad_optional_access("bad optional access"), contained_val());
#endif
}
OPTIONAL_MUTABLE_CONSTEXPR T& value() & {
return initialized() ? contained_val()
#ifdef SOL_NO_EXCEPTIONS
: *static_cast<T*>(nullptr);
#else
: (throw bad_optional_access("bad optional access"), contained_val());
#endif
}
OPTIONAL_MUTABLE_CONSTEXPR T&& value() && {
return initialized() ? contained_val()
#ifdef SOL_NO_EXCEPTIONS
// we can't abort here
// because there's no constexpr abort
: std::move(*static_cast<T*>(nullptr));
#else
: (throw bad_optional_access("bad optional access"), contained_val());
#endif
}
#else
T* operator->() {
assert(initialized());
return dataptr();
}
constexpr T const& operator*() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val());
}
T& operator*() {
assert(initialized());
return contained_val();
}
constexpr T const& value() const {
return initialized() ? contained_val()
#ifdef SOL_NO_EXCEPTIONS
// we can't abort here
// because there's no constexpr abort
: *static_cast<T*>(nullptr);
#else
: (throw bad_optional_access("bad optional access"), contained_val());
#endif
}
T& value() {
return initialized() ? contained_val()
#ifdef SOL_NO_EXCEPTIONS
// we can abort here
// but the others are constexpr, so we can't...
: (std::abort(), *static_cast<T*>(nullptr));
#else
: (throw bad_optional_access("bad optional access"), contained_val());
#endif
}
#endif
#if OPTIONAL_HAS_THIS_RVALUE_REFS == 1
template <class V>
constexpr T value_or(V&& v) const& {
return *this ? **this : detail_::convert<T>(constexpr_forward<V>(v));
}
#if OPTIONAL_HAS_MOVE_ACCESSORS == 1
template <class V>
OPTIONAL_MUTABLE_CONSTEXPR T value_or(V&& v) && {
return *this ? constexpr_move(const_cast<optional<T>&>(*this).contained_val()) : detail_::convert<T>(constexpr_forward<V>(v));
}
#else
template <class V>
T value_or(V&& v) && {
return *this ? constexpr_move(const_cast<optional<T>&>(*this).contained_val()) : detail_::convert<T>(constexpr_forward<V>(v));
}
#endif
#else
template <class V>
constexpr T value_or(V&& v) const {
return *this ? **this : detail_::convert<T>(constexpr_forward<V>(v));
}
#endif
};
template <class T>
class optional<T&> {
static_assert(!::std::is_same<T, nullopt_t>::value, "bad T");
static_assert(!::std::is_same<T, in_place_t>::value, "bad T");
T* ref;
public:
// 20.5.5.1, construction/destruction
constexpr optional() noexcept
: ref(nullptr) {
}
constexpr optional(nullopt_t) noexcept
: ref(nullptr) {
}
constexpr optional(T& v) noexcept
: ref(detail_::static_addressof(v)) {
}
optional(T&&) = delete;
constexpr optional(const optional& rhs) noexcept
: ref(rhs.ref) {
}
explicit constexpr optional(in_place_t, T& v) noexcept
: ref(detail_::static_addressof(v)) {
}
explicit optional(in_place_t, T&&) = delete;
~optional() = default;
// 20.5.5.2, mutation
optional& operator=(nullopt_t) noexcept {
ref = nullptr;
return *this;
}
// optional& operator=(const optional& rhs) noexcept {
// ref = rhs.ref;
// return *this;
// }
// optional& operator=(optional&& rhs) noexcept {
// ref = rhs.ref;
// return *this;
// }
template <typename U>
auto operator=(U&& rhs) noexcept
-> typename ::std::enable_if<
::std::is_same<typename ::std::decay<U>::type, optional<T&>>::value,
optional&>::type {
ref = rhs.ref;
return *this;
}
template <typename U>
auto operator=(U&& rhs) noexcept
-> typename ::std::enable_if<
!::std::is_same<typename ::std::decay<U>::type, optional<T&>>::value,
optional&>::type = delete;
void emplace(T& v) noexcept {
ref = detail_::static_addressof(v);
}
void emplace(T&&) = delete;
void swap(optional<T&>& rhs) noexcept {
::std::swap(ref, rhs.ref);
}
// 20.5.5.3, observers
constexpr T* operator->() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, ref);
}
constexpr T& operator*() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, *ref);
}
constexpr T& value() const {
#ifdef SOL_NO_EXCEPTIONS
return *ref;
#else
return ref ? *ref
: (throw bad_optional_access("bad optional access"), *ref);
#endif // Exceptions
}
explicit constexpr operator bool() const noexcept {
return ref != nullptr;
}
template <typename V>
constexpr T& value_or(V&& v) const {
return *this ? **this : detail_::convert<T&>(constexpr_forward<V>(v));
}
};
template <class T>
class optional<T&&> {
static_assert(sizeof(T) == 0, "optional rvalue references disallowed");
};
// 20.5.8, Relational operators
template <class T>
constexpr bool operator==(const optional<T>& x, const optional<T>& y) {
return bool(x) != bool(y) ? false : bool(x) == false ? true : *x == *y;
}
template <class T>
constexpr bool operator!=(const optional<T>& x, const optional<T>& y) {
return !(x == y);
}
template <class T>
constexpr bool operator<(const optional<T>& x, const optional<T>& y) {
return (!y) ? false : (!x) ? true : *x < *y;
}
template <class T>
constexpr bool operator>(const optional<T>& x, const optional<T>& y) {
return (y < x);
}
template <class T>
constexpr bool operator<=(const optional<T>& x, const optional<T>& y) {
return !(y < x);
}
template <class T>
constexpr bool operator>=(const optional<T>& x, const optional<T>& y) {
return !(x < y);
}
// 20.5.9, Comparison with nullopt
template <class T>
constexpr bool operator==(const optional<T>& x, nullopt_t) noexcept {
return (!x);
}
template <class T>
constexpr bool operator==(nullopt_t, const optional<T>& x) noexcept {
return (!x);
}
template <class T>
constexpr bool operator!=(const optional<T>& x, nullopt_t) noexcept {
return bool(x);
}
template <class T>
constexpr bool operator!=(nullopt_t, const optional<T>& x) noexcept {
return bool(x);
}
template <class T>
constexpr bool operator<(const optional<T>&, nullopt_t) noexcept {
return false;
}
template <class T>
constexpr bool operator<(nullopt_t, const optional<T>& x) noexcept {
return bool(x);
}
template <class T>
constexpr bool operator<=(const optional<T>& x, nullopt_t) noexcept {
return (!x);
}
template <class T>
constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept {
return true;
}
template <class T>
constexpr bool operator>(const optional<T>& x, nullopt_t) noexcept {
return bool(x);
}
template <class T>
constexpr bool operator>(nullopt_t, const optional<T>&) noexcept {
return false;
}
template <class T>
constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept {
return true;
}
template <class T>
constexpr bool operator>=(nullopt_t, const optional<T>& x) noexcept {
return (!x);
}
// 20.5.10, Comparison with T
template <class T>
constexpr bool operator==(const optional<T>& x, const T& v) {
return bool(x) ? *x == v : false;
}
template <class T>
constexpr bool operator==(const T& v, const optional<T>& x) {
return bool(x) ? v == *x : false;
}
template <class T>
constexpr bool operator!=(const optional<T>& x, const T& v) {
return bool(x) ? *x != v : true;
}
template <class T>
constexpr bool operator!=(const T& v, const optional<T>& x) {
return bool(x) ? v != *x : true;
}
template <class T>
constexpr bool operator<(const optional<T>& x, const T& v) {
return bool(x) ? *x < v : true;
}
template <class T>
constexpr bool operator>(const T& v, const optional<T>& x) {
return bool(x) ? v > *x : true;
}
template <class T>
constexpr bool operator>(const optional<T>& x, const T& v) {
return bool(x) ? *x > v : false;
}
template <class T>
constexpr bool operator<(const T& v, const optional<T>& x) {
return bool(x) ? v < *x : false;
}
template <class T>
constexpr bool operator>=(const optional<T>& x, const T& v) {
return bool(x) ? *x >= v : false;
}
template <class T>
constexpr bool operator<=(const T& v, const optional<T>& x) {
return bool(x) ? v <= *x : false;
}
template <class T>
constexpr bool operator<=(const optional<T>& x, const T& v) {
return bool(x) ? *x <= v : true;
}
template <class T>
constexpr bool operator>=(const T& v, const optional<T>& x) {
return bool(x) ? v >= *x : true;
}
// Comparison of optional<T&> with T
template <class T>
constexpr bool operator==(const optional<T&>& x, const T& v) {
return bool(x) ? *x == v : false;
}
template <class T>
constexpr bool operator==(const T& v, const optional<T&>& x) {
return bool(x) ? v == *x : false;
}
template <class T>
constexpr bool operator!=(const optional<T&>& x, const T& v) {
return bool(x) ? *x != v : true;
}
template <class T>
constexpr bool operator!=(const T& v, const optional<T&>& x) {
return bool(x) ? v != *x : true;
}
template <class T>
constexpr bool operator<(const optional<T&>& x, const T& v) {
return bool(x) ? *x < v : true;
}
template <class T>
constexpr bool operator>(const T& v, const optional<T&>& x) {
return bool(x) ? v > *x : true;
}
template <class T>
constexpr bool operator>(const optional<T&>& x, const T& v) {
return bool(x) ? *x > v : false;
}
template <class T>
constexpr bool operator<(const T& v, const optional<T&>& x) {
return bool(x) ? v < *x : false;
}
template <class T>
constexpr bool operator>=(const optional<T&>& x, const T& v) {
return bool(x) ? *x >= v : false;
}
template <class T>
constexpr bool operator<=(const T& v, const optional<T&>& x) {
return bool(x) ? v <= *x : false;
}
template <class T>
constexpr bool operator<=(const optional<T&>& x, const T& v) {
return bool(x) ? *x <= v : true;
}
template <class T>
constexpr bool operator>=(const T& v, const optional<T&>& x) {
return bool(x) ? v >= *x : true;
}
// Comparison of optional<T const&> with T
template <class T>
constexpr bool operator==(const optional<const T&>& x, const T& v) {
return bool(x) ? *x == v : false;
}
template <class T>
constexpr bool operator==(const T& v, const optional<const T&>& x) {
return bool(x) ? v == *x : false;
}
template <class T>
constexpr bool operator!=(const optional<const T&>& x, const T& v) {
return bool(x) ? *x != v : true;
}
template <class T>
constexpr bool operator!=(const T& v, const optional<const T&>& x) {
return bool(x) ? v != *x : true;
}
template <class T>
constexpr bool operator<(const optional<const T&>& x, const T& v) {
return bool(x) ? *x < v : true;
}
template <class T>
constexpr bool operator>(const T& v, const optional<const T&>& x) {
return bool(x) ? v > *x : true;
}
template <class T>
constexpr bool operator>(const optional<const T&>& x, const T& v) {
return bool(x) ? *x > v : false;
}
template <class T>
constexpr bool operator<(const T& v, const optional<const T&>& x) {
return bool(x) ? v < *x : false;
}
template <class T>
constexpr bool operator>=(const optional<const T&>& x, const T& v) {
return bool(x) ? *x >= v : false;
}
template <class T>
constexpr bool operator<=(const T& v, const optional<const T&>& x) {
return bool(x) ? v <= *x : false;
}
template <class T>
constexpr bool operator<=(const optional<const T&>& x, const T& v) {
return bool(x) ? *x <= v : true;
}
template <class T>
constexpr bool operator>=(const T& v, const optional<const T&>& x) {
return bool(x) ? v >= *x : true;
}
// 20.5.12, Specialized algorithms
template <class T>
void swap(optional<T>& x, optional<T>& y) noexcept(noexcept(x.swap(y))) {
x.swap(y);
}
template <class T>
constexpr optional<typename ::std::decay<T>::type> make_optional(T&& v) {
return optional<typename ::std::decay<T>::type>(constexpr_forward<T>(v));
}
template <class X>
constexpr optional<X&> make_optional(::std::reference_wrapper<X> v) {
return optional<X&>(v.get());
}
} // namespace sol
namespace std {
template <typename T>
struct hash<sol::optional<T>> {
typedef typename hash<T>::result_type result_type;
typedef sol::optional<T> argument_type;
constexpr result_type operator()(argument_type const& arg) const {
return arg ? ::std::hash<T>{}(*arg) : result_type{};
}
};
template <typename T>
struct hash<sol::optional<T&>> {
typedef typename hash<T>::result_type result_type;
typedef sol::optional<T&> argument_type;
constexpr result_type operator()(argument_type const& arg) const {
return arg ? ::std::hash<T>{}(*arg) : result_type{};
}
};
} // namespace std
#if defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
#pragma warning(pop)
#endif
#undef TR2_OPTIONAL_REQUIRES
#undef TR2_OPTIONAL_ASSERTED_EXPRESSION
// end of sol/optional_implementation.hpp
#endif // Boost vs. Better optional
namespace sol {
#if defined(SOL_USE_BOOST) && SOL_USE_BOOST
template <typename T>
using optional = boost::optional<T>;
using nullopt_t = boost::none_t;
const nullopt_t nullopt = boost::none;
#endif // Boost vs. Better optional
namespace meta {
template <typename T>
struct is_optional : std::false_type {};
template <typename T>
struct is_optional<optional<T>> : std::true_type {};
} // namespace meta
} // namespace sol
// end of sol/optional.hpp
// beginning of sol/forward_detail.hpp
namespace sol {
namespace detail {
const bool default_safe_function_calls =
#if defined(SOL_SAFE_FUNCTION_CALLS) && SOL_SAFE_FUNCTION_CALLS
true;
#else
false;
#endif
} // namespace detail
namespace meta {
namespace meta_detail {
}
} // namespace meta::meta_detail
namespace stack {
namespace stack_detail {
template <typename T>
struct undefined_metatable;
}
} // namespace stack::stack_detail
namespace usertype_detail {
template <typename T, typename Regs, typename Fx>
void insert_default_registrations(Regs& l, int& index, Fx&& fx);
template <typename T, typename Regs, meta::enable<meta::neg<std::is_pointer<T>>, std::is_destructible<T>> = meta::enabler>
void make_destructor(Regs& l, int& index);
template <typename T, typename Regs, meta::disable<meta::neg<std::is_pointer<T>>, std::is_destructible<T>> = meta::enabler>
void make_destructor(Regs& l, int& index);
} // namespace usertype_detail
} // namespace sol
// end of sol/forward_detail.hpp
// beginning of sol/raii.hpp
namespace sol {
namespace detail {
struct default_construct {
template <typename T, typename... Args>
static void construct(T&& obj, Args&&... args) {
typedef meta::unqualified_t<T> Tu;
std::allocator<Tu> alloc{};
std::allocator_traits<std::allocator<Tu>>::construct(alloc, obj, std::forward<Args>(args)...);
}
template <typename T, typename... Args>
void operator()(T&& obj, Args&&... args) const {
construct(std::forward<T>(obj), std::forward<Args>(args)...);
}
};
struct default_destruct {
template <typename T>
static void destroy(T&& obj) {
std::allocator<meta::unqualified_t<T>> alloc{};
alloc.destroy(obj);
}
template <typename T>
void operator()(T&& obj) const {
destroy(std::forward<T>(obj));
}
};
struct deleter {
template <typename T>
void operator()(T* p) const {
delete p;
}
};
struct state_deleter {
void operator()(lua_State* L) const {
lua_close(L);
}
};
template <typename T, typename Dx, typename... Args>
inline std::unique_ptr<T, Dx> make_unique_deleter(Args&&... args) {
return std::unique_ptr<T, Dx>(new T(std::forward<Args>(args)...));
}
template <typename Tag, typename T>
struct tagged {
T value;
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, tagged>> = meta::enabler>
tagged(Arg&& arg, Args&&... args)
: value(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
};
} // namespace detail
template <typename... Args>
struct constructor_list {};
template <typename... Args>
using constructors = constructor_list<Args...>;
const auto default_constructor = constructors<types<>>{};
struct no_construction {};
const auto no_constructor = no_construction{};
struct call_construction {};
const auto call_constructor = call_construction{};
template <typename... Functions>
struct constructor_wrapper {
std::tuple<Functions...> functions;
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, constructor_wrapper>> = meta::enabler>
constructor_wrapper(Arg&& arg, Args&&... args)
: functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
};
template <typename... Functions>
inline auto initializers(Functions&&... functions) {
return constructor_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
}
template <typename... Functions>
struct factory_wrapper {
std::tuple<Functions...> functions;
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, factory_wrapper>> = meta::enabler>
factory_wrapper(Arg&& arg, Args&&... args)
: functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
};
template <typename... Functions>
inline auto factories(Functions&&... functions) {
return factory_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
}
template <typename Function>
struct destructor_wrapper {
Function fx;
destructor_wrapper(Function f)
: fx(std::move(f)) {
}
};
template <>
struct destructor_wrapper<void> {};
const destructor_wrapper<void> default_destructor{};
template <typename Fx>
inline auto destructor(Fx&& fx) {
return destructor_wrapper<std::decay_t<Fx>>(std::forward<Fx>(fx));
}
} // namespace sol
// end of sol/raii.hpp
// beginning of sol/filters.hpp
#include <array>
namespace sol {
namespace detail {
struct filter_base_tag {};
} // namespace detail
template <int Target, int... In>
struct static_stack_dependencies : detail::filter_base_tag {};
typedef static_stack_dependencies<-1, 1> self_dependency;
template <int... In>
struct returns_self_with : detail::filter_base_tag {};
typedef returns_self_with<> returns_self;
struct stack_dependencies : detail::filter_base_tag {
int target;
std::array<int, 64> stack_indices;
std::size_t len;
template <typename... Args>
stack_dependencies(int stack_target, Args&&... args)
: target(stack_target), stack_indices(), len(sizeof...(Args)) {
std::size_t i = 0;
(void)detail::swallow{int(), (stack_indices[i++] = static_cast<int>(std::forward<Args>(args)), int())...};
}
int& operator[](std::size_t i) {
return stack_indices[i];
}
const int& operator[](std::size_t i) const {
return stack_indices[i];
}
std::size_t size() const {
return len;
}
};
template <typename F, typename... Filters>
struct filter_wrapper {
typedef std::index_sequence_for<Filters...> indices;
F value;
std::tuple<Filters...> filters;
template <typename Fx, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Fx>, filter_wrapper>>> = meta::enabler>
filter_wrapper(Fx&& fx, Args&&... args)
: value(std::forward<Fx>(fx)), filters(std::forward<Args>(args)...) {
}
filter_wrapper(const filter_wrapper&) = default;
filter_wrapper& operator=(const filter_wrapper&) = default;
filter_wrapper(filter_wrapper&&) = default;
filter_wrapper& operator=(filter_wrapper&&) = default;
};
template <typename F, typename... Args>
auto filters(F&& f, Args&&... args) {
return filter_wrapper<std::decay_t<F>, std::decay_t<Args>...>(std::forward<F>(f), std::forward<Args>(args)...);
}
} // namespace sol
// end of sol/filters.hpp
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
#ifdef SOL_STD_VARIANT
#include <variant>
#endif
#endif // C++17
#ifdef SOL_USE_BOOST
#include <boost/unordered_map.hpp>
#else
#include <unordered_map>
#endif // Using Boost
namespace sol {
namespace usertype_detail {
#if defined(SOL_USE_BOOST)
#if defined(SOL_CXX17_FEATURES)
template <typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<>>
using map_t = boost::unordered_map<K, V, H, E>;
#else
template <typename K, typename V, typename H = boost::hash<K>, typename E = std::equal_to<>>
using map_t = boost::unordered_map<K, V, H, E>;
#endif // C++17 or not, WITH boost
#else
template <typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<>>
using map_t = std::unordered_map<K, V, H, E>;
#endif // Boost map target
}
namespace detail {
#ifdef SOL_NOEXCEPT_FUNCTION_TYPE
typedef int(*lua_CFunction_noexcept)(lua_State* L) noexcept;
#else
typedef int(*lua_CFunction_noexcept)(lua_State* L);
#endif // noexcept function type for lua_CFunction
template <typename T>
struct unique_usertype {};
template <typename T>
struct implicit_wrapper {
T& item;
implicit_wrapper(T* item)
: item(*item) {
}
implicit_wrapper(T& item)
: item(item) {
}
operator T&() {
return item;
}
operator T*() {
return std::addressof(item);
}
};
struct unchecked_t {};
const unchecked_t unchecked = unchecked_t{};
struct yield_tag_t {};
const yield_tag_t yield_tag = yield_tag_t{};
} // namespace detail
struct lua_nil_t {};
const lua_nil_t lua_nil{};
inline bool operator==(lua_nil_t, lua_nil_t) {
return true;
}
inline bool operator!=(lua_nil_t, lua_nil_t) {
return false;
}
typedef lua_nil_t nil_t;
#if !defined(SOL_NO_NIL)
const nil_t nil{};
#endif
struct metatable_t {};
const metatable_t metatable_key = {};
struct env_t {};
const env_t env_key = {};
struct no_metatable_t {};
const no_metatable_t no_metatable = {};
template <typename T>
struct yielding_t {
T func;
yielding_t() = default;
yielding_t(const yielding_t&) = default;
yielding_t(yielding_t&&) = default;
yielding_t& operator=(const yielding_t&) = default;
yielding_t& operator=(yielding_t&&) = default;
template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, yielding_t>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
yielding_t(Arg&& arg)
: func(std::forward<Arg>(arg)) {
}
template <typename Arg0, typename Arg1, typename... Args>
yielding_t(Arg0&& arg0, Arg1&& arg1, Args&&... args)
: func(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
}
};
template <typename F>
inline yielding_t<std::decay_t<F>> yielding(F&& f) {
return yielding_t<std::decay_t<F>>(std::forward<F>(f));
}
typedef std::remove_pointer_t<lua_CFunction> lua_CFunction_ref;
template <typename T>
struct unique_usertype_traits {
typedef T type;
typedef T actual_type;
static const bool value = false;
template <typename U>
static bool is_null(U&&) {
return false;
}
template <typename U>
static auto get(U&& value) {
return std::addressof(detail::deref(value));
}
};
template <typename T>
struct unique_usertype_traits<std::shared_ptr<T>> {
typedef T type;
typedef std::shared_ptr<T> actual_type;
static const bool value = true;
static bool is_null(const actual_type& p) {
return p == nullptr;
}
static type* get(const actual_type& p) {
return p.get();
}
};
template <typename T, typename D>
struct unique_usertype_traits<std::unique_ptr<T, D>> {
typedef T type;
typedef std::unique_ptr<T, D> actual_type;
static const bool value = true;
static bool is_null(const actual_type& p) {
return p == nullptr;
}
static type* get(const actual_type& p) {
return p.get();
}
};
template <typename T>
struct non_null {};
template <typename... Args>
struct function_sig {};
struct upvalue_index {
int index;
upvalue_index(int idx)
: index(lua_upvalueindex(idx)) {
}
operator int() const {
return index;
}
};
struct raw_index {
int index;
raw_index(int i)
: index(i) {
}
operator int() const {
return index;
}
};
struct absolute_index {
int index;
absolute_index(lua_State* L, int idx)
: index(lua_absindex(L, idx)) {
}
operator int() const {
return index;
}
};
struct ref_index {
int index;
ref_index(int idx)
: index(idx) {
}
operator int() const {
return index;
}
};
struct stack_count {
int count;
stack_count(int cnt)
: count(cnt) {
}
};
struct lightuserdata_value {
void* value;
lightuserdata_value(void* data)
: value(data) {
}
operator void*() const {
return value;
}
};
struct userdata_value {
void* value;
userdata_value(void* data)
: value(data) {
}
operator void*() const {
return value;
}
};
template <typename L>
struct light {
L* value;
light(L& x)
: value(std::addressof(x)) {
}
light(L* x)
: value(x) {
}
light(void* x)
: value(static_cast<L*>(x)) {
}
operator L*() const {
return value;
}
operator L&() const {
return *value;
}
};
template <typename T>
auto make_light(T& l) {
typedef meta::unwrapped_t<std::remove_pointer_t<std::remove_pointer_t<T>>> L;
return light<L>(l);
}
template <typename U>
struct user {
U value;
user(U x)
: value(std::forward<U>(x)) {
}
operator std::add_pointer_t<std::remove_reference_t<U>>() {
return std::addressof(value);
}
operator std::add_lvalue_reference_t<U>() {
return value;
}
operator std::add_const_t<std::add_lvalue_reference_t<U>>&() const {
return value;
}
};
template <typename T>
auto make_user(T&& u) {
typedef meta::unwrapped_t<meta::unqualified_t<T>> U;
return user<U>(std::forward<T>(u));
}
template <typename T>
struct metatable_registry_key {
T key;
metatable_registry_key(T key)
: key(std::forward<T>(key)) {
}
};
template <typename T>
auto meta_registry_key(T&& key) {
typedef meta::unqualified_t<T> K;
return metatable_registry_key<K>(std::forward<T>(key));
}
template <typename... Upvalues>
struct closure {
lua_CFunction c_function;
std::tuple<Upvalues...> upvalues;
closure(lua_CFunction f, Upvalues... targetupvalues)
: c_function(f), upvalues(std::forward<Upvalues>(targetupvalues)...) {
}
};
template <>
struct closure<> {
lua_CFunction c_function;
int upvalues;
closure(lua_CFunction f, int upvalue_count = 0)
: c_function(f), upvalues(upvalue_count) {
}
};
typedef closure<> c_closure;
template <typename... Args>
closure<Args...> make_closure(lua_CFunction f, Args&&... args) {
return closure<Args...>(f, std::forward<Args>(args)...);
}
template <typename Sig, typename... Ps>
struct function_arguments {
std::tuple<Ps...> arguments;
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, function_arguments>> = meta::enabler>
function_arguments(Arg&& arg, Args&&... args)
: arguments(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
};
template <typename Sig = function_sig<>, typename... Args>
auto as_function(Args&&... args) {
return function_arguments<Sig, std::decay_t<Args>...>(std::forward<Args>(args)...);
}
template <typename Sig = function_sig<>, typename... Args>
auto as_function_reference(Args&&... args) {
return function_arguments<Sig, Args...>(std::forward<Args>(args)...);
}
template <typename T>
struct as_table_t {
T source;
as_table_t() = default;
as_table_t(const as_table_t&) = default;
as_table_t(as_table_t&&) = default;
as_table_t& operator=(const as_table_t&) = default;
as_table_t& operator=(as_table_t&&) = default;
template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, as_table_t>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
as_table_t(Arg&& arg)
: source(std::forward<Arg>(arg)) {
}
template <typename Arg0, typename Arg1, typename... Args>
as_table_t(Arg0&& arg0, Arg1&& arg1, Args&&... args)
: source(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
}
operator std::add_lvalue_reference_t<T>() {
return source;
}
};
template <typename T>
struct nested {
T source;
nested() = default;
nested(const nested&) = default;
nested(nested&&) = default;
nested& operator=(const nested&) = default;
nested& operator=(nested&&) = default;
template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, nested>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
nested(Arg&& arg)
: source(std::forward<Arg>(arg)) {
}
template <typename Arg0, typename Arg1, typename... Args>
nested(Arg0&& arg0, Arg1&& arg1, Args&&... args)
: source(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
}
operator std::add_lvalue_reference_t<T>() {
return source;
}
};
template <typename T>
as_table_t<T> as_table_ref(T&& container) {
return as_table_t<T>(std::forward<T>(container));
}
template <typename T>
as_table_t<meta::unqualified_t<T>> as_table(T&& container) {
return as_table_t<meta::unqualified_t<T>>(std::forward<T>(container));
}
template <typename T>
nested<T> as_nested_ref(T&& container) {
return nested<T>(std::forward<T>(container));
}
template <typename T>
nested<meta::unqualified_t<T>> as_nested(T&& container) {
return nested<meta::unqualified_t<T>>(std::forward<T>(container));
}
struct this_state {
lua_State* L;
this_state(lua_State* Ls)
: L(Ls) {
}
operator lua_State*() const noexcept {
return lua_state();
}
lua_State* operator->() const noexcept {
return lua_state();
}
lua_State* lua_state() const noexcept {
return L;
}
};
struct this_main_state {
lua_State* L;
this_main_state(lua_State* Ls)
: L(Ls) {
}
operator lua_State*() const noexcept {
return lua_state();
}
lua_State* operator->() const noexcept {
return lua_state();
}
lua_State* lua_state() const noexcept {
return L;
}
};
struct new_table {
int sequence_hint = 0;
int map_hint = 0;
new_table() = default;
new_table(const new_table&) = default;
new_table(new_table&&) = default;
new_table& operator=(const new_table&) = default;
new_table& operator=(new_table&&) = default;
new_table(int sequence_hint, int map_hint = 0)
: sequence_hint(sequence_hint), map_hint(map_hint) {
}
};
enum class lib : char {
// print, assert, and other base functions
base,
// require and other package functions
package,
// coroutine functions and utilities
coroutine,
// string library
string,
// functionality from the OS
os,
// all things math
math,
// the table manipulator and observer functions
table,
// the debug library
debug,
// the bit library: different based on which you're using
bit32,
// input/output library
io,
// LuaJIT only
ffi,
// LuaJIT only
jit,
// library for handling utf8: new to Lua
utf8,
// do not use
count
};
enum class call_syntax {
dot = 0,
colon = 1
};
enum class load_mode {
any = 0,
text = 1,
binary = 2,
};
enum class call_status : int {
ok = LUA_OK,
yielded = LUA_YIELD,
runtime = LUA_ERRRUN,
memory = LUA_ERRMEM,
handler = LUA_ERRERR,
gc = LUA_ERRGCMM,
syntax = LUA_ERRSYNTAX,
file = LUA_ERRFILE,
};
enum class thread_status : int {
ok = LUA_OK,
yielded = LUA_YIELD,
runtime = LUA_ERRRUN,
memory = LUA_ERRMEM,
gc = LUA_ERRGCMM,
handler = LUA_ERRERR,
dead = -1,
};
enum class load_status : int {
ok = LUA_OK,
syntax = LUA_ERRSYNTAX,
memory = LUA_ERRMEM,
gc = LUA_ERRGCMM,
file = LUA_ERRFILE,
};
enum class type : int {
none = LUA_TNONE,
lua_nil = LUA_TNIL,
#if !defined(SOL_NO_NIL)
nil = lua_nil,
#endif // Objective C/C++ Keyword that's found in OSX SDK and OBJC -- check for all forms to protect
string = LUA_TSTRING,
number = LUA_TNUMBER,
thread = LUA_TTHREAD,
boolean = LUA_TBOOLEAN,
function = LUA_TFUNCTION,
userdata = LUA_TUSERDATA,
lightuserdata = LUA_TLIGHTUSERDATA,
table = LUA_TTABLE,
poly = -0xFFFF
};
inline const std::string& to_string(call_status c) {
static const std::array<std::string, 10> names{ {
"ok",
"yielded",
"runtime",
"memory",
"handler",
"gc",
"syntax",
"file",
"CRITICAL_EXCEPTION_FAILURE",
"CRITICAL_INDETERMINATE_STATE_FAILURE"
} };
switch (c) {
case call_status::ok:
return names[0];
case call_status::yielded:
return names[1];
case call_status::runtime:
return names[2];
case call_status::memory:
return names[3];
case call_status::handler:
return names[4];
case call_status::gc:
return names[5];
case call_status::syntax:
return names[6];
case call_status::file:
return names[7];
}
if (static_cast<std::ptrdiff_t>(c) == -1) {
// One of the many cases where a critical exception error has occurred
return names[8];
}
return names[9];
}
inline bool is_indeterminate_call_failure(call_status c) {
switch (c) {
case call_status::ok:
case call_status::yielded:
case call_status::runtime:
case call_status::memory:
case call_status::handler:
case call_status::gc:
case call_status::syntax:
case call_status::file:
return false;
}
return true;
}
inline const std::string& to_string(load_status c) {
static const std::array<std::string, 7> names{ {
"ok",
"memory",
"gc",
"syntax",
"file",
"CRITICAL_EXCEPTION_FAILURE",
"CRITICAL_INDETERMINATE_STATE_FAILURE"
} };
switch (c) {
case load_status::ok:
return names[0];
case load_status::memory:
return names[1];
case load_status::gc:
return names[2];
case load_status::syntax:
return names[3];
case load_status::file:
return names[4];
}
if (static_cast<int>(c) == -1) {
// One of the many cases where a critical exception error has occurred
return names[5];
}
return names[6];
}
inline const std::string& to_string(load_mode c) {
static const std::array<std::string, 3> names{ {
"bt",
"t",
"b",
} };
return names[static_cast<std::size_t>(c)];
}
enum class meta_function {
construct,
index,
new_index,
mode,
call,
call_function = call,
metatable,
to_string,
length,
unary_minus,
addition,
subtraction,
multiplication,
division,
modulus,
power_of,
involution = power_of,
concatenation,
equal_to,
less_than,
less_than_or_equal_to,
garbage_collect,
floor_division,
bitwise_left_shift,
bitwise_right_shift,
bitwise_not,
bitwise_and,
bitwise_or,
bitwise_xor,
pairs,
ipairs,
next,
type,
type_info,
};
typedef meta_function meta_method;
inline const std::array<std::string, 32>& meta_function_names() {
static const std::array<std::string, 32> names = { { "new",
"__index",
"__newindex",
"__mode",
"__call",
"__mt",
"__tostring",
"__len",
"__unm",
"__add",
"__sub",
"__mul",
"__div",
"__mod",
"__pow",
"__concat",
"__eq",
"__lt",
"__le",
"__gc",
"__idiv",
"__shl",
"__shr",
"__bnot",
"__band",
"__bor",
"__bxor",
"__pairs",
"__ipairs",
"next",
"__type",
"__typeinfo"
} };
return names;
}
inline const std::string& to_string(meta_function mf) {
return meta_function_names()[static_cast<int>(mf)];
}
inline type type_of(lua_State* L, int index) {
return static_cast<type>(lua_type(L, index));
}
inline std::string type_name(lua_State* L, type t) {
return lua_typename(L, static_cast<int>(t));
}
namespace detail {
template <typename T>
struct is_initializer_list : std::false_type {};
template <typename T>
struct is_initializer_list<std::initializer_list<T>> : std::true_type {};
template <typename T, typename C = void>
struct is_container : std::false_type {};
template <typename T>
struct is_container<std::initializer_list<T>> : std::false_type {};
template <typename T>
struct is_container<T, std::enable_if_t<meta::is_string_like<meta::unqualified_t<T>>::value>> : std::false_type {};
template <typename T>
struct is_container<T, std::enable_if_t<meta::all<
std::is_array<meta::unqualified_t<T>>
, meta::neg<meta::any_same<std::remove_all_extents_t<meta::unqualified_t<T>>, char, wchar_t, char16_t, char32_t>>
>::value
>> : std::true_type {};
template <typename T>
struct is_container<T, std::enable_if_t<meta::all<
meta::has_begin_end<meta::unqualified_t<T>>
, meta::neg<is_initializer_list<meta::unqualified_t<T>>>
, meta::neg<meta::is_string_like<meta::unqualified_t<T>>>
>::value
>> : std::true_type {};
} // namespace detail
template <typename T>
struct is_container : detail::is_container<T> {};
template <typename T>
struct is_to_stringable : meta::any<meta::supports_to_string_member<meta::unqualified_t<T>>, meta::supports_adl_to_string<meta::unqualified_t<T>>, meta::supports_ostream_op<meta::unqualified_t<T>>> {};
namespace detail {
template <typename T, typename = void>
struct lua_type_of : std::integral_constant<type, type::userdata> {};
template <typename C, typename T, typename A>
struct lua_type_of<std::basic_string<C, T, A>> : std::integral_constant<type, type::string> {};
template <typename C, typename T>
struct lua_type_of<basic_string_view<C, T>> : std::integral_constant<type, type::string> {};
template <std::size_t N>
struct lua_type_of<char[N]> : std::integral_constant<type, type::string> {};
template <std::size_t N>
struct lua_type_of<wchar_t[N]> : std::integral_constant<type, type::string> {};
template <std::size_t N>
struct lua_type_of<char16_t[N]> : std::integral_constant<type, type::string> {};
template <std::size_t N>
struct lua_type_of<char32_t[N]> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<char> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<wchar_t> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<char16_t> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<char32_t> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<const char*> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<const char16_t*> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<const char32_t*> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<bool> : std::integral_constant<type, type::boolean> {};
template <>
struct lua_type_of<lua_nil_t> : std::integral_constant<type, type::lua_nil> {};
template <>
struct lua_type_of<nullopt_t> : std::integral_constant<type, type::lua_nil> {};
template <>
struct lua_type_of<std::nullptr_t> : std::integral_constant<type, type::lua_nil> {};
template <>
struct lua_type_of<error> : std::integral_constant<type, type::string> {};
template <bool b, typename Base>
struct lua_type_of<basic_table_core<b, Base>> : std::integral_constant<type, type::table> {};
template <>
struct lua_type_of<metatable_t> : std::integral_constant<type, type::table> {};
template <typename B>
struct lua_type_of<basic_environment<B>> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<env_t> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<new_table> : std::integral_constant<type, type::table> {};
template <typename T>
struct lua_type_of<as_table_t<T>> : std::integral_constant<type, type::table> {};
template <typename T>
struct lua_type_of<std::initializer_list<T>> : std::integral_constant<type, type::table> {};
template <bool b>
struct lua_type_of<basic_reference<b>> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<stack_reference> : std::integral_constant<type, type::poly> {};
template <typename Base>
struct lua_type_of<basic_object<Base>> : std::integral_constant<type, type::poly> {};
template <typename... Args>
struct lua_type_of<std::tuple<Args...>> : std::integral_constant<type, type::poly> {};
template <typename A, typename B>
struct lua_type_of<std::pair<A, B>> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<void*> : std::integral_constant<type, type::lightuserdata> {};
template <>
struct lua_type_of<lightuserdata_value> : std::integral_constant<type, type::lightuserdata> {};
template <>
struct lua_type_of<userdata_value> : std::integral_constant<type, type::userdata> {};
template <typename T>
struct lua_type_of<light<T>> : std::integral_constant<type, type::lightuserdata> {};
template <typename T>
struct lua_type_of<user<T>> : std::integral_constant<type, type::userdata> {};
template <typename Base>
struct lua_type_of<basic_lightuserdata<Base>> : std::integral_constant<type, type::lightuserdata> {};
template <typename Base>
struct lua_type_of<basic_userdata<Base>> : std::integral_constant<type, type::userdata> {};
template <>
struct lua_type_of<lua_CFunction> : std::integral_constant<type, type::function> {};
template <>
struct lua_type_of<std::remove_pointer_t<lua_CFunction>> : std::integral_constant<type, type::function> {};
template <typename Base, bool aligned>
struct lua_type_of<basic_function<Base, aligned>> : std::integral_constant<type, type::function> {};
template <typename Base, bool aligned, typename Handler>
struct lua_type_of<basic_protected_function<Base, aligned, Handler>> : std::integral_constant<type, type::function> {};
template <typename Base>
struct lua_type_of<basic_coroutine<Base>> : std::integral_constant<type, type::function> {};
template <typename Base>
struct lua_type_of<basic_thread<Base>> : std::integral_constant<type, type::thread> {};
template <typename Signature>
struct lua_type_of<std::function<Signature>> : std::integral_constant<type, type::function> {};
template <typename T>
struct lua_type_of<optional<T>> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<variadic_args> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<variadic_results> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<stack_count> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<this_state> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<this_main_state> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<this_environment> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<type> : std::integral_constant<type, type::poly> {};
template <typename T>
struct lua_type_of<T*> : std::integral_constant<type, type::userdata> {};
template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_arithmetic<T>::value>> : std::integral_constant<type, type::number> {};
template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_enum<T>::value>> : std::integral_constant<type, type::number> {};
template <>
struct lua_type_of<meta_function> : std::integral_constant<type, type::string> {};
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
#ifdef SOL_STD_VARIANT
template <typename... Tn>
struct lua_type_of<std::variant<Tn...>> : std::integral_constant<type, type::poly> {};
#endif // SOL_STD_VARIANT
#endif // SOL_CXX17_FEATURES
template <typename T>
struct lua_type_of<nested<T>, std::enable_if_t<::sol::is_container<T>::value>> : std::integral_constant<type, type::table> {};
template <typename T>
struct lua_type_of<nested<T>, std::enable_if_t<!::sol::is_container<T>::value>> : lua_type_of<T> {};
template <typename C, C v, template <typename...> class V, typename... Args>
struct accumulate : std::integral_constant<C, v> {};
template <typename C, C v, template <typename...> class V, typename T, typename... Args>
struct accumulate<C, v, V, T, Args...> : accumulate<C, v + V<T>::value, V, Args...> {};
} // namespace detail
template <typename T>
struct is_unique_usertype : std::integral_constant<bool, unique_usertype_traits<T>::value> {};
template <typename T>
struct lua_type_of : detail::lua_type_of<T> {
typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
};
template <typename T>
struct lua_size : std::integral_constant<int, 1> {
typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
};
template <typename A, typename B>
struct lua_size<std::pair<A, B>> : std::integral_constant<int, lua_size<A>::value + lua_size<B>::value> {};
template <typename... Args>
struct lua_size<std::tuple<Args...>> : std::integral_constant<int, detail::accumulate<int, 0, lua_size, Args...>::value> {};
namespace detail {
template <typename...>
struct void_ { typedef void type; };
template <typename T, typename = void>
struct has_internal_marker_impl : std::false_type {};
template <typename T>
struct has_internal_marker_impl<T, typename void_<typename T::SOL_INTERNAL_UNSPECIALIZED_MARKER_>::type> : std::true_type {};
template <typename T>
struct has_internal_marker : has_internal_marker_impl<T> {};
} // namespace detail
template <typename T>
struct is_lua_primitive : std::integral_constant<bool,
type::userdata != lua_type_of<meta::unqualified_t<T>>::value
|| ((type::userdata == lua_type_of<meta::unqualified_t<T>>::value)
&& detail::has_internal_marker<lua_type_of<meta::unqualified_t<T>>>::value
&& !detail::has_internal_marker<lua_size<meta::unqualified_t<T>>>::value)
|| std::is_base_of<reference, meta::unqualified_t<T>>::value
|| std::is_base_of<main_reference, meta::unqualified_t<T>>::value
|| std::is_base_of<stack_reference, meta::unqualified_t<T>>::value
|| meta::is_specialization_of<meta::unqualified_t<T>, std::tuple>::value
|| meta::is_specialization_of<meta::unqualified_t<T>, std::pair>::value> {};
template <typename T>
struct is_lua_reference : std::integral_constant<bool,
std::is_base_of<reference, meta::unqualified_t<T>>::value
|| std::is_base_of<main_reference, meta::unqualified_t<T>>::value
|| std::is_base_of<stack_reference, meta::unqualified_t<T>>::value> {};
template <typename T>
struct is_lua_reference_or_proxy : std::integral_constant<bool,
is_lua_reference<meta::unqualified_t<T>>::value
|| meta::is_specialization_of<meta::unqualified_t<T>, proxy>::value> {};
template <typename T>
struct is_main_threaded : std::is_base_of<main_reference, T> {};
template <typename T>
struct is_stack_based : std::is_base_of<stack_reference, T> {};
template <>
struct is_stack_based<variadic_args> : std::true_type {};
template <>
struct is_stack_based<unsafe_function_result> : std::true_type {};
template <>
struct is_stack_based<protected_function_result> : std::true_type {};
template <>
struct is_stack_based<stack_proxy> : std::true_type {};
template <>
struct is_stack_based<stack_proxy_base> : std::true_type {};
template <typename T>
struct is_lua_primitive<T*> : std::true_type {};
template <>
struct is_lua_primitive<unsafe_function_result> : std::true_type {};
template <>
struct is_lua_primitive<protected_function_result> : std::true_type {};
template <typename T>
struct is_lua_primitive<std::reference_wrapper<T>> : std::true_type {};
template <typename T>
struct is_lua_primitive<user<T>> : std::true_type {};
template <typename T>
struct is_lua_primitive<light<T>> : is_lua_primitive<T*> {};
template <typename T>
struct is_lua_primitive<optional<T>> : std::true_type {};
template <typename T>
struct is_lua_primitive<as_table_t<T>> : std::true_type {};
template <typename T>
struct is_lua_primitive<nested<T>> : std::true_type {};
template <>
struct is_lua_primitive<userdata_value> : std::true_type {};
template <>
struct is_lua_primitive<lightuserdata_value> : std::true_type {};
template <typename T>
struct is_lua_primitive<non_null<T>> : is_lua_primitive<T*> {};
template <typename T>
struct is_proxy_primitive : is_lua_primitive<T> {};
template <typename T>
struct is_transparent_argument : std::false_type {};
template <>
struct is_transparent_argument<this_state> : std::true_type {};
template <>
struct is_transparent_argument<this_main_state> : std::true_type {};
template <>
struct is_transparent_argument<this_environment> : std::true_type {};
template <>
struct is_transparent_argument<variadic_args> : std::true_type {};
template <typename T>
struct is_variadic_arguments : std::is_same<meta::unqualified_t<T>, variadic_args> {};
template <typename T>
struct is_lua_index : std::is_integral<T> {};
template <>
struct is_lua_index<raw_index> : std::true_type {};
template <>
struct is_lua_index<absolute_index> : std::true_type {};
template <>
struct is_lua_index<ref_index> : std::true_type {};
template <>
struct is_lua_index<upvalue_index> : std::true_type {};
template <typename Signature>
struct lua_bind_traits : meta::bind_traits<Signature> {
private:
typedef meta::bind_traits<Signature> base_t;
public:
typedef std::integral_constant<bool, meta::count_for<is_variadic_arguments, typename base_t::args_list>::value != 0> runtime_variadics_t;
static const std::size_t true_arity = base_t::arity;
static const std::size_t arity = base_t::arity - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
static const std::size_t true_free_arity = base_t::free_arity;
static const std::size_t free_arity = base_t::free_arity - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
};
template <typename T>
struct is_table : std::false_type {};
template <bool x, typename T>
struct is_table<basic_table_core<x, T>> : std::true_type {};
template <typename T>
struct is_function : std::false_type {};
template <typename T, bool aligned>
struct is_function<basic_function<T, aligned>> : std::true_type {};
template <typename T, bool aligned, typename Handler>
struct is_function<basic_protected_function<T, aligned, Handler>> : std::true_type {};
template <typename T>
struct is_lightuserdata : std::false_type {};
template <typename T>
struct is_lightuserdata<basic_lightuserdata<T>> : std::true_type {};
template <typename T>
struct is_userdata : std::false_type {};
template <typename T>
struct is_userdata<basic_userdata<T>> : std::true_type {};
template <typename T>
struct is_environment : std::integral_constant<bool, is_userdata<T>::value || is_table<T>::value> {};
template <typename T>
struct is_automagical : std::true_type {};
template <typename T>
inline type type_of() {
return lua_type_of<meta::unqualified_t<T>>::value;
}
namespace detail {
template <typename T>
struct is_non_factory_constructor : std::false_type {};
template <typename... Args>
struct is_non_factory_constructor<constructors<Args...>> : std::true_type {};
template <typename... Args>
struct is_non_factory_constructor<constructor_wrapper<Args...>> : std::true_type {};
template <>
struct is_non_factory_constructor<no_construction> : std::true_type {};
template <typename T>
struct is_constructor : is_non_factory_constructor<T> {};
template <typename... Args>
struct is_constructor<factory_wrapper<Args...>> : std::true_type {};
template <typename T>
struct is_constructor<protect_t<T>> : is_constructor<meta::unqualified_t<T>> {};
template <typename F, typename... Filters>
struct is_constructor<filter_wrapper<F, Filters...>> : is_constructor<meta::unqualified_t<F>> {};
template <typename... Args>
using has_constructor = meta::any<is_constructor<meta::unqualified_t<Args>>...>;
template <typename T>
struct is_destructor : std::false_type {};
template <typename Fx>
struct is_destructor<destructor_wrapper<Fx>> : std::true_type {};
template <typename... Args>
using has_destructor = meta::any<is_destructor<meta::unqualified_t<Args>>...>;
struct add_destructor_tag {};
struct check_destructor_tag {};
struct verified_tag {
} const verified{};
} // namespace detail
} // namespace sol
// end of sol/types.hpp
#include <exception>
#include <cstring>
#ifdef SOL_PRINT_ERRORS
#include <iostream>
#endif
namespace sol {
// must push a single object to be the error object
// NOTE: the VAST MAJORITY of all Lua libraries -- C or otherwise -- expect a string for the type of error
// break this convention at your own risk
using exception_handler_function = int(*)(lua_State*, optional<const std::exception&>, string_view);
namespace detail {
inline const char(&default_exception_handler_name())[11]{
static const char name[11] = "sol.\xE2\x98\xA2\xE2\x98\xA2";
return name;
}
// must push at least 1 object on the stack
inline int default_exception_handler(lua_State* L, optional<const std::exception&>, string_view what) {
#ifdef SOL_PRINT_ERRORS
std::cerr << "[sol2] An exception occurred: ";
std::cerr.write(what.data(), what.size());
std::cerr << std::endl;
#endif
lua_pushlstring(L, what.data(), what.size());
return 1;
}
inline int call_exception_handler(lua_State* L, optional<const std::exception&> maybe_ex, string_view what) {
lua_getglobal(L, default_exception_handler_name());
type t = static_cast<type>(lua_type(L, -1));
if (t != type::lightuserdata) {
lua_pop(L, 1);
return default_exception_handler(L, std::move(maybe_ex), std::move(what));
}
void* vfunc = lua_touserdata(L, -1);
lua_pop(L, 1);
if (vfunc == nullptr) {
return default_exception_handler(L, std::move(maybe_ex), std::move(what));
}
exception_handler_function exfunc = reinterpret_cast<exception_handler_function>(vfunc);
return exfunc(L, std::move(maybe_ex), std::move(what));
}
#ifdef SOL_NO_EXCEPTIONS
template <lua_CFunction f>
int static_trampoline(lua_State* L) noexcept {
return f(L);
}
#ifdef SOL_NOEXCEPT_FUNCTION_TYPE
template <lua_CFunction_noexcept f>
int static_trampoline_noexcept(lua_State* L) noexcept {
return f(L);
}
#else
template <lua_CFunction f>
int static_trampoline_noexcept(lua_State* L) noexcept {
return f(L);
}
#endif
template <typename Fx, typename... Args>
int trampoline(lua_State* L, Fx&& f, Args&&... args) noexcept {
return f(L, std::forward<Args>(args)...);
}
inline int c_trampoline(lua_State* L, lua_CFunction f) noexcept {
return trampoline(L, f);
}
#else
template <lua_CFunction f>
int static_trampoline(lua_State* L) {
#if defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) && !defined(SOL_LUAJIT)
return f(L);
#else
try {
return f(L);
}
catch (const char* cs) {
call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs));
}
catch (const std::string& s) {
call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size()));
}
catch (const std::exception& e) {
call_exception_handler(L, optional<const std::exception&>(e), e.what());
}
#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
// LuaJIT cannot have the catchall when the safe propagation is on
// but LuaJIT will swallow all C++ errors
// if we don't at least catch std::exception ones
catch (...) {
call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception");
}
#endif // LuaJIT cannot have the catchall, but we must catch std::exceps for it
return lua_error(L);
#endif // Safe exceptions
}
#ifdef SOL_NOEXCEPT_FUNCTION_TYPE
#if 0
// impossible: g++/clang++ choke as they think this function is ambiguous:
// to fix, wait for template <auto X> and then switch on no-exceptness of the function
template <lua_CFunction_noexcept f>
int static_trampoline(lua_State* L) noexcept {
return f(L);
}
#else
template <lua_CFunction_noexcept f>
int static_trampoline_noexcept(lua_State* L) noexcept {
return f(L);
}
#endif // impossible
#else
template <lua_CFunction f>
int static_trampoline_noexcept(lua_State* L) noexcept {
return f(L);
}
#endif // noexcept lua_CFunction type
template <typename Fx, typename... Args>
int trampoline(lua_State* L, Fx&& f, Args&&... args) {
if (meta::bind_traits<meta::unqualified_t<Fx>>::is_noexcept) {
return f(L, std::forward<Args>(args)...);
}
#if defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) && !defined(SOL_LUAJIT)
return f(L, std::forward<Args>(args)...);
#else
try {
return f(L, std::forward<Args>(args)...);
}
catch (const char* cs) {
call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs));
}
catch (const std::string& s) {
call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size()));
}
catch (const std::exception& e) {
call_exception_handler(L, optional<const std::exception&>(e), e.what());
}
#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
// LuaJIT cannot have the catchall when the safe propagation is on
// but LuaJIT will swallow all C++ errors
// if we don't at least catch std::exception ones
catch (...) {
call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception");
}
#endif
return lua_error(L);
#endif
}
inline int c_trampoline(lua_State* L, lua_CFunction f) {
return trampoline(L, f);
}
#endif // Exceptions vs. No Exceptions
template <typename F, F fx>
inline int typed_static_trampoline_raw(std::true_type, lua_State* L) {
return static_trampoline_noexcept<fx>(L);
}
template <typename F, F fx>
inline int typed_static_trampoline_raw(std::false_type, lua_State* L) {
return static_trampoline<fx>(L);
}
template <typename F, F fx>
inline int typed_static_trampoline(lua_State* L) {
return typed_static_trampoline_raw<F, fx>(std::integral_constant<bool, meta::bind_traits<F>::is_noexcept>(), L);
}
} // namespace detail
inline void set_default_exception_handler(lua_State* L, exception_handler_function exf = &detail::default_exception_handler) {
static_assert(sizeof(void*) >= sizeof(exception_handler_function), "void* storage is too small to transport the exception handler: please file a bug on the issue tracker");
void* storage;
std::memcpy(&storage, &exf, sizeof(exception_handler_function));
lua_pushlightuserdata(L, storage);
lua_setglobal(L, detail::default_exception_handler_name());
}
} // sol
// end of sol/trampoline.hpp
// beginning of sol/stack_core.hpp
// beginning of sol/error_handler.hpp
// beginning of sol/demangle.hpp
#include <cctype>
#if defined(__GNUC__) && defined(__MINGW32__) && (__GNUC__ < 6)
extern "C" {
}
#endif // MinGW is on some stuff
#include <locale>
namespace sol {
namespace detail {
#if defined(__GNUC__) || defined(__clang__)
template <typename T, class seperator_mark = int>
inline std::string ctti_get_type_name() {
// cardinal sins from MINGW
using namespace std;
static const std::array<std::string, 2> removals = {{"{anonymous}", "(anonymous namespace)"}};
std::string name = __PRETTY_FUNCTION__;
std::size_t start = name.find_first_of('[');
start = name.find_first_of('=', start);
std::size_t end = name.find_last_of(']');
if (end == std::string::npos)
end = name.size();
if (start == std::string::npos)
start = 0;
if (start < name.size() - 1)
start += 1;
name = name.substr(start, end - start);
start = name.rfind("seperator_mark");
if (start != std::string::npos) {
name.erase(start - 2, name.length());
}
while (!name.empty() && isblank(name.front()))
name.erase(name.begin());
while (!name.empty() && isblank(name.back()))
name.pop_back();
for (std::size_t r = 0; r < removals.size(); ++r) {
auto found = name.find(removals[r]);
while (found != std::string::npos) {
name.erase(found, removals[r].size());
found = name.find(removals[r]);
}
}
return name;
}
#elif defined(_MSC_VER)
template <typename T>
inline std::string ctti_get_type_name() {
static const std::array<std::string, 7> removals = {{"public:", "private:", "protected:", "struct ", "class ", "`anonymous-namespace'", "`anonymous namespace'"}};
std::string name = __FUNCSIG__;
std::size_t start = name.find("get_type_name");
if (start == std::string::npos)
start = 0;
else
start += 13;
if (start < name.size() - 1)
start += 1;
std::size_t end = name.find_last_of('>');
if (end == std::string::npos)
end = name.size();
name = name.substr(start, end - start);
if (name.find("struct", 0) == 0)
name.replace(0, 6, "", 0);
if (name.find("class", 0) == 0)
name.replace(0, 5, "", 0);
while (!name.empty() && isblank(name.front()))
name.erase(name.begin());
while (!name.empty() && isblank(name.back()))
name.pop_back();
for (std::size_t r = 0; r < removals.size(); ++r) {
auto found = name.find(removals[r]);
while (found != std::string::npos) {
name.erase(found, removals[r].size());
found = name.find(removals[r]);
}
}
return name;
}
#else
#error Compiler not supported for demangling
#endif // compilers
template <typename T>
inline std::string demangle_once() {
std::string realname = ctti_get_type_name<T>();
return realname;
}
template <typename T>
inline std::string short_demangle_once() {
std::string realname = ctti_get_type_name<T>();
// This isn't the most complete but it'll do for now...?
static const std::array<std::string, 10> ops = {{"operator<", "operator<<", "operator<<=", "operator<=", "operator>", "operator>>", "operator>>=", "operator>=", "operator->", "operator->*"}};
int level = 0;
std::ptrdiff_t idx = 0;
for (idx = static_cast<std::ptrdiff_t>(realname.empty() ? 0 : realname.size() - 1); idx > 0; --idx) {
if (level == 0 && realname[idx] == ':') {
break;
}
bool isleft = realname[idx] == '<';
bool isright = realname[idx] == '>';
if (!isleft && !isright)
continue;
bool earlybreak = false;
for (const auto& op : ops) {
std::size_t nisop = realname.rfind(op, idx);
if (nisop == std::string::npos)
continue;
std::size_t nisopidx = idx - op.size() + 1;
if (nisop == nisopidx) {
idx = static_cast<std::ptrdiff_t>(nisopidx);
earlybreak = true;
}
break;
}
if (earlybreak) {
continue;
}
level += isleft ? -1 : 1;
}
if (idx > 0) {
realname.erase(0, realname.length() < static_cast<std::size_t>(idx) ? realname.length() : idx + 1);
}
return realname;
}
template <typename T>
inline const std::string& demangle() {
static const std::string d = demangle_once<T>();
return d;
}
template <typename T>
inline const std::string& short_demangle() {
static const std::string d = short_demangle_once<T>();
return d;
}
}
} // namespace sol::detail
// end of sol/demangle.hpp
namespace sol {
inline std::string associated_type_name(lua_State* L, int index, type t) {
switch (t) {
case type::poly:
return "anything";
case type::userdata:
{
if (lua_getmetatable(L, index) == 0) {
break;
}
lua_pushlstring(L, "__name", 6);
lua_rawget(L, -2);
size_t sz;
const char* name = lua_tolstring(L, -1, &sz);
std::string tn(name, static_cast<std::string::size_type>(sz));
lua_pop(L, 2);
return name;
}
default:
break;
}
return lua_typename(L, static_cast<int>(t));
}
inline int type_panic_string(lua_State* L, int index, type expected, type actual, const std::string& message = "") noexcept(false) {
const char* err = message.empty() ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s";
std::string actualname = associated_type_name(L, index, actual);
return luaL_error(L, err, index,
expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected)),
actualname.c_str(),
message.c_str());
}
inline int type_panic_c_str(lua_State* L, int index, type expected, type actual, const char* message = nullptr) noexcept(false) {
const char* err = message == nullptr || (std::char_traits<char>::length(message) == 0) ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s";
std::string actualname = associated_type_name(L, index, actual);
return luaL_error(L, err, index,
expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected)),
actualname.c_str(),
message);
}
struct type_panic_t {
int operator()(lua_State* L, int index, type expected, type actual) const noexcept(false) {
return type_panic_c_str(L, index, expected, actual, nullptr);
}
int operator()(lua_State* L, int index, type expected, type actual, const char* message) const noexcept(false) {
return type_panic_c_str(L, index, expected, actual, message);
}
int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) {
return type_panic_string(L, index, expected, actual, message);
}
};
const type_panic_t type_panic = {};
struct constructor_handler {
int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) {
std::string str = "(type check failed in constructor)";
return type_panic_string(L, index, expected, actual, message.empty() ? str : message + " " + str);
}
};
template <typename F = void>
struct argument_handler {
int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) {
std::string str = "(bad argument to variable or function call)";
return type_panic_string(L, index, expected, actual, message.empty() ? str : message + " " + str );
}
};
template <typename R, typename... Args>
struct argument_handler<types<R, Args...>> {
int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) {
std::string addendum = "(bad argument into '";
addendum += detail::demangle<R>();
addendum += "(";
int marker = 0;
auto action = [&addendum, &marker](const std::string& n) {
if (marker > 0) {
addendum += ", ";
}
addendum += n;
++marker;
};
(void)detail::swallow{int(), (action(detail::demangle<Args>()), int())...};
addendum += ")')";
return type_panic_string(L, index, expected, actual, message.empty() ? addendum : message + " " + addendum);
}
};
// Specify this function as the handler for lua::check if you know there's nothing wrong
inline int no_panic(lua_State*, int, type, type, const char* = nullptr) noexcept {
return 0;
}
inline void type_error(lua_State* L, int expected, int actual) noexcept(false) {
luaL_error(L, "expected %s, received %s", lua_typename(L, expected), lua_typename(L, actual));
}
inline void type_error(lua_State* L, type expected, type actual) noexcept(false) {
type_error(L, static_cast<int>(expected), static_cast<int>(actual));
}
inline void type_assert(lua_State* L, int index, type expected, type actual) noexcept(false) {
if (expected != type::poly && expected != actual) {
type_panic_c_str(L, index, expected, actual, nullptr);
}
}
inline void type_assert(lua_State* L, int index, type expected) {
type actual = type_of(L, index);
type_assert(L, index, expected, actual);
}
} // namespace sol
// end of sol/error_handler.hpp
// beginning of sol/reference.hpp
// beginning of sol/stack_reference.hpp
namespace sol {
namespace detail {
inline bool xmovable(lua_State* leftL, lua_State* rightL) {
if (rightL == nullptr || leftL == nullptr || leftL == rightL) {
return false;
}
const void* leftregistry = lua_topointer(leftL, LUA_REGISTRYINDEX);
const void* rightregistry = lua_topointer(rightL, LUA_REGISTRYINDEX);
return leftregistry == rightregistry;
}
} // namespace detail
class stack_reference {
private:
lua_State* luastate = nullptr;
int index = 0;
protected:
int registry_index() const noexcept {
return LUA_NOREF;
}
public:
stack_reference() noexcept = default;
stack_reference(lua_nil_t) noexcept
: stack_reference(){};
stack_reference(lua_State* L, lua_nil_t) noexcept
: luastate(L), index(0) {
}
stack_reference(lua_State* L, int i) noexcept
: stack_reference(L, absolute_index(L, i)) {
}
stack_reference(lua_State* L, absolute_index i) noexcept
: luastate(L), index(i) {
}
stack_reference(lua_State* L, raw_index i) noexcept
: luastate(L), index(i) {
}
stack_reference(lua_State* L, ref_index i) noexcept = delete;
stack_reference(lua_State* L, const reference& r) noexcept = delete;
stack_reference(lua_State* L, const stack_reference& r) noexcept
: luastate(L) {
if (!r.valid()) {
index = 0;
return;
}
int i = r.stack_index();
if (detail::xmovable(lua_state(), r.lua_state())) {
lua_pushvalue(r.lua_state(), r.index);
lua_xmove(r.lua_state(), luastate, 1);
i = absolute_index(luastate, -1);
}
index = i;
}
stack_reference(stack_reference&& o) noexcept = default;
stack_reference& operator=(stack_reference&&) noexcept = default;
stack_reference(const stack_reference&) noexcept = default;
stack_reference& operator=(const stack_reference&) noexcept = default;
int push() const noexcept {
return push(lua_state());
}
int push(lua_State* Ls) const noexcept {
if (lua_state() == nullptr) {
lua_pushnil(Ls);
return 1;
}
lua_pushvalue(lua_state(), index);
if (Ls != lua_state()) {
lua_xmove(lua_state(), Ls, 1);
}
return 1;
}
void pop() const noexcept {
pop(lua_state());
}
void pop(lua_State* Ls, int n = 1) const noexcept {
lua_pop(Ls, n);
}
int stack_index() const noexcept {
return index;
}
type get_type() const noexcept {
int result = lua_type(lua_state(), index);
return static_cast<type>(result);
}
lua_State* lua_state() const noexcept {
return luastate;
}
bool valid() const noexcept {
type t = get_type();
return t != type::lua_nil && t != type::none;
}
};
inline bool operator==(const stack_reference& l, const stack_reference& r) {
return lua_compare(l.lua_state(), l.stack_index(), r.stack_index(), LUA_OPEQ) == 0;
}
inline bool operator!=(const stack_reference& l, const stack_reference& r) {
return !operator==(l, r);
}
inline bool operator==(const stack_reference& lhs, const lua_nil_t&) {
return !lhs.valid();
}
inline bool operator==(const lua_nil_t&, const stack_reference& rhs) {
return !rhs.valid();
}
inline bool operator!=(const stack_reference& lhs, const lua_nil_t&) {
return lhs.valid();
}
inline bool operator!=(const lua_nil_t&, const stack_reference& rhs) {
return rhs.valid();
}
} // namespace sol
// end of sol/stack_reference.hpp
namespace sol {
namespace detail {
inline const char (&default_main_thread_name())[9] {
static const char name[9] = "sol.\xF0\x9F\x93\x8C";
return name;
}
} // namespace detail
namespace stack {
inline void remove(lua_State* L, int rawindex, int count) {
if (count < 1)
return;
int top = lua_gettop(L);
if (top < 1) {
return;
}
if (rawindex == -count || top == rawindex) {
// Slice them right off the top
lua_pop(L, static_cast<int>(count));
return;
}
// Remove each item one at a time using stack operations
// Probably slower, maybe, haven't benchmarked,
// but necessary
int index = lua_absindex(L, rawindex);
if (index < 0) {
index = lua_gettop(L) + (index + 1);
}
int last = index + count;
for (int i = index; i < last; ++i) {
lua_remove(L, index);
}
}
struct push_popper_at {
lua_State* L;
int index;
int count;
push_popper_at(lua_State* luastate, int index = -1, int count = 1)
: L(luastate), index(index), count(count) {
}
~push_popper_at() {
remove(L, index, count);
}
};
template <bool top_level>
struct push_popper_n {
lua_State* L;
int t;
push_popper_n(lua_State* luastate, int x)
: L(luastate), t(x) {
}
push_popper_n(const push_popper_n&) = delete;
push_popper_n(push_popper_n&&) = default;
push_popper_n& operator=(const push_popper_n&) = delete;
push_popper_n& operator=(push_popper_n&&) = default;
~push_popper_n() {
lua_pop(L, t);
}
};
template <>
struct push_popper_n<true> {
push_popper_n(lua_State*, int) {
}
};
template <bool, typename T, typename = void>
struct push_popper {
T t;
push_popper(T x)
: t(x) {
t.push();
}
~push_popper() {
t.pop();
}
};
template <typename T, typename C>
struct push_popper<true, T, C> {
push_popper(T) {
}
~push_popper() {
}
};
template <typename T>
struct push_popper<false, T, std::enable_if_t<std::is_base_of<stack_reference, meta::unqualified_t<T>>::value>> {
push_popper(T) {
}
~push_popper() {
}
};
template <bool top_level = false, typename T>
push_popper<top_level, T> push_pop(T&& x) {
return push_popper<top_level, T>(std::forward<T>(x));
}
template <typename T>
push_popper_at push_pop_at(T&& x) {
int c = x.push();
lua_State* L = x.lua_state();
return push_popper_at(L, lua_absindex(L, -c), c);
}
template <bool top_level = false>
push_popper_n<top_level> pop_n(lua_State* L, int x) {
return push_popper_n<top_level>(L, x);
}
} // namespace stack
inline lua_State* main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr) {
#if SOL_LUA_VERSION < 502
if (L == nullptr)
return backup_if_unsupported;
lua_getglobal(L, detail::default_main_thread_name());
auto pp = stack::pop_n(L, 1);
if (type_of(L, -1) == type::thread) {
return lua_tothread(L, -1);
}
return backup_if_unsupported;
#else
if (L == nullptr)
return backup_if_unsupported;
lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_RIDX_MAINTHREAD);
lua_State* Lmain = lua_tothread(L, -1);
lua_pop(L, 1);
return Lmain;
#endif // Lua 5.2+ has the main thread getter
}
namespace detail {
struct global_tag {
} const global_{};
struct no_safety_tag {
} const no_safety{};
template <bool b>
inline lua_State* pick_main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr) {
(void)L;
(void)backup_if_unsupported;
if (b) {
return main_thread(L, backup_if_unsupported);
}
return L;
}
} // namespace detail
template <bool main_only = false>
class basic_reference {
private:
template <bool o_main_only>
friend class basic_reference;
lua_State* luastate = nullptr; // non-owning
int ref = LUA_NOREF;
int copy() const noexcept {
if (ref == LUA_NOREF)
return LUA_NOREF;
push();
return luaL_ref(lua_state(), LUA_REGISTRYINDEX);
}
template <bool r_main_only>
void copy_assign(const basic_reference<r_main_only>& r) {
if (valid()) {
deref();
}
if (r.ref == LUA_REFNIL) {
luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
ref = LUA_REFNIL;
return;
}
if (r.ref == LUA_NOREF) {
luastate = r.luastate;
ref = LUA_NOREF;
return;
}
if (detail::xmovable(lua_state(), r.lua_state())) {
r.push(lua_state());
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
return;
}
luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
ref = r.copy();
}
template <bool r_main_only>
void move_assign(basic_reference<r_main_only>&& r) {
if (valid()) {
deref();
}
if (r.ref == LUA_REFNIL) {
luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
ref = LUA_REFNIL;
return;
}
if (r.ref == LUA_NOREF) {
luastate = r.luastate;
ref = LUA_NOREF;
return;
}
if (detail::xmovable(lua_state(), r.lua_state())) {
r.push(lua_state());
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
return;
}
luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
ref = r.ref;
r.ref = LUA_NOREF;
r.luastate = nullptr;
}
protected:
basic_reference(lua_State* L, detail::global_tag) noexcept
: luastate(detail::pick_main_thread<main_only>(L, L)) {
lua_pushglobaltable(lua_state());
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
}
int stack_index() const noexcept {
return -1;
}
void deref() const noexcept {
luaL_unref(lua_state(), LUA_REGISTRYINDEX, ref);
}
public:
basic_reference() noexcept = default;
basic_reference(lua_nil_t) noexcept
: basic_reference() {
}
basic_reference(const stack_reference& r) noexcept
: basic_reference(r.lua_state(), r.stack_index()) {
}
basic_reference(stack_reference&& r) noexcept
: basic_reference(r.lua_state(), r.stack_index()) {
}
template <bool r_main_only>
basic_reference(lua_State* L, const basic_reference<r_main_only>& r) noexcept
: luastate(detail::pick_main_thread<main_only>(L, L)) {
if (r.ref == LUA_REFNIL) {
ref = LUA_REFNIL;
return;
}
if (r.ref == LUA_NOREF || lua_state() == nullptr) {
ref = LUA_NOREF;
return;
}
if (detail::xmovable(lua_state(), r.lua_state())) {
r.push(lua_state());
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
return;
}
ref = r.copy();
}
template <bool r_main_only>
basic_reference(lua_State* L, basic_reference<r_main_only>&& r) noexcept
: luastate(detail::pick_main_thread<main_only>(L, L)) {
if (r.ref == LUA_REFNIL) {
ref = LUA_REFNIL;
return;
}
if (r.ref == LUA_NOREF || lua_state() == nullptr) {
ref = LUA_NOREF;
return;
}
if (detail::xmovable(lua_state(), r.lua_state())) {
r.push(lua_state());
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
return;
}
ref = r.ref;
r.ref = LUA_NOREF;
r.luastate = nullptr;
}
basic_reference(lua_State* L, const stack_reference& r) noexcept
: luastate(detail::pick_main_thread<main_only>(L, L)) {
if (lua_state() == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) {
ref = LUA_NOREF;
return;
}
if (r.get_type() == type::lua_nil) {
ref = LUA_REFNIL;
return;
}
if (lua_state() != r.lua_state() && !detail::xmovable(lua_state(), r.lua_state())) {
return;
}
r.push(lua_state());
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
}
basic_reference(lua_State* L, int index = -1) noexcept
: luastate(detail::pick_main_thread<main_only>(L, L)) {
// use L to stick with that state's execution stack
lua_pushvalue(L, index);
ref = luaL_ref(L, LUA_REGISTRYINDEX);
}
basic_reference(lua_State* L, ref_index index) noexcept
: luastate(detail::pick_main_thread<main_only>(L, L)) {
lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, index.index);
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
}
basic_reference(lua_State* L, lua_nil_t) noexcept
: luastate(detail::pick_main_thread<main_only>(L, L)) {
}
~basic_reference() noexcept {
if (lua_state() == nullptr || ref == LUA_NOREF)
return;
deref();
}
basic_reference(const basic_reference& o) noexcept
: luastate(o.lua_state()), ref(o.copy()) {
}
basic_reference(basic_reference&& o) noexcept
: luastate(o.lua_state()), ref(o.ref) {
o.luastate = nullptr;
o.ref = LUA_NOREF;
}
basic_reference(const basic_reference<!main_only>& o) noexcept
: luastate(detail::pick_main_thread < main_only && !main_only > (o.lua_state(), o.lua_state())), ref(o.copy()) {
}
basic_reference(basic_reference<!main_only>&& o) noexcept
: luastate(detail::pick_main_thread < main_only && !main_only > (o.lua_state(), o.lua_state())), ref(o.ref) {
o.luastate = nullptr;
o.ref = LUA_NOREF;
}
basic_reference& operator=(basic_reference&& r) noexcept {
move_assign(std::move(r));
return *this;
}
basic_reference& operator=(const basic_reference& r) noexcept {
copy_assign(r);
return *this;
}
basic_reference& operator=(basic_reference<!main_only>&& r) noexcept {
move_assign(std::move(r));
return *this;
}
basic_reference& operator=(const basic_reference<!main_only>& r) noexcept {
copy_assign(r);
return *this;
}
basic_reference& operator=(const lua_nil_t&) noexcept {
if (valid()) {
deref();
}
luastate = nullptr;
ref = LUA_NOREF;
return *this;
}
template <typename Super>
basic_reference& operator=(proxy_base<Super>&& r);
template <typename Super>
basic_reference& operator=(const proxy_base<Super>& r);
int push() const noexcept {
return push(lua_state());
}
int push(lua_State* Ls) const noexcept {
if (lua_state() == nullptr) {
lua_pushnil(Ls);
return 1;
}
lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, ref);
if (Ls != lua_state()) {
lua_xmove(lua_state(), Ls, 1);
}
return 1;
}
void pop() const noexcept {
pop(lua_state());
}
void pop(lua_State* Ls, int n = 1) const noexcept {
lua_pop(Ls, n);
}
int registry_index() const noexcept {
return ref;
}
bool valid() const noexcept {
return !(ref == LUA_NOREF || ref == LUA_REFNIL);
}
explicit operator bool() const noexcept {
return valid();
}
type get_type() const noexcept {
auto pp = stack::push_pop(*this);
int result = lua_type(lua_state(), -1);
return static_cast<type>(result);
}
lua_State* lua_state() const noexcept {
return luastate;
}
};
template <bool lb, bool rb>
inline bool operator==(const basic_reference<lb>& l, const basic_reference<rb>& r) {
auto ppl = stack::push_pop(l);
auto ppr = stack::push_pop(r);
return lua_compare(l.lua_state(), -1, -2, LUA_OPEQ) == 1;
}
template <bool lb, bool rb>
inline bool operator!=(const basic_reference<lb>& l, const basic_reference<rb>& r) {
return !operator==(l, r);
}
template <bool lb>
inline bool operator==(const basic_reference<lb>& lhs, const lua_nil_t&) {
return !lhs.valid();
}
template <bool rb>
inline bool operator==(const lua_nil_t&, const basic_reference<rb>& rhs) {
return !rhs.valid();
}
template <bool lb>
inline bool operator!=(const basic_reference<lb>& lhs, const lua_nil_t&) {
return lhs.valid();
}
template <bool rb>
inline bool operator!=(const lua_nil_t&, const basic_reference<rb>& rhs) {
return rhs.valid();
}
} // namespace sol
// end of sol/reference.hpp
// beginning of sol/tie.hpp
namespace sol {
namespace detail {
template <typename T>
struct is_speshul : std::false_type {};
} // namespace detail
template <typename T>
struct tie_size : std::tuple_size<T> {};
template <typename T>
struct is_tieable : std::integral_constant<bool, (::sol::tie_size<T>::value > 0)> {};
template <typename... Tn>
struct tie_t : public std::tuple<std::add_lvalue_reference_t<Tn>...> {
private:
typedef std::tuple<std::add_lvalue_reference_t<Tn>...> base_t;
template <typename T>
void set(std::false_type, T&& target) {
std::get<0>(*this) = std::forward<T>(target);
}
template <typename T>
void set(std::true_type, T&& target) {
typedef tie_size<meta::unqualified_t<T>> value_size;
typedef tie_size<std::tuple<Tn...>> tie_size;
typedef std::conditional_t<(value_size::value < tie_size::value), value_size, tie_size> indices_size;
typedef std::make_index_sequence<indices_size::value> indices;
set_extra(detail::is_speshul<meta::unqualified_t<T>>(), indices(), std::forward<T>(target));
}
template <std::size_t... I, typename T>
void set_extra(std::true_type, std::index_sequence<I...>, T&& target) {
using std::get;
(void)detail::swallow{0,
(get<I>(static_cast<base_t&>(*this)) = get<I>(types<Tn...>(), target), 0)..., 0};
}
template <std::size_t... I, typename T>
void set_extra(std::false_type, std::index_sequence<I...>, T&& target) {
using std::get;
(void)detail::swallow{0,
(get<I>(static_cast<base_t&>(*this)) = get<I>(target), 0)..., 0};
}
public:
using base_t::base_t;
template <typename T>
tie_t& operator=(T&& value) {
typedef is_tieable<meta::unqualified_t<T>> tieable;
set(tieable(), std::forward<T>(value));
return *this;
}
};
template <typename... Tn>
struct tie_size<tie_t<Tn...>> : std::tuple_size<std::tuple<Tn...>> {};
namespace adl_barrier_detail {
template <typename... Tn>
inline tie_t<std::remove_reference_t<Tn>...> tie(Tn&&... argn) {
return tie_t<std::remove_reference_t<Tn>...>(std::forward<Tn>(argn)...);
}
} // namespace adl_barrier_detail
using namespace adl_barrier_detail;
} // namespace sol
// end of sol/tie.hpp
// beginning of sol/stack_guard.hpp
namespace sol {
namespace detail {
inline void stack_fail(int, int) {
#if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS)
throw error(detail::direct_error, "imbalanced stack after operation finish");
#else
// Lol, what do you want, an error printout? :3c
// There's no sane default here. The right way would be C-style abort(), and that's not acceptable, so
// hopefully someone will register their own stack_fail thing for the `fx` parameter of stack_guard.
#endif // No Exceptions
}
} // namespace detail
struct stack_guard {
lua_State* L;
int top;
std::function<void(int, int)> on_mismatch;
stack_guard(lua_State* L)
: stack_guard(L, lua_gettop(L)) {
}
stack_guard(lua_State* L, int top, std::function<void(int, int)> fx = detail::stack_fail)
: L(L), top(top), on_mismatch(std::move(fx)) {
}
bool check_stack(int modification = 0) const {
int bottom = lua_gettop(L) + modification;
if (top == bottom) {
return true;
}
on_mismatch(top, bottom);
return false;
}
~stack_guard() {
check_stack();
}
};
} // namespace sol
// end of sol/stack_guard.hpp
#include <vector>
#include <forward_list>
#include <algorithm>
namespace sol {
namespace detail {
struct as_reference_tag {};
template <typename T>
struct as_pointer_tag {};
template <typename T>
struct as_value_tag {};
template <typename T>
struct as_table_tag {};
using unique_destructor = void (*)(void*);
inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space, std::size_t& required_space) {
// this handels arbitrary alignments...
// make this into a power-of-2-only?
// actually can't: this is a C++14-compatible framework,
// power of 2 alignment is C++17
std::uintptr_t initial = reinterpret_cast<std::uintptr_t>(ptr);
std::uintptr_t offby = static_cast<std::uintptr_t>(initial % alignment);
std::uintptr_t padding = (alignment - offby) % alignment;
required_space += size + padding;
if (space < required_space) {
return nullptr;
}
ptr = static_cast<void*>(static_cast<char*>(ptr) + padding);
space -= padding;
return ptr;
}
inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space) {
std::size_t required_space = 0;
return align(alignment, size, ptr, space, required_space);
}
template <typename... Args>
inline std::size_t aligned_space_for(void* alignment = nullptr) {
char* start = static_cast<char*>(alignment);
auto specific_align = [&alignment](std::size_t a, std::size_t s) {
std::size_t space = (std::numeric_limits<std::size_t>::max)();
alignment = align(a, s, alignment, space);
alignment = static_cast<void*>(static_cast<char*>(alignment) + s);
};
(void)detail::swallow{ int{}, (specific_align(std::alignment_of<Args>::value, sizeof(Args)), int{})... };
return static_cast<char*>(alignment) - start;
}
inline void* align_usertype_pointer(void* ptr) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<void*>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<void*>::value, sizeof(void*), ptr, space);
}
inline void* align_usertype_unique_destructor(void* ptr) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<unique_destructor>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
return static_cast<void*>(static_cast<void**>(ptr) + 1);
}
ptr = align_usertype_pointer(ptr);
ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(void*));
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), ptr, space);
}
template <typename T, bool pre_aligned = false>
inline void* align_usertype_unique(void* ptr) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<T>::value > 1)
#endif
>
use_align;
if (!pre_aligned) {
ptr = align_usertype_unique_destructor(ptr);
ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_destructor));
}
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<T>::value, sizeof(T), ptr, space);
}
template <typename T>
inline void* align_user(void* ptr) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<T>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<T>::value, sizeof(T), ptr, space);
}
template <typename T>
inline T** usertype_allocate_pointer(lua_State* L) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<T*>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*)));
return pointerpointer;
}
static const std::size_t initial_size = aligned_space_for<T*>(nullptr);
static const std::size_t misaligned_size = aligned_space_for<T*>(reinterpret_cast<void*>(0x1));
std::size_t allocated_size = initial_size;
void* unadjusted = lua_newuserdata(L, initial_size);
void* adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
if (adjusted == nullptr) {
lua_pop(L, 1);
// what kind of absolute garbage trash allocator are we dealing with?
// whatever, add some padding in the case of MAXIMAL alignment waste...
allocated_size = misaligned_size;
unadjusted = lua_newuserdata(L, allocated_size);
adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
if (adjusted == nullptr) {
// trash allocator can burn in hell
lua_pop(L, 1);
//luaL_error(L, "if you are the one that wrote this allocator you should feel bad for doing a worse job than malloc/realloc and should go read some books, yeah?");
luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T*>().data());
}
}
return static_cast<T**>(adjusted);
}
template <typename T>
inline T* usertype_allocate(lua_State* L) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<T*>::value > 1 || std::alignment_of<T>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
T*& pointerreference = *pointerpointer;
T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1);
pointerreference = allocationtarget;
return allocationtarget;
}
/* the assumption is that `lua_newuserdata` -- unless someone
passes a specific lua_Alloc that gives us bogus, un-aligned pointers
-- uses malloc, which tends to hand out more or less aligned pointers to memory
(most of the time, anyhow)
but it's not guaranteed, so we have to do a post-adjustment check and increase padding
we do this preliminarily with compile-time stuff, to see
if we strike lucky with the allocator and alignment values
otherwise, we have to re-allocate the userdata and
over-allocate some space for additional padding because
compilers are optimized for aligned reads/writes
(and clang will barf UBsan errors on us for not being aligned)
*/
static const std::size_t initial_size = aligned_space_for<T*, T>(nullptr);
static const std::size_t misaligned_size = aligned_space_for<T*, T>(reinterpret_cast<void*>(0x1));
void* pointer_adjusted;
void* data_adjusted;
auto attempt_alloc = [](lua_State* L, std::size_t allocated_size, void*& pointer_adjusted, void*& data_adjusted) -> bool {
void* adjusted = lua_newuserdata(L, allocated_size);
pointer_adjusted = align(std::alignment_of<T*>::value, sizeof(T*), adjusted, allocated_size);
if (pointer_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
// subtract size of what we're going to allocate there
allocated_size -= sizeof(T*);
adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + sizeof(T*));
data_adjusted = align(std::alignment_of<T>::value, sizeof(T), adjusted, allocated_size);
if (data_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
return true;
};
bool result = attempt_alloc(L, initial_size, pointer_adjusted, data_adjusted);
if (!result) {
// we're likely to get something that fails to perform the proper allocation a second time,
// so we use the suggested_new_size bump to help us out here
pointer_adjusted = nullptr;
data_adjusted = nullptr;
result = attempt_alloc(L, misaligned_size, pointer_adjusted, data_adjusted);
if (!result) {
if (pointer_adjusted == nullptr) {
luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
}
else {
luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
}
return nullptr;
}
}
T** pointerpointer = reinterpret_cast<T**>(pointer_adjusted);
T*& pointerreference = *pointerpointer;
T* allocationtarget = reinterpret_cast<T*>(data_adjusted);
pointerreference = allocationtarget;
return allocationtarget;
}
template <typename T, typename Real>
inline Real* usertype_unique_allocate(lua_State* L, T**& pref, unique_destructor*& dx) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<T*>::value > 1 || std::alignment_of<unique_destructor>::value > 1 || std::alignment_of<Real>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
pref = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(detail::unique_destructor) + sizeof(Real)));
dx = static_cast<detail::unique_destructor*>(static_cast<void*>(pref + 1));
Real* mem = static_cast<Real*>(static_cast<void*>(dx + 1));
return mem;
}
static const std::size_t initial_size = aligned_space_for<T*, unique_destructor, Real>(nullptr);
static const std::size_t misaligned_size = aligned_space_for<T*, unique_destructor, Real>(reinterpret_cast<void*>(0x1));
void* pointer_adjusted;
void* dx_adjusted;
void* data_adjusted;
auto attempt_alloc = [](lua_State* L, std::size_t allocated_size, void*& pointer_adjusted, void*& dx_adjusted, void*& data_adjusted) -> bool {
void* adjusted = lua_newuserdata(L, allocated_size);
pointer_adjusted = align(std::alignment_of<T*>::value, sizeof(T*), adjusted, allocated_size);
if (pointer_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
allocated_size -= sizeof(T*);
adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + sizeof(T*));
dx_adjusted = align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), adjusted, allocated_size);
if (dx_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
allocated_size -= sizeof(unique_destructor);
adjusted = static_cast<void*>(static_cast<char*>(dx_adjusted) + sizeof(unique_destructor));
data_adjusted = align(std::alignment_of<Real>::value, sizeof(Real), adjusted, allocated_size);
if (data_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
return true;
};
bool result = attempt_alloc(L, initial_size, pointer_adjusted, dx_adjusted, data_adjusted);
if (!result) {
// we're likely to get something that fails to perform the proper allocation a second time,
// so we use the suggested_new_size bump to help us out here
pointer_adjusted = nullptr;
dx_adjusted = nullptr;
data_adjusted = nullptr;
result = attempt_alloc(L, misaligned_size, pointer_adjusted, dx_adjusted, data_adjusted);
if (!result) {
if (pointer_adjusted == nullptr) {
luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
}
else if (dx_adjusted == nullptr) {
luaL_error(L, "aligned allocation of userdata block (deleter section) for '%s' failed", detail::demangle<Real>().c_str());
}
else {
luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<Real>().c_str());
}
return nullptr;
}
}
pref = static_cast<T**>(pointer_adjusted);
dx = static_cast<detail::unique_destructor*>(dx_adjusted);
Real* mem = static_cast<Real*>(data_adjusted);
return mem;
}
template <typename T>
inline T* user_allocate(lua_State* L) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<T>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
T* pointer = static_cast<T*>(lua_newuserdata(L, sizeof(T)));
return pointer;
}
static const std::size_t initial_size = aligned_space_for<T>(nullptr);
static const std::size_t misaligned_size = aligned_space_for<T>(reinterpret_cast<void*>(0x1));
std::size_t allocated_size = initial_size;
void* unadjusted = lua_newuserdata(L, allocated_size);
void* adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size);
if (adjusted == nullptr) {
lua_pop(L, 1);
// try again, add extra space for alignment padding
allocated_size = misaligned_size;
unadjusted = lua_newuserdata(L, allocated_size);
adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size);
if (adjusted == nullptr) {
lua_pop(L, 1);
luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T>().data());
}
}
return static_cast<T*>(adjusted);
}
template <typename T>
inline int usertype_alloc_destruct(lua_State* L) {
void* memory = lua_touserdata(L, 1);
memory = align_usertype_pointer(memory);
T** pdata = static_cast<T**>(memory);
T* data = *pdata;
std::allocator<T> alloc{};
std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
return 0;
}
template <typename T>
inline int unique_destruct(lua_State* L) {
void* memory = lua_touserdata(L, 1);
memory = align_usertype_unique_destructor(memory);
unique_destructor& dx = *static_cast<unique_destructor*>(memory);
memory = static_cast<void*>(static_cast<char*>(memory) + sizeof(unique_destructor));
(dx)(memory);
return 0;
}
template <typename T>
inline int user_alloc_destruct(lua_State* L) {
void* memory = lua_touserdata(L, 1);
memory = align_user<T>(memory);
T* data = static_cast<T*>(memory);
std::allocator<T> alloc;
std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
return 0;
}
template <typename T, typename Real>
inline void usertype_unique_alloc_destroy(void* memory) {
memory = align_usertype_unique<Real, true>(memory);
Real* target = static_cast<Real*>(memory);
std::allocator<Real> alloc;
std::allocator_traits<std::allocator<Real>>::destroy(alloc, target);
}
template <typename T>
inline int cannot_destruct(lua_State* L) {
return luaL_error(L, "cannot call the destructor for '%s': it is either hidden (protected/private) or removed with '= delete' and thusly this type is being destroyed without properly destructing, invoking undefined behavior: please bind a usertype and specify a custom destructor to define the behavior properly", detail::demangle<T>().data());
}
template <typename T>
void reserve(T&, std::size_t) {
}
template <typename T, typename Al>
void reserve(std::vector<T, Al>& arr, std::size_t hint) {
arr.reserve(hint);
}
template <typename T, typename Tr, typename Al>
void reserve(std::basic_string<T, Tr, Al>& arr, std::size_t hint) {
arr.reserve(hint);
}
} // namespace detail
namespace stack {
template <typename T>
struct extensible {};
template <typename T, bool global = false, bool raw = false, typename = void>
struct field_getter;
template <typename T, bool global = false, bool raw = false, typename = void>
struct probe_field_getter;
template <typename T, bool global = false, bool raw = false, typename = void>
struct field_setter;
template <typename T, typename = void>
struct getter;
template <typename T, typename = void>
struct userdata_getter;
template <typename T, typename = void>
struct popper;
template <typename T, typename = void>
struct pusher;
template <typename T, type = lua_type_of<T>::value, typename = void>
struct checker;
template <typename T, typename = void>
struct userdata_checker;
template <typename T, typename = void>
struct check_getter;
struct probe {
bool success;
int levels;
probe(bool s, int l)
: success(s), levels(l) {
}
operator bool() const {
return success;
};
};
struct record {
int last;
int used;
record()
: last(), used() {
}
void use(int count) {
last = count;
used += count;
}
};
namespace stack_detail {
template <typename T>
struct strip {
typedef T type;
};
template <typename T>
struct strip<std::reference_wrapper<T>> {
typedef T& type;
};
template <typename T>
struct strip<user<T>> {
typedef T& type;
};
template <typename T>
struct strip<non_null<T>> {
typedef T type;
};
template <typename T>
using strip_t = typename strip<T>::type;
template <typename T>
struct strip_extensible { typedef T type; };
template <typename T>
struct strip_extensible<extensible<T>> { typedef T type; };
template <typename T>
using strip_extensible_t = typename strip_extensible<T>::type;
template <typename C>
static int get_size_hint(const C& c) {
return static_cast<int>(c.size());
}
template <typename V, typename Al>
static int get_size_hint(const std::forward_list<V, Al>&) {
// forward_list makes me sad
return static_cast<int>(32);
}
template <typename T>
inline decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) {
getter<meta::unqualified_t<T>> g{};
(void)g;
return g.get(L, index, tracking);
}
template <typename T, typename Arg, typename... Args>
inline int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
typedef meta::all<
std::is_lvalue_reference<T>,
meta::neg<std::is_const<T>>,
meta::neg<is_lua_primitive<meta::unqualified_t<T>>>,
meta::neg<is_unique_usertype<meta::unqualified_t<T>>>>
use_reference_tag;
return pusher<std::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>>{}.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
template <typename T, typename Handler>
bool check_usertype(std::false_type, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) {
typedef meta::unqualified_t<T> Tu;
typedef detail::as_value_tag<Tu> detail_t;
return checker<detail_t, type::userdata>{}.check(types<meta::unqualified_t<T>>(), L, index, indextype, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
bool check_usertype(std::true_type, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) {
typedef meta::unqualified_t<std::remove_pointer_t<meta::unqualified_t<T>>> Tu;
typedef detail::as_pointer_tag<Tu> detail_t;
return checker<detail_t, type::userdata>{}.check(L, index, indextype, std::forward<Handler>(handler), tracking);
}
} // namespace stack_detail
inline bool maybe_indexable(lua_State* L, int index = -1) {
type t = type_of(L, index);
return t == type::userdata || t == type::table;
}
inline int top(lua_State* L) {
return lua_gettop(L);
}
inline bool is_main_thread(lua_State* L) {
int ismainthread = lua_pushthread(L);
lua_pop(L, 1);
return ismainthread == 1;
}
inline void coroutine_create_guard(lua_State* L) {
if (is_main_thread(L)) {
return;
}
int stacksize = lua_gettop(L);
if (stacksize < 1) {
return;
}
if (type_of(L, 1) != type::function) {
return;
}
// well now we're screwed...
// we can clean the stack and pray it doesn't destroy anything?
lua_pop(L, stacksize);
}
template <typename T, typename... Args>
inline int push(lua_State* L, T&& t, Args&&... args) {
return pusher<meta::unqualified_t<T>>{}.push(L, std::forward<T>(t), std::forward<Args>(args)...);
}
// overload allows to use a pusher of a specific type, but pass in any kind of args
template <typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>>
inline int push(lua_State* L, Arg&& arg, Args&&... args) {
return pusher<meta::unqualified_t<T>>{}.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
template <typename T, typename... Args>
inline int push_reference(lua_State* L, T&& t, Args&&... args) {
return stack_detail::push_reference<T>(L, std::forward<T>(t), std::forward<Args>(args)...);
}
template <typename T, typename Arg, typename... Args>
inline int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
return stack_detail::push_reference<T>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
inline int multi_push(lua_State*) {
// do nothing
return 0;
}
template <typename T, typename... Args>
inline int multi_push(lua_State* L, T&& t, Args&&... args) {
int pushcount = push(L, std::forward<T>(t));
void(detail::swallow{ (pushcount += stack::push(L, std::forward<Args>(args)), 0)... });
return pushcount;
}
inline int multi_push_reference(lua_State*) {
// do nothing
return 0;
}
template <typename T, typename... Args>
inline int multi_push_reference(lua_State* L, T&& t, Args&&... args) {
int pushcount = push_reference(L, std::forward<T>(t));
void(detail::swallow{ (pushcount += stack::push_reference(L, std::forward<Args>(args)), 0)... });
return pushcount;
}
template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
typedef meta::unqualified_t<T> Tu;
checker<Tu> c;
// VC++ has a bad warning here: shut it up
(void)c;
return c.check(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler) {
record tracking{};
return check<T>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T>
bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return check<T>(L, index, handler);
}
template <typename T, typename Handler>
bool check_usertype(lua_State* L, int index, Handler&& handler, record& tracking) {
type indextype = type_of(L, index);
return stack_detail::check_usertype<T>(std::is_pointer<T>(), L, index, indextype, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
bool check_usertype(lua_State* L, int index, Handler&& handler) {
record tracking{};
return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T>
bool check_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return check_usertype<T>(L, index, handler);
}
template <typename T, typename Handler>
inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
typedef meta::unqualified_t<T> Tu;
check_getter<Tu> cg{};
(void)cg;
return cg.get(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler) {
record tracking{};
return check_get<T>(L, index, handler, tracking);
}
template <typename T>
inline decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return check_get<T>(L, index, handler);
}
namespace stack_detail {
#if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER
template <typename T>
inline auto tagged_get(types<T>, lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) {
auto op = check_get<T>(L, index, type_panic_c_str, tracking);
return *std::move(op);
}
template <typename T>
inline decltype(auto) tagged_get(types<optional<T>>, lua_State* L, int index, record& tracking) {
return stack_detail::unchecked_get<optional<T>>(L, index, tracking);
}
#else
template <typename T>
inline decltype(auto) tagged_get(types<T>, lua_State* L, int index, record& tracking) {
return stack_detail::unchecked_get<T>(L, index, tracking);
}
#endif
template <bool b>
struct check_types {
template <typename T, typename... Args, typename Handler>
static bool check(types<T, Args...>, lua_State* L, int firstargument, Handler&& handler, record& tracking) {
if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking))
return false;
return check(types<Args...>(), L, firstargument, std::forward<Handler>(handler), tracking);
}
template <typename Handler>
static bool check(types<>, lua_State*, int, Handler&&, record&) {
return true;
}
};
template <>
struct check_types<false> {
template <typename... Args, typename Handler>
static bool check(types<Args...>, lua_State*, int, Handler&&, record&) {
return true;
}
};
} // namespace stack_detail
template <bool b, typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack_detail::check_types<b>{}.check(types<meta::unqualified_t<Args>...>(), L, index, std::forward<Handler>(handler), tracking);
}
template <bool b, typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler) {
record tracking{};
return multi_check<b, Args...>(L, index, std::forward<Handler>(handler), tracking);
}
template <bool b, typename... Args>
bool multi_check(lua_State* L, int index) {
auto handler = no_panic;
return multi_check<b, Args...>(L, index, handler);
}
template <typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
return multi_check<true, Args...>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler) {
return multi_check<true, Args...>(L, index, std::forward<Handler>(handler));
}
template <typename... Args>
bool multi_check(lua_State* L, int index) {
return multi_check<true, Args...>(L, index);
}
template <typename T>
inline decltype(auto) get_usertype(lua_State* L, int index, record& tracking) {
#if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER
return stack_detail::tagged_get(types<std::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>>(), L, index, tracking);
#else
return stack_detail::unchecked_get<std::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>>(L, index, tracking);
#endif
}
template <typename T>
inline decltype(auto) get_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
record tracking{};
return get_usertype<T>(L, index, tracking);
}
template <typename T>
inline decltype(auto) get(lua_State* L, int index, record& tracking) {
return stack_detail::tagged_get(types<T>(), L, index, tracking);
}
template <typename T>
inline decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
record tracking{};
return get<T>(L, index, tracking);
}
template <typename T>
inline decltype(auto) pop(lua_State* L) {
return popper<meta::unqualified_t<T>>{}.pop(L);
}
template <bool global = false, bool raw = false, typename Key>
void get_field(lua_State* L, Key&& key) {
field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key));
}
template <bool global = false, bool raw = false, typename Key>
void get_field(lua_State* L, Key&& key, int tableindex) {
field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, typename Key>
void raw_get_field(lua_State* L, Key&& key) {
get_field<global, true>(L, std::forward<Key>(key));
}
template <bool global = false, typename Key>
void raw_get_field(lua_State* L, Key&& key, int tableindex) {
get_field<global, true>(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, bool raw = false, typename Key>
probe probe_get_field(lua_State* L, Key&& key) {
return probe_field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key));
}
template <bool global = false, bool raw = false, typename Key>
probe probe_get_field(lua_State* L, Key&& key, int tableindex) {
return probe_field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, typename Key>
probe probe_raw_get_field(lua_State* L, Key&& key) {
return probe_get_field<global, true>(L, std::forward<Key>(key));
}
template <bool global = false, typename Key>
probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) {
return probe_get_field<global, true>(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, bool raw = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value) {
field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global = false, bool raw = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}
template <bool global = false, typename Key, typename Value>
void raw_set_field(lua_State* L, Key&& key, Value&& value) {
set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global = false, typename Key, typename Value>
void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}
template <typename T, typename F>
inline void modify_unique_usertype_as(const stack_reference& obj, F&& f) {
typedef unique_usertype_traits<T> u_traits;
void* raw = lua_touserdata(obj.lua_state(), obj.stack_index());
void* ptr_memory = detail::align_usertype_pointer(raw);
void* uu_memory = detail::align_usertype_unique<T>(raw);
T& uu = *static_cast<T*>(uu_memory);
f(uu);
*static_cast<void**>(ptr_memory) = static_cast<void*>(u_traits::get(uu));
}
template <typename F>
inline void modify_unique_usertype(const stack_reference& obj, F&& f) {
typedef meta::bind_traits<meta::unqualified_t<F>> bt;
typedef typename bt::template arg_at<0> T;
modify_unique_usertype_as<meta::unqualified_t<T>>(obj, std::forward<F>(f));
}
} // namespace stack
} // namespace sol
// end of sol/stack_core.hpp
// beginning of sol/stack_check.hpp
// beginning of sol/usertype_traits.hpp
namespace sol {
template <typename T>
struct usertype_traits {
static const std::string& name() {
static const std::string& n = detail::short_demangle<T>();
return n;
}
static const std::string& qualified_name() {
static const std::string& q_n = detail::demangle<T>();
return q_n;
}
static const std::string& metatable() {
static const std::string m = std::string("sol.").append(detail::demangle<T>());
return m;
}
static const std::string& user_metatable() {
static const std::string u_m = std::string("sol.").append(detail::demangle<T>()).append(".user");
return u_m;
}
static const std::string& user_gc_metatable() {
static const std::string u_g_m = std::string("sol.").append(detail::demangle<T>()).append(".user\xE2\x99\xBB");
return u_g_m;
}
static const std::string& gc_table() {
static const std::string g_t = std::string("sol.").append(detail::demangle<T>()).append(".\xE2\x99\xBB");
return g_t;
}
};
} // namespace sol
// end of sol/usertype_traits.hpp
// beginning of sol/inheritance.hpp
namespace sol {
template <typename... Args>
struct base_list {};
template <typename... Args>
using bases = base_list<Args...>;
typedef bases<> base_classes_tag;
const auto base_classes = base_classes_tag();
namespace detail {
template <typename T>
struct has_derived {
static bool value;
};
template <typename T>
bool has_derived<T>::value = false;
inline decltype(auto) base_class_check_key() {
static const auto& key = "class_check";
return key;
}
inline decltype(auto) base_class_cast_key() {
static const auto& key = "class_cast";
return key;
}
inline decltype(auto) base_class_index_propogation_key() {
static const auto& key = u8"\xF0\x9F\x8C\xB2.index";
return key;
}
inline decltype(auto) base_class_new_index_propogation_key() {
static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index";
return key;
}
template <typename T, typename... Bases>
struct inheritance {
static bool type_check_bases(types<>, const std::string&) {
return false;
}
template <typename Base, typename... Args>
static bool type_check_bases(types<Base, Args...>, const std::string& ti) {
return ti == usertype_traits<Base>::qualified_name() || type_check_bases(types<Args...>(), ti);
}
static bool type_check(const std::string& ti) {
return ti == usertype_traits<T>::qualified_name() || type_check_bases(types<Bases...>(), ti);
}
static void* type_cast_bases(types<>, T*, const std::string&) {
return nullptr;
}
template <typename Base, typename... Args>
static void* type_cast_bases(types<Base, Args...>, T* data, const std::string& ti) {
// Make sure to convert to T first, and then dynamic cast to the proper type
return ti != usertype_traits<Base>::qualified_name() ? type_cast_bases(types<Args...>(), data, ti) : static_cast<void*>(static_cast<Base*>(data));
}
static void* type_cast(void* voiddata, const std::string& ti) {
T* data = static_cast<T*>(voiddata);
return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(types<Bases...>(), data, ti) : data);
}
};
using inheritance_check_function = decltype(&inheritance<void>::type_check);
using inheritance_cast_function = decltype(&inheritance<void>::type_cast);
} // namespace detail
} // namespace sol
// end of sol/inheritance.hpp
#include <cmath>
#ifdef SOL_CXX17_FEATURES
#ifdef SOL_STD_VARIANT
#endif // SOL_STD_VARIANT
#endif // SOL_CXX17_FEATURES
namespace sol {
namespace stack {
namespace stack_detail {
template <typename T, bool poptable = true>
inline bool check_metatable(lua_State* L, int index = -2) {
const auto& metakey = usertype_traits<T>::metatable();
luaL_getmetatable(L, &metakey[0]);
const type expectedmetatabletype = static_cast<type>(lua_type(L, -1));
if (expectedmetatabletype != type::lua_nil) {
if (lua_rawequal(L, -1, index) == 1) {
lua_pop(L, 1 + static_cast<int>(poptable));
return true;
}
}
lua_pop(L, 1);
return false;
}
template <type expected, int (*check_func)(lua_State*, int)>
struct basic_check {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
bool success = check_func(L, index) == 1;
if (!success) {
// expected type, actual type
handler(L, index, expected, type_of(L, index), "");
}
return success;
}
};
} // namespace stack_detail
template <typename T, typename>
struct userdata_checker {
template <typename Handler>
static bool check(lua_State*, int, type, Handler&&, record&) {
return false;
}
};
template <typename T, type expected, typename>
struct checker {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
const type indextype = type_of(L, index);
bool success = expected == indextype;
if (!success) {
// expected type, actual type, message
handler(L, index, expected, indextype, "");
}
return success;
}
};
template <typename T>
struct checker<T, type::number, std::enable_if_t<std::is_integral<T>::value>> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
#if SOL_LUA_VERSION >= 503
#if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS
int isnum = 0;
lua_tointegerx(L, index, &isnum);
const bool success = isnum != 0;
if (!success) {
// expected type, actual type
handler(L, index, type::number, type_of(L, index), "not a numeric type or numeric string");
}
#elif (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION)
// this check is precise, does not convert
if (lua_isinteger(L, index) == 1) {
return true;
}
const bool success = false;
if (!success) {
// expected type, actual type
handler(L, index, type::number, type_of(L, index), "not a numeric (integral) type");
}
#else
type t = type_of(L, index);
const bool success = t == type::number;
#endif // If numbers are enabled, use the imprecise check
if (!success) {
// expected type, actual type
handler(L, index, type::number, type_of(L, index), "not a numeric type");
}
return success;
#else
#if !defined(SOL_STRINGS_ARE_NUMBERS) || !SOL_STRINGS_ARE_NUMBERS
// must pre-check, because it will convert
type t = type_of(L, index);
if (t != type::number) {
// expected type, actual type
handler(L, index, type::number, t, "not a numeric type");
return false;
}
#endif // Do not allow strings to be numbers
int isnum = 0;
const lua_Number v = lua_tonumberx(L, index, &isnum);
const bool success = isnum != 0
#if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION)
&& static_cast<lua_Number>(llround(v)) == v
#endif // Safe numerics and number precision checking
;
if (!success) {
// expected type, actual type
#if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS
handler(L, index, type::number, t, "not a numeric type");
#else
handler(L, index, type::number, type_of(L, index), "not a numeric type or numeric string");
#endif
}
return success;
#endif // Lua Version 5.3 versus others
}
};
template <typename T>
struct checker<T, type::number, std::enable_if_t<std::is_floating_point<T>::value>> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
#if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS
bool success = lua_isnumber(L, index) == 1;
if (!success) {
// expected type, actual type
handler(L, index, type::number, type_of(L, index), "not a numeric type or numeric string");
}
return success;
#else
type t = type_of(L, index);
bool success = t == type::number;
if (!success) {
// expected type, actual type
handler(L, index, type::number, t, "not a numeric type");
}
return success;
#endif // Strings are Numbers
}
};
template <type expected, typename C>
struct checker<lua_nil_t, expected, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
bool success = lua_isnil(L, index);
if (success) {
tracking.use(1);
return success;
}
tracking.use(0);
success = lua_isnone(L, index);
if (!success) {
// expected type, actual type
handler(L, index, expected, type_of(L, index), "");
}
return success;
}
};
template <type expected, typename C>
struct checker<nullopt_t, expected, C> : checker<lua_nil_t> {};
template <typename C>
struct checker<this_state, type::poly, C> {
template <typename Handler>
static bool check(lua_State*, int, Handler&&, record& tracking) {
tracking.use(0);
return true;
}
};
template <typename C>
struct checker<this_main_state, type::poly, C> {
template <typename Handler>
static bool check(lua_State*, int, Handler&&, record& tracking) {
tracking.use(0);
return true;
}
};
template <typename C>
struct checker<this_environment, type::poly, C> {
template <typename Handler>
static bool check(lua_State*, int, Handler&&, record& tracking) {
tracking.use(0);
return true;
}
};
template <typename C>
struct checker<variadic_args, type::poly, C> {
template <typename Handler>
static bool check(lua_State*, int, Handler&&, record& tracking) {
tracking.use(0);
return true;
}
};
template <typename C>
struct checker<type, type::poly, C> {
template <typename Handler>
static bool check(lua_State*, int, Handler&&, record& tracking) {
tracking.use(0);
return true;
}
};
template <typename T, typename C>
struct checker<T, type::poly, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
bool success = is_lua_reference<T>::value || !lua_isnone(L, index);
if (!success) {
// expected type, actual type
handler(L, index, type::poly, type_of(L, index), "");
}
return success;
}
};
template <typename T, typename C>
struct checker<T, type::lightuserdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
type t = type_of(L, index);
bool success = t == type::userdata || t == type::lightuserdata;
if (!success) {
// expected type, actual type
handler(L, index, type::lightuserdata, t, "");
}
return success;
}
};
template <typename C>
struct checker<userdata_value, type::userdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
type t = type_of(L, index);
bool success = t == type::userdata;
if (!success) {
// expected type, actual type
handler(L, index, type::userdata, t, "");
}
return success;
}
};
template <typename B, typename C>
struct checker<basic_userdata<B>, type::userdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack::check<userdata_value>(L, index, std::forward<Handler>(handler), tracking);
}
};
template <typename T, typename C>
struct checker<user<T>, type::userdata, C> : checker<user<T>, type::lightuserdata, C> {};
template <typename T, typename C>
struct checker<non_null<T>, type::userdata, C> : checker<T, lua_type_of<T>::value, C> {};
template <typename C>
struct checker<lua_CFunction, type::function, C> : stack_detail::basic_check<type::function, lua_iscfunction> {};
template <typename C>
struct checker<std::remove_pointer_t<lua_CFunction>, type::function, C> : checker<lua_CFunction, type::function, C> {};
template <typename C>
struct checker<c_closure, type::function, C> : checker<lua_CFunction, type::function, C> {};
template <typename T, typename C>
struct checker<T, type::function, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
type t = type_of(L, index);
if (t == type::lua_nil || t == type::none || t == type::function) {
// allow for lua_nil to be returned
return true;
}
if (t != type::userdata && t != type::table) {
handler(L, index, type::function, t, "must be a function or table or a userdata");
return false;
}
// Do advanced check for call-style userdata?
static const auto& callkey = to_string(meta_function::call);
if (lua_getmetatable(L, index) == 0) {
// No metatable, no __call key possible
handler(L, index, type::function, t, "value is not a function and does not have overriden metatable");
return false;
}
if (lua_isnoneornil(L, -1)) {
lua_pop(L, 1);
handler(L, index, type::function, t, "value is not a function and does not have valid metatable");
return false;
}
lua_getfield(L, -1, &callkey[0]);
if (lua_isnoneornil(L, -1)) {
lua_pop(L, 2);
handler(L, index, type::function, t, "value's metatable does not have __call overridden in metatable, cannot call this type");
return false;
}
// has call, is definitely a function
lua_pop(L, 2);
return true;
}
};
template <typename T, typename C>
struct checker<T, type::table, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
type t = type_of(L, index);
if (t == type::table) {
return true;
}
if (t != type::userdata) {
handler(L, index, type::table, t, "value is not a table or a userdata that can behave like one");
return false;
}
return true;
}
};
template <type expected, typename C>
struct checker<metatable_t, expected, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
if (lua_getmetatable(L, index) == 0) {
return true;
}
type t = type_of(L, -1);
if (t == type::table || t == type::none || t == type::lua_nil) {
lua_pop(L, 1);
return true;
}
if (t != type::userdata) {
lua_pop(L, 1);
handler(L, index, expected, t, "value does not have a valid metatable");
return false;
}
return true;
}
};
template <typename C>
struct checker<env_t, type::poly, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
type t = type_of(L, index);
if (t == type::table || t == type::none || t == type::lua_nil || t == type::userdata) {
return true;
}
handler(L, index, type::table, t, "value cannot not have a valid environment");
return true;
}
};
template <typename E, typename C>
struct checker<basic_environment<E>, type::poly, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
if (lua_getmetatable(L, index) == 0) {
return true;
}
type t = type_of(L, -1);
if (t == type::table || t == type::none || t == type::lua_nil) {
lua_pop(L, 1);
return true;
}
if (t != type::userdata) {
lua_pop(L, 1);
handler(L, index, type::table, t, "value does not have a valid metatable");
return false;
}
return true;
}
};
template <typename T, typename C>
struct checker<detail::as_value_tag<T>, type::userdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
const type indextype = type_of(L, index);
return check(types<T>(), L, index, indextype, handler, tracking);
}
template <typename U, typename Handler>
static bool check(types<U>, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) {
#if defined(SOL_ENABLE_INTEROP) && SOL_ENABLE_INTEROP
userdata_checker<extensible<T>> uc;
(void)uc;
if (uc.check(L, index, indextype, handler, tracking)) {
return true;
}
#endif // interop extensibility
tracking.use(1);
if (indextype != type::userdata) {
handler(L, index, type::userdata, indextype, "value is not a valid userdata");
return false;
}
if (meta::any<std::is_same<T, lightuserdata_value>, std::is_same<T, userdata_value>, std::is_same<T, userdata>, std::is_same<T, lightuserdata>>::value)
return true;
if (lua_getmetatable(L, index) == 0) {
return true;
}
int metatableindex = lua_gettop(L);
if (stack_detail::check_metatable<U>(L, metatableindex))
return true;
if (stack_detail::check_metatable<U*>(L, metatableindex))
return true;
if (stack_detail::check_metatable<detail::unique_usertype<U>>(L, metatableindex))
return true;
if (stack_detail::check_metatable<as_container_t<U>>(L, metatableindex))
return true;
bool success = false;
if (detail::has_derived<T>::value) {
auto pn = stack::pop_n(L, 1);
lua_pushstring(L, &detail::base_class_check_key()[0]);
lua_rawget(L, metatableindex);
if (type_of(L, -1) != type::lua_nil) {
void* basecastdata = lua_touserdata(L, -1);
detail::inheritance_check_function ic = reinterpret_cast<detail::inheritance_check_function>(basecastdata);
success = ic(usertype_traits<T>::qualified_name());
}
}
if (!success) {
lua_pop(L, 1);
handler(L, index, type::userdata, indextype, "value at this index does not properly reflect the desired type");
return false;
}
lua_pop(L, 1);
return true;
}
};
template <typename T, typename C>
struct checker<detail::as_pointer_tag<T>, type::userdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, type indextype, Handler&& handler, record& tracking) {
if (indextype == type::lua_nil) {
tracking.use(1);
return true;
}
return stack_detail::check_usertype<T>(std::false_type(), L, index, indextype, std::forward<Handler>(handler), tracking);
}
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
const type indextype = type_of(L, index);
return check(L, index, handler, indextype, tracking);
}
};
template <typename T, typename C>
struct checker<T, type::userdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
}
};
template <typename T, typename C>
struct checker<T*, type::userdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return check_usertype<T*>(L, index, std::forward<Handler>(handler), tracking);
}
};
template <typename X>
struct checker<X, type::userdata, std::enable_if_t<is_unique_usertype<X>::value>> {
typedef typename unique_usertype_traits<X>::type T;
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
const type indextype = type_of(L, index);
tracking.use(1);
if (indextype != type::userdata) {
handler(L, index, type::userdata, indextype, "value is not a userdata");
return false;
}
if (lua_getmetatable(L, index) == 0) {
return true;
}
int metatableindex = lua_gettop(L);
if (stack_detail::check_metatable<detail::unique_usertype<T>>(L, metatableindex)) {
void* memory = lua_touserdata(L, index);
memory = detail::align_usertype_unique_destructor(memory);
detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory);
bool success = &detail::usertype_unique_alloc_destroy<T, X> == pdx;
if (!success) {
handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype");
}
return success;
}
lua_pop(L, 1);
handler(L, index, type::userdata, indextype, "unrecognized userdata (not pushed by sol?)");
return false;
}
};
template <typename T, typename C>
struct checker<std::reference_wrapper<T>, type::userdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return checker<T, type::userdata, C>{}.check(L, index, std::forward<Handler>(handler), tracking);
}
};
template <typename... Args, typename C>
struct checker<std::tuple<Args...>, type::poly, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack::multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking);
}
};
template <typename A, typename B, typename C>
struct checker<std::pair<A, B>, type::poly, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack::multi_check<A, B>(L, index, std::forward<Handler>(handler), tracking);
}
};
template <typename T, typename C>
struct checker<optional<T>, type::poly, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&&, record& tracking) {
type t = type_of(L, index);
if (t == type::none) {
tracking.use(0);
return true;
}
if (t == type::lua_nil) {
tracking.use(1);
return true;
}
return stack::check<T>(L, index, no_panic, tracking);
}
};
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT
template <typename... Tn, typename C>
struct checker<std::variant<Tn...>, type::poly, C> {
typedef std::variant<Tn...> V;
typedef std::variant_size<V> V_size;
typedef std::integral_constant<bool, V_size::value == 0> V_is_empty;
template <typename Handler>
static bool is_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) {
if (V_is_empty::value && lua_isnone(L, index)) {
return true;
}
tracking.use(1);
handler(L, index, type::poly, type_of(L, index), "value does not fit any type present in the variant");
return false;
}
template <std::size_t I, typename Handler>
static bool is_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) {
typedef std::variant_alternative_t<I - 1, V> T;
if (stack::check<T>(L, index, no_panic, tracking)) {
return true;
}
return is_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking);
}
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return is_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking);
}
};
#endif // SOL_STD_VARIANT
#endif // SOL_CXX17_FEATURES
}
} // namespace sol::stack
// end of sol/stack_check.hpp
// beginning of sol/stack_get.hpp
// beginning of sol/overload.hpp
namespace sol {
template <typename... Functions>
struct overload_set {
std::tuple<Functions...> functions;
template <typename Arg, typename... Args, meta::disable<std::is_same<overload_set, meta::unqualified_t<Arg>>> = meta::enabler>
overload_set(Arg&& arg, Args&&... args)
: functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
overload_set(const overload_set&) = default;
overload_set(overload_set&&) = default;
overload_set& operator=(const overload_set&) = default;
overload_set& operator=(overload_set&&) = default;
};
template <typename... Args>
decltype(auto) overload(Args&&... args) {
return overload_set<std::decay_t<Args>...>(std::forward<Args>(args)...);
}
} // namespace sol
// end of sol/overload.hpp
// beginning of sol/unicode.hpp
namespace sol {
// Everything here was lifted pretty much straight out of
// ogonek, because fuck figuring it out=
namespace unicode {
enum class error_code {
ok = 0,
invalid_code_point,
invalid_code_unit,
invalid_leading_surrogate,
invalid_trailing_surrogate,
sequence_too_short,
overlong_sequence,
};
inline const string_view& to_string(error_code ec) {
static const string_view arr[4] = {
"ok",
"invalid code points",
"invalid code unit",
"overlong sequence"
};
return arr[static_cast<std::size_t>(ec)];
}
template <typename It>
struct decoded_result {
error_code error;
char32_t codepoint;
It next;
};
template <typename C>
struct encoded_result {
error_code error;
std::size_t code_units_size;
std::array<C, 4> code_units;
};
struct unicode_detail {
// codepoint related
static constexpr char32_t last_code_point = 0x10FFFF;
static constexpr char32_t first_lead_surrogate = 0xD800;
static constexpr char32_t last_lead_surrogate = 0xDBFF;
static constexpr char32_t first_trail_surrogate = 0xDC00;
static constexpr char32_t last_trail_surrogate = 0xDFFF;
static constexpr char32_t first_surrogate = first_lead_surrogate;
static constexpr char32_t last_surrogate = last_trail_surrogate;
static constexpr bool is_lead_surrogate(char32_t u) {
return u >= first_lead_surrogate && u <= last_lead_surrogate;
}
static constexpr bool is_trail_surrogate(char32_t u) {
return u >= first_trail_surrogate && u <= last_trail_surrogate;
}
static constexpr bool is_surrogate(char32_t u) {
return u >= first_surrogate && u <= last_surrogate;
}
// utf8 related
static constexpr auto last_1byte_value = 0x7Fu;
static constexpr auto last_2byte_value = 0x7FFu;
static constexpr auto last_3byte_value = 0xFFFFu;
static constexpr auto start_2byte_mask = 0x80u;
static constexpr auto start_3byte_mask = 0xE0u;
static constexpr auto start_4byte_mask = 0xF0u;
static constexpr auto continuation_mask = 0xC0u;
static constexpr auto continuation_signature = 0x80u;
static constexpr int sequence_length(unsigned char b) {
return (b & start_2byte_mask) == 0 ? 1
: (b & start_3byte_mask) != start_3byte_mask ? 2
: (b & start_4byte_mask) != start_4byte_mask ? 3
: 4;
}
static constexpr char32_t decode(unsigned char b0, unsigned char b1) {
return ((b0 & 0x1F) << 6) | (b1 & 0x3F);
}
static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2) {
return ((b0 & 0x0F) << 12) | ((b1 & 0x3F) << 6) | (b2 & 0x3F);
}
static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2, unsigned char b3) {
return ((b0 & 0x07) << 18) | ((b1 & 0x3F) << 12) | ((b2 & 0x3F) << 6) | (b3 & 0x3F);
}
// utf16 related
static constexpr char32_t last_bmp_value = 0xFFFF;
static constexpr char32_t normalizing_value = 0x10000;
static constexpr int lead_surrogate_bitmask = 0xFFC00;
static constexpr int trail_surrogate_bitmask = 0x3FF;
static constexpr int lead_shifted_bits = 10;
static constexpr char32_t replacement = 0xFFFD;
static char32_t combine_surrogates(char16_t lead, char16_t trail) {
auto hi = lead - first_lead_surrogate;
auto lo = trail - first_trail_surrogate;
return normalizing_value + ((hi << lead_shifted_bits) | lo);
}
};
inline encoded_result<char> code_point_to_utf8(char32_t codepoint) {
encoded_result<char> er;
er.error = error_code::ok;
if (codepoint <= unicode_detail::last_1byte_value) {
er.code_units_size = 1;
er.code_units = std::array<char, 4>{ { static_cast<char>(codepoint) } };
}
else if (codepoint <= unicode_detail::last_2byte_value) {
er.code_units_size = 2;
er.code_units = std::array<char, 4>{{
static_cast<char>(0xC0 | ((codepoint & 0x7C0) >> 6)),
static_cast<char>(0x80 | (codepoint & 0x3F)),
}};
}
else if (codepoint <= unicode_detail::last_3byte_value) {
er.code_units_size = 3;
er.code_units = std::array<char, 4>{{
static_cast<char>(0xE0 | ((codepoint & 0xF000) >> 12)),
static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)),
static_cast<char>(0x80 | (codepoint & 0x3F)),
}};
}
else {
er.code_units_size = 4;
er.code_units = std::array<char, 4>{ {
static_cast<char>(0xF0 | ((codepoint & 0x1C0000) >> 18)),
static_cast<char>(0x80 | ((codepoint & 0x3F000) >> 12)),
static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)),
static_cast<char>(0x80 | (codepoint & 0x3F)),
} };
}
return er;
}
inline encoded_result<char16_t> code_point_to_utf16(char32_t codepoint) {
encoded_result<char16_t> er;
if (codepoint <= unicode_detail::last_bmp_value) {
er.code_units_size = 1;
er.code_units = std::array<char16_t, 4>{ { static_cast<char16_t>(codepoint) } };
er.error = error_code::ok;
}
else {
auto normal = codepoint - unicode_detail::normalizing_value;
auto lead = unicode_detail::first_lead_surrogate + ((normal & unicode_detail::lead_surrogate_bitmask) >> unicode_detail::lead_shifted_bits);
auto trail = unicode_detail::first_trail_surrogate + (normal & unicode_detail::trail_surrogate_bitmask);
er.code_units = std::array<char16_t, 4>{ {
static_cast<char16_t>(lead),
static_cast<char16_t>(trail)
} };
er.code_units_size = 2;
er.error = error_code::ok;
}
return er;
}
inline encoded_result<char32_t> code_point_to_utf32(char32_t codepoint) {
encoded_result<char32_t> er;
er.code_units_size = 1;
er.code_units[0] = codepoint;
er.error = error_code::ok;
return er;
}
template <typename It>
inline decoded_result<It> utf8_to_code_point(It it, It last) {
decoded_result<It> dr;
if (it == last) {
dr.next = it;
dr.error = error_code::sequence_too_short;
return dr;
}
unsigned char b0 = *it;
std::size_t length = unicode_detail::sequence_length(b0);
if (length == 1) {
dr.codepoint = static_cast<char32_t>(b0);
dr.error = error_code::ok;
++it;
dr.next = it;
return dr;
}
auto is_invalid = [](unsigned char b) { return b == 0xC0 || b == 0xC1 || b > 0xF4; };
auto is_continuation = [](unsigned char b) {
return (b & unicode_detail::continuation_mask) == unicode_detail::continuation_signature;
};
if (is_invalid(b0) || is_continuation(b0)) {
dr.error = error_code::invalid_code_unit;
dr.next = it;
return dr;
}
++it;
std::array<unsigned char, 4> b;
b[0] = b0;
for (std::size_t i = 1; i < length; ++i) {
b[i] = *it;
if (!is_continuation(b[i])) {
dr.error = error_code::invalid_code_unit;
dr.next = it;
return dr;
}
++it;
}
char32_t decoded;
switch (length) {
case 2:
decoded = unicode_detail::decode(b[0], b[1]);
break;
case 3:
decoded = unicode_detail::decode(b[0], b[1], b[2]);
break;
default:
decoded = unicode_detail::decode(b[0], b[1], b[2], b[3]);
break;
}
auto is_overlong = [](char32_t u, std::size_t bytes) {
return u <= unicode_detail::last_1byte_value
|| (u <= unicode_detail::last_2byte_value && bytes > 2)
|| (u <= unicode_detail::last_3byte_value && bytes > 3);
};
if (is_overlong(decoded, length)) {
dr.error = error_code::overlong_sequence;
return dr;
}
if (unicode_detail::is_surrogate(decoded) || decoded > unicode_detail::last_code_point) {
dr.error = error_code::invalid_code_point;
return dr;
}
// then everything is fine
dr.codepoint = decoded;
dr.error = error_code::ok;
dr.next = it;
return dr;
}
template <typename It>
inline decoded_result<It> utf16_to_code_point(It it, It last) {
decoded_result<It> dr;
if (it == last) {
dr.next = it;
dr.error = error_code::sequence_too_short;
return dr;
}
char16_t lead = static_cast<char16_t>(*it);
if (!unicode_detail::is_surrogate(lead)) {
++it;
dr.codepoint = static_cast<char32_t>(lead);
dr.next = it;
dr.error = error_code::ok;
return dr;
}
if (!unicode_detail::is_lead_surrogate(lead)) {
dr.error = error_code::invalid_leading_surrogate;
dr.next = it;
return dr;
}
++it;
auto trail = *it;
if (!unicode_detail::is_trail_surrogate(trail)) {
dr.error = error_code::invalid_trailing_surrogate;
dr.next = it;
return dr;
}
dr.codepoint = unicode_detail::combine_surrogates(lead, trail);
dr.next = ++it;
dr.error = error_code::ok;
return dr;
}
template <typename It>
inline decoded_result<It> utf32_to_code_point(It it, It last) {
decoded_result<It> dr;
if (it == last) {
dr.next = it;
dr.error = error_code::sequence_too_short;
return dr;
}
dr.codepoint = static_cast<char32_t>(*it);
dr.next = ++it;
dr.error = error_code::ok;
return dr;
}
}
}
// end of sol/unicode.hpp
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT
#endif // Apple clang screwed up
#endif // C++17
namespace sol {
namespace stack {
template <typename U>
struct userdata_getter<U> {
typedef stack_detail::strip_extensible_t<U> T;
static std::pair<bool, T*> get(lua_State*, int, void*, record&) {
return { false, nullptr };
}
};
template <typename T, typename>
struct getter {
static T& get(lua_State* L, int index, record& tracking) {
return getter<detail::as_value_tag<T>>{}.get(L, index, tracking);
}
};
template <typename T>
struct getter<T, std::enable_if_t<std::is_floating_point<T>::value>> {
static T get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return static_cast<T>(lua_tonumber(L, index));
}
};
template <typename T>
struct getter<T, std::enable_if_t<std::is_integral<T>::value>> {
static T get(lua_State* L, int index, record& tracking) {
tracking.use(1);
#if SOL_LUA_VERSION >= 503
if (lua_isinteger(L, index) != 0) {
return static_cast<T>(lua_tointeger(L, index));
}
#endif
return static_cast<T>(llround(lua_tonumber(L, index)));
}
};
template <typename T>
struct getter<T, std::enable_if_t<std::is_enum<T>::value>> {
static T get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return static_cast<T>(lua_tointegerx(L, index, nullptr));
}
};
template <typename T>
struct getter<as_table_t<T>> {
typedef meta::unqualified_t<T> Tu;
template <typename V>
static void push_back_at_end(std::true_type, types<V>, lua_State* L, T& arr, std::size_t) {
arr.push_back(stack::get<V>(L, -lua_size<V>::value));
}
template <typename V>
static void push_back_at_end(std::false_type, types<V> t, lua_State* L, T& arr, std::size_t idx) {
insert_at_end(meta::has_insert<Tu>(), t, L, arr, idx);
}
template <typename V>
static void insert_at_end(std::true_type, types<V>, lua_State* L, T& arr, std::size_t) {
using std::end;
arr.insert(end(arr), stack::get<V>(L, -lua_size<V>::value));
}
template <typename V>
static void insert_at_end(std::false_type, types<V>, lua_State* L, T& arr, std::size_t idx) {
arr[idx] = stack::get<V>(L, -lua_size<V>::value);
}
static T get(lua_State* L, int relindex, record& tracking) {
return get(meta::has_key_value_pair<meta::unqualified_t<T>>(), L, relindex, tracking);
}
static T get(std::false_type, lua_State* L, int relindex, record& tracking) {
typedef typename T::value_type V;
return get(types<V>(), L, relindex, tracking);
}
template <typename V>
static T get(types<V> t, lua_State* L, int relindex, record& tracking) {
tracking.use(1);
int index = lua_absindex(L, relindex);
T arr;
std::size_t idx = 0;
#if SOL_LUA_VERSION >= 503
// This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3
for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
if (idx >= arr.max_size()) {
return arr;
}
bool isnil = false;
for (int vi = 0; vi < lua_size<V>::value; ++vi) {
type vt = static_cast<type>(lua_geti(L, index, i + vi));
isnil = vt == type::lua_nil;
if (isnil) {
if (i == 0) {
break;
}
lua_pop(L, (vi + 1));
return arr;
}
}
if (isnil)
continue;
push_back_at_end(meta::has_push_back<Tu>(), t, L, arr, idx);
++idx;
}
#else
// Zzzz slower but necessary thanks to the lower version API and missing functions qq
for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
if (idx >= arr.max_size()) {
return arr;
}
bool isnil = false;
for (int vi = 0; vi < lua_size<V>::value; ++vi) {
lua_pushinteger(L, i);
lua_gettable(L, index);
type vt = type_of(L, -1);
isnil = vt == type::lua_nil;
if (isnil) {
if (i == 0) {
break;
}
lua_pop(L, (vi + 1));
return arr;
}
}
if (isnil)
continue;
push_back_at_end(meta::has_push_back<Tu>(), t, L, arr, idx);
++idx;
}
#endif
return arr;
}
static T get(std::true_type, lua_State* L, int index, record& tracking) {
typedef typename T::value_type P;
typedef typename P::first_type K;
typedef typename P::second_type V;
return get(types<K, V>(), L, index, tracking);
}
template <typename K, typename V>
static T get(types<K, V>, lua_State* L, int relindex, record& tracking) {
tracking.use(1);
T associative;
int index = lua_absindex(L, relindex);
lua_pushnil(L);
while (lua_next(L, index) != 0) {
decltype(auto) key = stack::check_get<K>(L, -2);
if (!key) {
lua_pop(L, 1);
continue;
}
associative.emplace(std::forward<decltype(*key)>(*key), stack::get<V>(L, -1));
lua_pop(L, 1);
}
return associative;
}
};
template <typename T, typename Al>
struct getter<as_table_t<std::forward_list<T, Al>>> {
typedef std::forward_list<T, Al> C;
static C get(lua_State* L, int relindex, record& tracking) {
return get(meta::has_key_value_pair<C>(), L, relindex, tracking);
}
static C get(std::true_type, lua_State* L, int index, record& tracking) {
typedef typename T::value_type P;
typedef typename P::first_type K;
typedef typename P::second_type V;
return get(types<K, V>(), L, index, tracking);
}
static C get(std::false_type, lua_State* L, int relindex, record& tracking) {
typedef typename C::value_type V;
return get(types<V>(), L, relindex, tracking);
}
template <typename V>
static C get(types<V>, lua_State* L, int relindex, record& tracking) {
tracking.use(1);
int index = lua_absindex(L, relindex);
C arr;
auto at = arr.cbefore_begin();
std::size_t idx = 0;
#if SOL_LUA_VERSION >= 503
// This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3
for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
if (idx >= arr.max_size()) {
return arr;
}
bool isnil = false;
for (int vi = 0; vi < lua_size<V>::value; ++vi) {
type t = static_cast<type>(lua_geti(L, index, i + vi));
isnil = t == type::lua_nil;
if (isnil) {
if (i == 0) {
break;
}
lua_pop(L, (vi + 1));
return arr;
}
}
if (isnil)
continue;
at = arr.insert_after(at, stack::get<V>(L, -lua_size<V>::value));
++idx;
}
#else
// Zzzz slower but necessary thanks to the lower version API and missing functions qq
for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
if (idx >= arr.max_size()) {
return arr;
}
bool isnil = false;
for (int vi = 0; vi < lua_size<V>::value; ++vi) {
lua_pushinteger(L, i);
lua_gettable(L, index);
type t = type_of(L, -1);
isnil = t == type::lua_nil;
if (isnil) {
if (i == 0) {
break;
}
lua_pop(L, (vi + 1));
return arr;
}
}
if (isnil)
continue;
at = arr.insert_after(at, stack::get<V>(L, -lua_size<V>::value));
++idx;
}
#endif
return arr;
}
template <typename K, typename V>
static C get(types<K, V>, lua_State* L, int relindex, record& tracking) {
tracking.use(1);
C associative;
auto at = associative.cbefore_begin();
int index = lua_absindex(L, relindex);
lua_pushnil(L);
while (lua_next(L, index) != 0) {
decltype(auto) key = stack::check_get<K>(L, -2);
if (!key) {
lua_pop(L, 1);
continue;
}
at = associative.emplace_after(at, std::forward<decltype(*key)>(*key), stack::get<V>(L, -1));
lua_pop(L, 1);
}
return associative;
}
};
template <typename T>
struct getter<nested<T>, std::enable_if_t<!is_container<T>::value>> {
static T get(lua_State* L, int index, record& tracking) {
getter<T> g;
// VC++ has a bad warning here: shut it up
(void)g;
return g.get(L, index, tracking);
}
};
template <typename T>
struct getter<nested<T>, std::enable_if_t<meta::all<is_container<T>, meta::neg<meta::has_key_value_pair<meta::unqualified_t<T>>>>::value>> {
static T get(lua_State* L, int index, record& tracking) {
typedef typename T::value_type V;
getter<as_table_t<T>> g;
// VC++ has a bad warning here: shut it up
(void)g;
return g.get(types<nested<V>>(), L, index, tracking);
}
};
template <typename T>
struct getter<nested<T>, std::enable_if_t<meta::all<is_container<T>, meta::has_key_value_pair<meta::unqualified_t<T>>>::value>> {
static T get(lua_State* L, int index, record& tracking) {
typedef typename T::value_type P;
typedef typename P::first_type K;
typedef typename P::second_type V;
getter<as_table_t<T>> g;
// VC++ has a bad warning here: shut it up
(void)g;
return g.get(types<K, nested<V>>(), L, index, tracking);
}
};
template <typename T>
struct getter<T, std::enable_if_t<is_lua_reference<T>::value>> {
static T get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return T(L, index);
}
};
template <>
struct getter<userdata_value> {
static userdata_value get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return userdata_value(lua_touserdata(L, index));
}
};
template <>
struct getter<lightuserdata_value> {
static lightuserdata_value get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lightuserdata_value(lua_touserdata(L, index));
}
};
template <typename T>
struct getter<light<T>> {
static light<T> get(lua_State* L, int index, record& tracking) {
tracking.use(1);
void* memory = lua_touserdata(L, index);
return light<T>(static_cast<T*>(memory));
}
};
template <typename T>
struct getter<user<T>> {
static std::add_lvalue_reference_t<T> get(lua_State* L, int index, record& tracking) {
tracking.use(1);
void* memory = lua_touserdata(L, index);
memory = detail::align_user<T>(memory);
return *static_cast<std::remove_reference_t<T>*>(memory);
}
};
template <typename T>
struct getter<user<T*>> {
static T* get(lua_State* L, int index, record& tracking) {
tracking.use(1);
void* memory = lua_touserdata(L, index);
memory = detail::align_user<T*>(memory);
return static_cast<T*>(memory);
}
};
template <>
struct getter<type> {
static type get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return static_cast<type>(lua_type(L, index));
}
};
template <>
struct getter<bool> {
static bool get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lua_toboolean(L, index) != 0;
}
};
template <>
struct getter<std::string> {
static std::string get(lua_State* L, int index, record& tracking) {
tracking.use(1);
std::size_t len;
auto str = lua_tolstring(L, index, &len);
return std::string(str, len);
}
};
template <>
struct getter<const char*> {
static const char* get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t sz;
return lua_tolstring(L, index, &sz);
}
};
template <>
struct getter<char> {
static char get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t len;
auto str = lua_tolstring(L, index, &len);
return len > 0 ? str[0] : '\0';
}
};
template <typename Traits>
struct getter<basic_string_view<char, Traits>> {
static string_view get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t sz;
const char* str = lua_tolstring(L, index, &sz);
return basic_string_view<char, Traits>(str, sz);
}
};
template <typename Traits, typename Al>
struct getter<std::basic_string<wchar_t, Traits, Al>> {
typedef std::basic_string<wchar_t, Traits, Al> S;
static S get(lua_State* L, int index, record& tracking) {
typedef std::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t> Ch;
typedef typename std::allocator_traits<Al>::template rebind_alloc<Ch> ChAl;
typedef std::char_traits<Ch> ChTraits;
getter<std::basic_string<Ch, ChTraits, ChAl>> g;
(void)g;
return g.template get_into<S>(L, index, tracking);
}
};
template <typename Traits, typename Al>
struct getter<std::basic_string<char16_t, Traits, Al>> {
template <typename F>
static void convert(const char* strb, const char* stre, F&& f) {
char32_t cp = 0;
for (const char* strtarget = strb; strtarget < stre;) {
auto dr = unicode::utf8_to_code_point(strtarget, stre);
if (dr.error != unicode::error_code::ok) {
cp = unicode::unicode_detail::replacement;
++strtarget;
}
else {
cp = dr.codepoint;
strtarget = dr.next;
}
auto er = unicode::code_point_to_utf16(cp);
f(er);
}
}
template <typename S>
static S get_into(lua_State* L, int index, record& tracking) {
typedef typename S::value_type Ch;
tracking.use(1);
size_t len;
auto utf8p = lua_tolstring(L, index, &len);
if (len < 1)
return S();
std::size_t needed_size = 0;
const char* strb = utf8p;
const char* stre = utf8p + len;
auto count_units = [&needed_size](const unicode::encoded_result<char16_t> er) {
needed_size += er.code_units_size;
};
convert(strb, stre, count_units);
S r(needed_size, static_cast<Ch>(0));
r.resize(needed_size);
Ch* target = &r[0];
auto copy_units = [&target](const unicode::encoded_result<char16_t> er) {
std::memcpy(target, er.code_units.data(), er.code_units_size * sizeof(Ch));
target += er.code_units_size;
};
convert(strb, stre, copy_units);
return r;
}
static std::basic_string<char16_t, Traits, Al> get(lua_State* L, int index, record& tracking) {
return get_into<std::basic_string<char16_t, Traits, Al>>(L, index, tracking);
}
};
template <typename Traits, typename Al>
struct getter<std::basic_string<char32_t, Traits, Al>> {
template <typename F>
static void convert(const char* strb, const char* stre, F&& f) {
char32_t cp = 0;
for (const char* strtarget = strb; strtarget < stre;) {
auto dr = unicode::utf8_to_code_point(strtarget, stre);
if (dr.error != unicode::error_code::ok) {
cp = unicode::unicode_detail::replacement;
++strtarget;
}
else {
cp = dr.codepoint;
strtarget = dr.next;
}
auto er = unicode::code_point_to_utf32(cp);
f(er);
}
}
template <typename S>
static S get_into(lua_State* L, int index, record& tracking) {
typedef typename S::value_type Ch;
tracking.use(1);
size_t len;
auto utf8p = lua_tolstring(L, index, &len);
if (len < 1)
return S();
std::size_t needed_size = 0;
const char* strb = utf8p;
const char* stre = utf8p + len;
auto count_units = [&needed_size](const unicode::encoded_result<char32_t> er) {
needed_size += er.code_units_size;
};
convert(strb, stre, count_units);
S r(needed_size, static_cast<Ch>(0));
r.resize(needed_size);
Ch* target = &r[0];
auto copy_units = [&target](const unicode::encoded_result<char32_t> er) {
std::memcpy(target, er.code_units.data(), er.code_units_size * sizeof(Ch));
target += er.code_units_size;
};
convert(strb, stre, copy_units);
return r;
}
static std::basic_string<char32_t, Traits, Al> get(lua_State* L, int index, record& tracking) {
return get_into<std::basic_string<char32_t, Traits, Al>>(L, index, tracking);
}
};
template <>
struct getter<char16_t> {
static char16_t get(lua_State* L, int index, record& tracking) {
string_view utf8 = stack::get<string_view>(L, index, tracking);
const char* strb = utf8.data();
const char* stre = utf8.data() + utf8.size();
char32_t cp = 0;
auto dr = unicode::utf8_to_code_point(strb, stre);
if (dr.error != unicode::error_code::ok) {
cp = unicode::unicode_detail::replacement;
}
else {
cp = dr.codepoint;
}
auto er = unicode::code_point_to_utf16(cp);
return er.code_units[0];
}
};
template <>
struct getter<char32_t> {
static char32_t get(lua_State* L, int index, record& tracking) {
string_view utf8 = stack::get<string_view>(L, index, tracking);
const char* strb = utf8.data();
const char* stre = utf8.data() + utf8.size();
char32_t cp = 0;
auto dr = unicode::utf8_to_code_point(strb, stre);
if (dr.error != unicode::error_code::ok) {
cp = unicode::unicode_detail::replacement;
}
else {
cp = dr.codepoint;
}
auto er = unicode::code_point_to_utf32(cp);
return er.code_units[0];
}
};
template <>
struct getter<wchar_t> {
static wchar_t get(lua_State* L, int index, record& tracking) {
typedef std::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t> Ch;
getter<Ch> g;
(void)g;
auto c = g.get(L, index, tracking);
return static_cast<wchar_t>(c);
}
};
template <>
struct getter<meta_function> {
static meta_function get(lua_State* L, int index, record& tracking) {
tracking.use(1);
const char* name = getter<const char*>{}.get(L, index, tracking);
const auto& mfnames = meta_function_names();
for (std::size_t i = 0; i < mfnames.size(); ++i)
if (mfnames[i] == name)
return static_cast<meta_function>(i);
return meta_function::construct;
}
};
template <>
struct getter<lua_nil_t> {
static lua_nil_t get(lua_State*, int, record& tracking) {
tracking.use(1);
return lua_nil;
}
};
template <>
struct getter<std::nullptr_t> {
static std::nullptr_t get(lua_State*, int, record& tracking) {
tracking.use(1);
return nullptr;
}
};
template <>
struct getter<nullopt_t> {
static nullopt_t get(lua_State*, int, record& tracking) {
tracking.use(1);
return nullopt;
}
};
template <>
struct getter<this_state> {
static this_state get(lua_State* L, int, record& tracking) {
tracking.use(0);
return this_state(L);
}
};
template <>
struct getter<this_main_state> {
static this_main_state get(lua_State* L, int, record& tracking) {
tracking.use(0);
return this_main_state(main_thread(L, L));
}
};
template <>
struct getter<lua_CFunction> {
static lua_CFunction get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lua_tocfunction(L, index);
}
};
template <>
struct getter<c_closure> {
static c_closure get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return c_closure(lua_tocfunction(L, index), -1);
}
};
template <>
struct getter<error> {
static error get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t sz = 0;
const char* err = lua_tolstring(L, index, &sz);
if (err == nullptr) {
return error(detail::direct_error, "");
}
return error(detail::direct_error, std::string(err, sz));
}
};
template <>
struct getter<void*> {
static void* get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lua_touserdata(L, index);
}
};
template <typename T>
struct getter<detail::as_value_tag<T>> {
static T* get_no_lua_nil(lua_State* L, int index, record& tracking) {
void* memory = lua_touserdata(L, index);
#if defined(SOL_ENABLE_INTEROP) && SOL_ENABLE_INTEROP
userdata_getter<extensible<T>> ug;
(void)ug;
auto ugr = ug.get(L, index, memory, tracking);
if (ugr.first) {
return ugr.second;
}
#endif // interop extensibility
tracking.use(1);
void* rawdata = detail::align_usertype_pointer(memory);
void** pudata = static_cast<void**>(rawdata);
void* udata = *pudata;
return get_no_lua_nil_from(L, udata, index, tracking);
}
static T* get_no_lua_nil_from(lua_State* L, void* udata, int index, record&) {
if (detail::has_derived<T>::value && luaL_getmetafield(L, index, &detail::base_class_cast_key()[0]) != 0) {
void* basecastdata = lua_touserdata(L, -1);
detail::inheritance_cast_function ic = reinterpret_cast<detail::inheritance_cast_function>(basecastdata);
// use the casting function to properly adjust the pointer for the desired T
udata = ic(udata, usertype_traits<T>::qualified_name());
lua_pop(L, 1);
}
T* obj = static_cast<T*>(udata);
return obj;
}
static T& get(lua_State* L, int index, record& tracking) {
return *get_no_lua_nil(L, index, tracking);
}
};
template <typename T>
struct getter<detail::as_pointer_tag<T>> {
static T* get(lua_State* L, int index, record& tracking) {
type t = type_of(L, index);
if (t == type::lua_nil) {
tracking.use(1);
return nullptr;
}
getter<detail::as_value_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get_no_lua_nil(L, index, tracking);
}
};
template <typename T>
struct getter<non_null<T*>> {
static T* get(lua_State* L, int index, record& tracking) {
getter<detail::as_value_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get_no_lua_nil(L, index, tracking);
}
};
template <typename T>
struct getter<T&> {
static T& get(lua_State* L, int index, record& tracking) {
getter<detail::as_value_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get(L, index, tracking);
}
};
template <typename T>
struct getter<std::reference_wrapper<T>> {
static T& get(lua_State* L, int index, record& tracking) {
getter<T&> g;
// Avoid VC++ warning
(void)g;
return g.get(L, index, tracking);
}
};
template <typename T>
struct getter<T*> {
static T* get(lua_State* L, int index, record& tracking) {
getter<detail::as_pointer_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get(L, index, tracking);
}
};
template <typename T>
struct getter<T, std::enable_if_t<is_unique_usertype<T>::value>> {
typedef typename unique_usertype_traits<T>::type P;
typedef typename unique_usertype_traits<T>::actual_type Real;
static Real& get(lua_State* L, int index, record& tracking) {
tracking.use(1);
void* memory = lua_touserdata(L, index);
memory = detail::align_usertype_unique<Real>(memory);
Real* mem = static_cast<Real*>(memory);
return *mem;
}
};
template <typename... Tn>
struct getter<std::tuple<Tn...>> {
typedef std::tuple<decltype(stack::get<Tn>(nullptr, 0))...> R;
template <typename... Args>
static R apply(std::index_sequence<>, lua_State*, int, record&, Args&&... args) {
// Fuck you too, VC++
return R{ std::forward<Args>(args)... };
}
template <std::size_t I, std::size_t... Ix, typename... Args>
static R apply(std::index_sequence<I, Ix...>, lua_State* L, int index, record& tracking, Args&&... args) {
// Fuck you too, VC++
typedef std::tuple_element_t<I, std::tuple<Tn...>> T;
return apply(std::index_sequence<Ix...>(), L, index, tracking, std::forward<Args>(args)..., stack::get<T>(L, index + tracking.used, tracking));
}
static R get(lua_State* L, int index, record& tracking) {
return apply(std::make_index_sequence<sizeof...(Tn)>(), L, index, tracking);
}
};
template <typename A, typename B>
struct getter<std::pair<A, B>> {
static decltype(auto) get(lua_State* L, int index, record& tracking) {
return std::pair<decltype(stack::get<A>(L, index)), decltype(stack::get<B>(L, index))>{ stack::get<A>(L, index, tracking), stack::get<B>(L, index + tracking.used, tracking) };
}
};
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT
template <typename... Tn>
struct getter<std::variant<Tn...>> {
typedef std::variant<Tn...> V;
typedef std::variant_size<V> V_size;
typedef std::integral_constant<bool, V_size::value == 0> V_is_empty;
static V get_empty(std::true_type, lua_State*, int, record&) {
return V();
}
static V get_empty(std::false_type, lua_State* L, int index, record& tracking) {
typedef std::variant_alternative_t<0, V> T;
// This should never be reached...
// please check your code and understand what you did to bring yourself here
std::abort();
return V(std::in_place_index<0>, stack::get<T>(L, index, tracking));
}
static V get_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, record& tracking) {
return get_empty(V_is_empty(), L, index, tracking);
}
template <std::size_t I>
static V get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, record& tracking) {
typedef std::variant_alternative_t<I - 1, V> T;
if (stack::check<T>(L, index, no_panic, tracking)) {
return V(std::in_place_index<I - 1>, stack::get<T>(L, index));
}
return get_one(std::integral_constant<std::size_t, I - 1>(), L, index, tracking);
}
static V get(lua_State* L, int index, record& tracking) {
return get_one(std::integral_constant<std::size_t, V_size::value>(), L, index, tracking);
}
};
#endif // SOL_STD_VARIANT
#endif // SOL_CXX17_FEATURES
}
} // namespace sol::stack
// end of sol/stack_get.hpp
// beginning of sol/stack_check_get.hpp
namespace sol {
namespace stack {
template <typename T, typename>
struct check_getter {
typedef decltype(stack_detail::unchecked_get<T>(nullptr, 0, std::declval<record&>())) R;
template <typename Handler>
static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) {
if (!check<T>(L, index, std::forward<Handler>(handler))) {
tracking.use(static_cast<int>(!lua_isnone(L, index)));
return nullopt;
}
return stack_detail::unchecked_get<T>(L, index, tracking);
}
};
template <typename T>
struct check_getter<T, std::enable_if_t<is_lua_reference<T>::value>> {
template <typename Handler>
static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) {
// actually check if it's none here, otherwise
// we'll have a none object inside an optional!
bool success = !lua_isnone(L, index);
if (!success) {
// expected type, actual type
tracking.use(static_cast<int>(success));
handler(L, index, type::poly, type_of(L, index), "");
return nullopt;
}
return stack_detail::unchecked_get<T>(L, index, tracking);
}
};
template <typename T>
struct check_getter<optional<T>> {
template <typename Handler>
static decltype(auto) get(lua_State* L, int index, Handler&&, record& tracking) {
return check_get<T>(L, index, no_panic, tracking);
}
};
template <typename T>
struct check_getter<T, std::enable_if_t<std::is_integral<T>::value && lua_type_of<T>::value == type::number>> {
template <typename Handler>
static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) {
#if SOL_LUA_VERSION >= 503
if (lua_isinteger(L, index) != 0) {
tracking.use(1);
return static_cast<T>(lua_tointeger(L, index));
}
#endif
int isnum = 0;
const lua_Number value = lua_tonumberx(L, index, &isnum);
if (isnum != 0) {
#if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION)
const auto integer_value = llround(value);
if (static_cast<lua_Number>(integer_value) == value) {
tracking.use(1);
return static_cast<T>(integer_value);
}
#else
tracking.use(1);
return static_cast<T>(value);
#endif
}
const type t = type_of(L, index);
tracking.use(static_cast<int>(t != type::none));
handler(L, index, type::number, t, "not an integer");
return nullopt;
}
};
template <typename T>
struct check_getter<T, std::enable_if_t<std::is_enum<T>::value && !meta::any_same<T, meta_function, type>::value>> {
template <typename Handler>
static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) {
int isnum = 0;
lua_Integer value = lua_tointegerx(L, index, &isnum);
if (isnum == 0) {
type t = type_of(L, index);
tracking.use(static_cast<int>(t != type::none));
handler(L, index, type::number, t, "not a valid enumeration value");
return nullopt;
}
tracking.use(1);
return static_cast<T>(value);
}
};
template <typename T>
struct check_getter<T, std::enable_if_t<std::is_floating_point<T>::value>> {
template <typename Handler>
static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) {
int isnum = 0;
lua_Number value = lua_tonumberx(L, index, &isnum);
if (isnum == 0) {
type t = type_of(L, index);
tracking.use(static_cast<int>(t != type::none));
handler(L, index, type::number, t, "not a valid floating point number");
return nullopt;
}
tracking.use(1);
return static_cast<T>(value);
}
};
template <typename T>
struct getter<optional<T>> {
static decltype(auto) get(lua_State* L, int index, record& tracking) {
return check_get<T>(L, index, no_panic, tracking);
}
};
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT
template <typename... Tn>
struct check_getter<std::variant<Tn...>> {
typedef std::variant<Tn...> V;
typedef std::variant_size<V> V_size;
typedef std::integral_constant<bool, V_size::value == 0> V_is_empty;
template <typename Handler>
static optional<V> get_empty(std::true_type, lua_State*, int, Handler&&, record&) {
return nullopt;
}
template <typename Handler>
static optional<V> get_empty(std::false_type, lua_State* L, int index, Handler&& handler, record&) {
// This should never be reached...
// please check your code and understand what you did to bring yourself here
// maybe file a bug report, or 5
handler(L, index, type::poly, type_of(L, index), "this variant code should never be reached: if it has, you have done something so terribly wrong");
return nullopt;
}
template <typename Handler>
static optional<V> get_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) {
return get_empty(V_is_empty(), L, index, std::forward<Handler>(handler), tracking);
}
template <std::size_t I, typename Handler>
static optional<V> get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) {
typedef std::variant_alternative_t<I - 1, V> T;
if (stack::check<T>(L, index, no_panic, tracking)) {
return V(std::in_place_index<I - 1>, stack::get<T>(L, index));
}
return get_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking);
}
template <typename Handler>
static optional<V> get(lua_State* L, int index, Handler&& handler, record& tracking) {
return get_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking);
}
};
#endif // SOL_STD_VARIANT
#endif // SOL_CXX17_FEATURES
}
} // namespace sol::stack
// end of sol/stack_check_get.hpp
// beginning of sol/stack_push.hpp
#include <limits>
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT
#endif // Can use variant
#endif // C++17
namespace sol {
namespace stack {
inline int push_environment_of(lua_State* L, int index = -1) {
#if SOL_LUA_VERSION < 502
// Use lua_getfenv
lua_getfenv(L, index);
return 1;
#else
// Use upvalues as explained in Lua 5.2 and beyond's manual
if (lua_getupvalue(L, index, 1) == nullptr) {
push(L, lua_nil);
return 1;
}
#endif
return 1;
}
template <typename T>
int push_environment_of(const T& target) {
target.push();
return push_environment_of(target.lua_state(), -1) + 1;
}
template <typename T>
struct pusher<detail::as_value_tag<T>> {
template <typename F, typename... Args>
static int push_fx(lua_State* L, F&& f, Args&&... args) {
// Basically, we store all user-data like this:
// If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new
// data in the first sizeof(T*) bytes, and then however many bytes it takes to
// do the actual object. Things that are std::ref or plain T* are stored as
// just the sizeof(T*), and nothing else.
T* obj = detail::usertype_allocate<T>(L);
std::allocator<T> alloc{};
std::allocator_traits<std::allocator<T>>::construct(alloc, obj, std::forward<Args>(args)...);
f();
return 1;
}
template <typename K, typename... Args>
static int push_keyed(lua_State* L, K&& k, Args&&... args) {
stack_detail::undefined_metatable<T> fx(L, &k[0]);
return push_fx(L, fx, std::forward<Args>(args)...);
}
template <typename... Args>
static int push(lua_State* L, Args&&... args) {
return push_keyed(L, usertype_traits<T>::metatable(), std::forward<Args>(args)...);
}
};
template <typename T>
struct pusher<detail::as_pointer_tag<T>> {
typedef meta::unqualified_t<T> U;
template <typename F>
static int push_fx(lua_State* L, F&& f, T* obj) {
if (obj == nullptr)
return stack::push(L, lua_nil);
T** pref = detail::usertype_allocate_pointer<T>(L);
*pref = obj;
f();
return 1;
}
template <typename K>
static int push_keyed(lua_State* L, K&& k, T* obj) {
stack_detail::undefined_metatable<U*> fx(L, &k[0]);
return push_fx(L, fx, obj);
}
static int push(lua_State* L, T* obj) {
return push_keyed(L, usertype_traits<U*>::metatable(), obj);
}
};
template <>
struct pusher<detail::as_reference_tag> {
template <typename T>
static int push(lua_State* L, T&& obj) {
return stack::push(L, detail::ptr(obj));
}
};
template <typename T, typename>
struct pusher {
template <typename... Args>
static int push(lua_State* L, Args&&... args) {
return pusher<detail::as_value_tag<T>>{}.push(L, std::forward<Args>(args)...);
}
};
template <typename T>
struct pusher<T*, meta::disable_if_t<meta::any<is_container<meta::unqualified_t<T>>, std::is_function<meta::unqualified_t<T>>, is_lua_reference<meta::unqualified_t<T>>>::value>> {
template <typename... Args>
static int push(lua_State* L, Args&&... args) {
return pusher<detail::as_pointer_tag<T>>{}.push(L, std::forward<Args>(args)...);
}
};
template <typename T>
struct pusher<T, std::enable_if_t<is_unique_usertype<T>::value>> {
typedef typename unique_usertype_traits<T>::type P;
typedef typename unique_usertype_traits<T>::actual_type Real;
template <typename Arg, meta::enable<std::is_base_of<Real, meta::unqualified_t<Arg>>> = meta::enabler>
static int push(lua_State* L, Arg&& arg) {
if (unique_usertype_traits<T>::is_null(arg)) {
return stack::push(L, lua_nil);
}
return push_deep(L, std::forward<Arg>(arg));
}
template <typename Arg0, typename Arg1, typename... Args>
static int push(lua_State* L, Arg0&& arg0, Arg0&& arg1, Args&&... args) {
return push_deep(L, std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...);
}
template <typename... Args>
static int push_deep(lua_State* L, Args&&... args) {
P** pref = nullptr;
detail::unique_destructor* fx = nullptr;
Real* mem = detail::usertype_unique_allocate<P, Real>(L, pref, fx);
*fx = detail::usertype_unique_alloc_destroy<P, Real>;
detail::default_construct::construct(mem, std::forward<Args>(args)...);
*pref = unique_usertype_traits<T>::get(*mem);
if (luaL_newmetatable(L, &usertype_traits<detail::unique_usertype<P>>::metatable()[0]) == 1) {
luaL_Reg l[32]{};
int index = 0;
auto prop_fx = [](meta_function) { return true; };
usertype_detail::insert_default_registrations<P>(l, index, prop_fx);
usertype_detail::make_destructor<T>(l, index);
luaL_setfuncs(L, l, 0);
}
lua_setmetatable(L, -2);
return 1;
}
};
template <typename T>
struct pusher<std::reference_wrapper<T>> {
static int push(lua_State* L, const std::reference_wrapper<T>& t) {
return stack::push(L, std::addressof(detail::deref(t.get())));
}
};
template <typename T>
struct pusher<T, std::enable_if_t<std::is_floating_point<T>::value>> {
static int push(lua_State* L, const T& value) {
lua_pushnumber(L, value);
return 1;
}
};
template <typename T>
struct pusher<T, std::enable_if_t<std::is_integral<T>::value>> {
static int push(lua_State* L, const T& value) {
#if SOL_LUA_VERSION >= 503
static auto integer_value_fits = [](T const& value) {
if (sizeof(T) < sizeof(lua_Integer) || (std::is_signed<T>::value && sizeof(T) == sizeof(lua_Integer))) {
return true;
}
auto u_min = static_cast<std::intmax_t>((std::numeric_limits<lua_Integer>::min)());
auto u_max = static_cast<std::uintmax_t>((std::numeric_limits<lua_Integer>::max)());
auto t_min = static_cast<std::intmax_t>((std::numeric_limits<T>::min)());
auto t_max = static_cast<std::uintmax_t>((std::numeric_limits<T>::max)());
return (u_min <= t_min || value >= static_cast<T>(u_min)) && (u_max >= t_max || value <= static_cast<T>(u_max));
};
if (integer_value_fits(value)) {
lua_pushinteger(L, static_cast<lua_Integer>(value));
return 1;
}
#endif // Lua 5.3 and above
#if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION)
if (static_cast<T>(llround(static_cast<lua_Number>(value))) != value) {
#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS
// Is this really worth it?
assert(false && "integer value will be misrepresented in lua");
lua_pushnumber(L, static_cast<lua_Number>(value));
return 1;
#else
throw error(detail::direct_error, "integer value will be misrepresented in lua");
#endif // No Exceptions
}
#endif // Safe Numerics and Number Precision Check
lua_pushnumber(L, static_cast<lua_Number>(value));
return 1;
}
};
template <typename T>
struct pusher<T, std::enable_if_t<std::is_enum<T>::value>> {
static int push(lua_State* L, const T& value) {
if (std::is_same<char, std::underlying_type_t<T>>::value) {
return stack::push(L, static_cast<int>(value));
}
return stack::push(L, static_cast<std::underlying_type_t<T>>(value));
}
};
template <typename T>
struct pusher<detail::as_table_tag<T>> {
static int push(lua_State* L, const T& tablecont) {
typedef meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>> has_kvp;
return push(has_kvp(), L, tablecont);
}
static int push(std::true_type, lua_State* L, const T& tablecont) {
auto& cont = detail::deref(detail::unwrap(tablecont));
lua_createtable(L, static_cast<int>(cont.size()), 0);
int tableindex = lua_gettop(L);
for (const auto& pair : cont) {
set_field(L, pair.first, pair.second, tableindex);
}
return 1;
}
static int push(std::false_type, lua_State* L, const T& tablecont) {
auto& cont = detail::deref(detail::unwrap(tablecont));
lua_createtable(L, stack_detail::get_size_hint(cont), 0);
int tableindex = lua_gettop(L);
std::size_t index = 1;
for (const auto& i : cont) {
#if SOL_LUA_VERSION >= 503
int p = stack::push(L, i);
for (int pi = 0; pi < p; ++pi) {
lua_seti(L, tableindex, static_cast<lua_Integer>(index++));
}
#else
lua_pushinteger(L, static_cast<lua_Integer>(index));
int p = stack::push(L, i);
if (p == 1) {
++index;
lua_settable(L, tableindex);
}
else {
int firstindex = tableindex + 1 + 1;
for (int pi = 0; pi < p; ++pi) {
stack::push(L, index);
lua_pushvalue(L, firstindex);
lua_settable(L, tableindex);
++index;
++firstindex;
}
lua_pop(L, 1 + p);
}
#endif // Lua Version 5.3 and others
}
// TODO: figure out a better way to do this...?
//set_field(L, -1, cont.size());
return 1;
}
};
template <typename T>
struct pusher<as_table_t<T>, std::enable_if_t<is_container<std::remove_pointer_t<meta::unwrap_unqualified_t<T>>>::value>> {
static int push(lua_State* L, const T& tablecont) {
return stack::push<detail::as_table_tag<T>>(L, tablecont);
}
};
template <typename T>
struct pusher<as_table_t<T>, std::enable_if_t<!is_container<std::remove_pointer_t<meta::unwrap_unqualified_t<T>>>::value>> {
static int push(lua_State* L, const T& v) {
return stack::push(L, v);
}
};
template <typename T>
struct pusher<nested<T>> {
static int push(lua_State* L, const T& tablecont) {
pusher<as_table_t<T>> p{};
// silence annoying VC++ warning
(void)p;
return p.push(L, tablecont);
}
};
template <typename T>
struct pusher<std::initializer_list<T>> {
static int push(lua_State* L, const std::initializer_list<T>& il) {
pusher<detail::as_table_tag<std::initializer_list<T>>> p{};
// silence annoying VC++ warning
(void)p;
return p.push(L, il);
}
};
template <typename T>
struct pusher<T, std::enable_if_t<is_lua_reference<T>::value>> {
static int push(lua_State* L, const T& ref) {
return ref.push(L);
}
static int push(lua_State* L, T&& ref) {
return ref.push(L);
}
};
template <>
struct pusher<bool> {
static int push(lua_State* L, bool b) {
lua_pushboolean(L, b);
return 1;
}
};
template <>
struct pusher<lua_nil_t> {
static int push(lua_State* L, lua_nil_t) {
lua_pushnil(L);
return 1;
}
};
template <>
struct pusher<stack_count> {
static int push(lua_State*, stack_count st) {
return st.count;
}
};
template <>
struct pusher<metatable_t> {
static int push(lua_State* L, metatable_t) {
lua_pushlstring(L, "__mt", 4);
return 1;
}
};
template <>
struct pusher<std::remove_pointer_t<lua_CFunction>> {
static int push(lua_State* L, lua_CFunction func, int n = 0) {
lua_pushcclosure(L, func, n);
return 1;
}
};
template <>
struct pusher<lua_CFunction> {
static int push(lua_State* L, lua_CFunction func, int n = 0) {
lua_pushcclosure(L, func, n);
return 1;
}
};
#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE
template <>
struct pusher<std::remove_pointer_t<detail::lua_CFunction_noexcept>> {
static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) {
lua_pushcclosure(L, func, n);
return 1;
}
};
template <>
struct pusher<detail::lua_CFunction_noexcept> {
static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) {
lua_pushcclosure(L, func, n);
return 1;
}
};
#endif // noexcept function type
template <>
struct pusher<c_closure> {
static int push(lua_State* L, c_closure cc) {
lua_pushcclosure(L, cc.c_function, cc.upvalues);
return 1;
}
};
template <typename Arg, typename... Args>
struct pusher<closure<Arg, Args...>> {
template <std::size_t... I, typename T>
static int push(std::index_sequence<I...>, lua_State* L, T&& c) {
int pushcount = multi_push(L, detail::forward_get<I>(c.upvalues)...);
return stack::push(L, c_closure(c.c_function, pushcount));
}
template <typename T>
static int push(lua_State* L, T&& c) {
return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward<T>(c));
}
};
template <>
struct pusher<void*> {
static int push(lua_State* L, void* userdata) {
lua_pushlightuserdata(L, userdata);
return 1;
}
};
template <>
struct pusher<lightuserdata_value> {
static int push(lua_State* L, lightuserdata_value userdata) {
lua_pushlightuserdata(L, userdata);
return 1;
}
};
template <typename T>
struct pusher<light<T>> {
static int push(lua_State* L, light<T> l) {
lua_pushlightuserdata(L, static_cast<void*>(l.value));
return 1;
}
};
template <typename T>
struct pusher<user<T>> {
template <bool with_meta = true, typename Key, typename... Args>
static int push_with(lua_State* L, Key&& name, Args&&... args) {
// A dumb pusher
T* data = detail::user_allocate<T>(L);
std::allocator<T> alloc{};
std::allocator_traits<std::allocator<T>>::construct(alloc, data, std::forward<Args>(args)...);
if (with_meta) {
// Make sure we have a plain GC set for this data
if (luaL_newmetatable(L, name) != 0) {
lua_CFunction cdel = detail::user_alloc_destruct<T>;
lua_pushcclosure(L, cdel, 0);
lua_setfield(L, -2, "__gc");
}
lua_setmetatable(L, -2);
}
return 1;
}
template <typename Arg, typename... Args, meta::disable<meta::any_same<meta::unqualified_t<Arg>, no_metatable_t, metatable_t>> = meta::enabler>
static int push(lua_State* L, Arg&& arg, Args&&... args) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with(L, name, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
template <typename... Args>
static int push(lua_State* L, no_metatable_t, Args&&... args) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with<false>(L, name, std::forward<Args>(args)...);
}
template <typename Key, typename... Args>
static int push(lua_State* L, metatable_t, Key&& key, Args&&... args) {
const auto name = &key[0];
return push_with<true>(L, name, std::forward<Args>(args)...);
}
static int push(lua_State* L, const user<T>& u) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with(L, name, u.value);
}
static int push(lua_State* L, user<T>&& u) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with(L, name, std::move(u.value));
}
static int push(lua_State* L, no_metatable_t, const user<T>& u) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with<false>(L, name, u.value);
}
static int push(lua_State* L, no_metatable_t, user<T>&& u) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with<false>(L, name, std::move(u.value));
}
};
template <>
struct pusher<userdata_value> {
static int push(lua_State* L, userdata_value data) {
void** ud = detail::usertype_allocate_pointer<void>(L);
*ud = data.value;
return 1;
}
};
template <>
struct pusher<const char*> {
static int push_sized(lua_State* L, const char* str, std::size_t len) {
lua_pushlstring(L, str, len);
return 1;
}
static int push(lua_State* L, const char* str) {
if (str == nullptr)
return stack::push(L, lua_nil);
return push_sized(L, str, std::char_traits<char>::length(str));
}
static int push(lua_State* L, const char* strb, const char* stre) {
return push_sized(L, strb, stre - strb);
}
static int push(lua_State* L, const char* str, std::size_t len) {
return push_sized(L, str, len);
}
};
template <>
struct pusher<char*> {
static int push_sized(lua_State* L, const char* str, std::size_t len) {
pusher<const char*> p{};
(void)p;
return p.push_sized(L, str, len);
}
static int push(lua_State* L, const char* str) {
pusher<const char*> p{};
(void)p;
return p.push(L, str);
}
static int push(lua_State* L, const char* strb, const char* stre) {
pusher<const char*> p{};
(void)p;
return p.push(L, strb, stre);
}
static int push(lua_State* L, const char* str, std::size_t len) {
pusher<const char*> p{};
(void)p;
return p.push(L, str, len);
}
};
template <size_t N>
struct pusher<char[N]> {
static int push(lua_State* L, const char (&str)[N]) {
lua_pushlstring(L, str, N - 1);
return 1;
}
static int push(lua_State* L, const char (&str)[N], std::size_t sz) {
lua_pushlstring(L, str, sz);
return 1;
}
};
template <>
struct pusher<char> {
static int push(lua_State* L, char c) {
const char str[2] = { c, '\0' };
return stack::push(L, str, 1);
}
};
template <typename Traits, typename Al>
struct pusher<std::basic_string<char, Traits, Al>> {
static int push(lua_State* L, const std::basic_string<char, Traits, Al>& str) {
lua_pushlstring(L, str.c_str(), str.size());
return 1;
}
static int push(lua_State* L, const std::basic_string<char, Traits, Al>& str, std::size_t sz) {
lua_pushlstring(L, str.c_str(), sz);
return 1;
}
};
template <typename Ch, typename Traits>
struct pusher<basic_string_view<Ch, Traits>> {
static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv) {
return stack::push(L, sv.data(), sv.length());
}
static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv, std::size_t n) {
return stack::push(L, sv.data(), n);
}
};
template <>
struct pusher<meta_function> {
static int push(lua_State* L, meta_function m) {
const std::string& str = to_string(m);
lua_pushlstring(L, str.c_str(), str.size());
return 1;
}
};
template <>
struct pusher<absolute_index> {
static int push(lua_State* L, absolute_index ai) {
lua_pushvalue(L, ai);
return 1;
}
};
template <>
struct pusher<raw_index> {
static int push(lua_State* L, raw_index ri) {
lua_pushvalue(L, ri);
return 1;
}
};
template <>
struct pusher<ref_index> {
static int push(lua_State* L, ref_index ri) {
lua_rawgeti(L, LUA_REGISTRYINDEX, ri);
return 1;
}
};
template <>
struct pusher<const wchar_t*> {
static int push(lua_State* L, const wchar_t* wstr) {
return push(L, wstr, std::char_traits<wchar_t>::length(wstr));
}
static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) {
return push(L, wstr, wstr + sz);
}
static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) {
if (sizeof(wchar_t) == 2) {
const char16_t* sb = reinterpret_cast<const char16_t*>(strb);
const char16_t* se = reinterpret_cast<const char16_t*>(stre);
return stack::push(L, sb, se);
}
const char32_t* sb = reinterpret_cast<const char32_t*>(strb);
const char32_t* se = reinterpret_cast<const char32_t*>(stre);
return stack::push(L, sb, se);
}
};
template <>
struct pusher<wchar_t*> {
static int push(lua_State* L, const wchar_t* str) {
pusher<const wchar_t*> p{};
(void)p;
return p.push(L, str);
}
static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) {
pusher<const wchar_t*> p{};
(void)p;
return p.push(L, strb, stre);
}
static int push(lua_State* L, const wchar_t* str, std::size_t len) {
pusher<const wchar_t*> p{};
(void)p;
return p.push(L, str, len);
}
};
template <>
struct pusher<const char16_t*> {
static int convert_into(lua_State* L, char* start, std::size_t, const char16_t* strb, const char16_t* stre) {
char* target = start;
char32_t cp = 0;
for (const char16_t* strtarget = strb; strtarget < stre;) {
auto dr = unicode::utf16_to_code_point(strtarget, stre);
if (dr.error != unicode::error_code::ok) {
cp = unicode::unicode_detail::replacement;
}
else {
cp = dr.codepoint;
}
auto er = unicode::code_point_to_utf8(cp);
const char* utf8data = er.code_units.data();
std::memcpy(target, utf8data, er.code_units_size);
target += er.code_units_size;
strtarget = dr.next;
}
return stack::push(L, start, target);
}
static int push(lua_State* L, const char16_t* u16str) {
return push(L, u16str, std::char_traits<char16_t>::length(u16str));
}
static int push(lua_State* L, const char16_t* u16str, std::size_t sz) {
return push(L, u16str, u16str + sz);
}
static int push(lua_State* L, const char16_t* strb, const char16_t* stre) {
// TODO: use new unicode methods
// TODO: use new unicode methods
char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE];
// if our max string space is small enough, use SBO
// right off the bat
std::size_t max_possible_code_units = (stre - strb) * 4;
if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) {
return convert_into(L, sbo, max_possible_code_units, strb, stre);
}
// otherwise, we must manually count/check size
std::size_t needed_size = 0;
for (const char16_t* strtarget = strb; strtarget < stre;) {
auto dr = unicode::utf16_to_code_point(strtarget, stre);
auto er = unicode::code_point_to_utf8(dr.codepoint);
needed_size += er.code_units_size;
strtarget = dr.next;
}
if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) {
return convert_into(L, sbo, needed_size, strb, stre);
}
std::string u8str("", 0);
u8str.resize(needed_size);
char* target = &u8str[0];
return convert_into(L, target, needed_size, strb, stre);
}
};
template <>
struct pusher<char16_t*> {
static int push(lua_State* L, const char16_t* str) {
pusher<const char16_t*> p{};
(void)p;
return p.push(L, str);
}
static int push(lua_State* L, const char16_t* strb, const char16_t* stre) {
pusher<const char16_t*> p{};
(void)p;
return p.push(L, strb, stre);
}
static int push(lua_State* L, const char16_t* str, std::size_t len) {
pusher<const char16_t*> p{};
(void)p;
return p.push(L, str, len);
}
};
template <>
struct pusher<const char32_t*> {
static int convert_into(lua_State* L, char* start, std::size_t, const char32_t* strb, const char32_t* stre) {
char* target = start;
char32_t cp = 0;
for (const char32_t* strtarget = strb; strtarget < stre;) {
auto dr = unicode::utf32_to_code_point(strtarget, stre);
if (dr.error != unicode::error_code::ok) {
cp = unicode::unicode_detail::replacement;
}
else {
cp = dr.codepoint;
}
auto er = unicode::code_point_to_utf8(cp);
const char* data = er.code_units.data();
std::memcpy(target, data, er.code_units_size);
target += er.code_units_size;
strtarget = dr.next;
}
return stack::push(L, start, target);
}
static int push(lua_State* L, const char32_t* u32str) {
return push(L, u32str, u32str + std::char_traits<char32_t>::length(u32str));
}
static int push(lua_State* L, const char32_t* u32str, std::size_t sz) {
return push(L, u32str, u32str + sz);
}
static int push(lua_State* L, const char32_t* strb, const char32_t* stre) {
// TODO: use new unicode methods
char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE];
// if our max string space is small enough, use SBO
// right off the bat
std::size_t max_possible_code_units = (stre - strb) * 4;
if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) {
return convert_into(L, sbo, max_possible_code_units, strb, stre);
}
// otherwise, we must manually count/check size
std::size_t needed_size = 0;
for (const char32_t* strtarget = strb; strtarget < stre;) {
auto dr = unicode::utf32_to_code_point(strtarget, stre);
auto er = unicode::code_point_to_utf8(dr.codepoint);
needed_size += er.code_units_size;
strtarget = dr.next;
}
if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) {
return convert_into(L, sbo, needed_size, strb, stre);
}
std::string u8str("", 0);
u8str.resize(needed_size);
char* target = &u8str[0];
return convert_into(L, target, needed_size, strb, stre);
}
};
template <>
struct pusher<char32_t*> {
static int push(lua_State* L, const char32_t* str) {
pusher<const char32_t*> p{};
(void)p;
return p.push(L, str);
}
static int push(lua_State* L, const char32_t* strb, const char32_t* stre) {
pusher<const char32_t*> p{};
(void)p;
return p.push(L, strb, stre);
}
static int push(lua_State* L, const char32_t* str, std::size_t len) {
pusher<const char32_t*> p{};
(void)p;
return p.push(L, str, len);
}
};
template <size_t N>
struct pusher<wchar_t[N]> {
static int push(lua_State* L, const wchar_t (&str)[N]) {
return push(L, str, N - 1);
}
static int push(lua_State* L, const wchar_t (&str)[N], std::size_t sz) {
return stack::push<const wchar_t*>(L, str, str + sz);
}
};
template <size_t N>
struct pusher<char16_t[N]> {
static int push(lua_State* L, const char16_t (&str)[N]) {
return push(L, str, N - 1);
}
static int push(lua_State* L, const char16_t (&str)[N], std::size_t sz) {
return stack::push<const char16_t*>(L, str, str + sz);
}
};
template <size_t N>
struct pusher<char32_t[N]> {
static int push(lua_State* L, const char32_t (&str)[N]) {
return push(L, str, N - 1);
}
static int push(lua_State* L, const char32_t (&str)[N], std::size_t sz) {
return stack::push<const char32_t*>(L, str, str + sz);
}
};
template <>
struct pusher<wchar_t> {
static int push(lua_State* L, wchar_t c) {
const wchar_t str[2] = { c, '\0' };
return stack::push(L, &str[0], 1);
}
};
template <>
struct pusher<char16_t> {
static int push(lua_State* L, char16_t c) {
const char16_t str[2] = { c, '\0' };
return stack::push(L, &str[0], 1);
}
};
template <>
struct pusher<char32_t> {
static int push(lua_State* L, char32_t c) {
const char32_t str[2] = { c, '\0' };
return stack::push(L, &str[0], 1);
}
};
template <typename Ch, typename Traits, typename Al>
struct pusher<std::basic_string<Ch, Traits, Al>, std::enable_if_t<!std::is_same<Ch, char>::value>> {
static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& wstr) {
return push(L, wstr, wstr.size());
}
static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& wstr, std::size_t sz) {
return stack::push(L, wstr.data(), wstr.data() + sz);
}
};
template <typename... Args>
struct pusher<std::tuple<Args...>> {
template <std::size_t... I, typename T>
static int push(std::index_sequence<I...>, lua_State* L, T&& t) {
int pushcount = 0;
(void)detail::swallow{ 0, (pushcount += stack::push(L, detail::forward_get<I>(t)), 0)... };
return pushcount;
}
template <typename T>
static int push(lua_State* L, T&& t) {
return push(std::index_sequence_for<Args...>(), L, std::forward<T>(t));
}
};
template <typename A, typename B>
struct pusher<std::pair<A, B>> {
template <typename T>
static int push(lua_State* L, T&& t) {
int pushcount = stack::push(L, detail::forward_get<0>(t));
pushcount += stack::push(L, detail::forward_get<1>(t));
return pushcount;
}
};
template <typename O>
struct pusher<optional<O>> {
template <typename T>
static int push(lua_State* L, T&& t) {
if (t == nullopt) {
return stack::push(L, nullopt);
}
return stack::push(L, static_cast<std::conditional_t<std::is_lvalue_reference<T>::value, O&, O&&>>(t.value()));
}
};
template <>
struct pusher<nullopt_t> {
static int push(lua_State* L, nullopt_t) {
return stack::push(L, lua_nil);
}
};
template <>
struct pusher<std::nullptr_t> {
static int push(lua_State* L, std::nullptr_t) {
return stack::push(L, lua_nil);
}
};
template <>
struct pusher<this_state> {
static int push(lua_State*, const this_state&) {
return 0;
}
};
template <>
struct pusher<this_main_state> {
static int push(lua_State*, const this_main_state&) {
return 0;
}
};
template <>
struct pusher<new_table> {
static int push(lua_State* L, const new_table& nt) {
lua_createtable(L, nt.sequence_hint, nt.map_hint);
return 1;
}
};
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT
namespace stack_detail {
struct push_function {
lua_State* L;
push_function(lua_State* L)
: L(L) {
}
template <typename T>
int operator()(T&& value) const {
return stack::push<T>(L, std::forward<T>(value));
}
};
} // namespace stack_detail
template <typename... Tn>
struct pusher<std::variant<Tn...>> {
static int push(lua_State* L, const std::variant<Tn...>& v) {
return std::visit(stack_detail::push_function(L), v);
}
static int push(lua_State* L, std::variant<Tn...>&& v) {
return std::visit(stack_detail::push_function(L), std::move(v));
}
};
#endif // Variant because Clang is terrible
#endif // C++17 Support
}
} // namespace sol::stack
// end of sol/stack_push.hpp
// beginning of sol/stack_pop.hpp
namespace sol {
namespace stack {
template <typename T, typename>
struct popper {
inline static decltype(auto) pop(lua_State* L) {
record tracking{};
#ifdef __INTEL_COMPILER
auto&& r = get<T>(L, -lua_size<T>::value, tracking);
#else
decltype(auto) r = get<T>(L, -lua_size<T>::value, tracking);
#endif
lua_pop(L, tracking.used);
return r;
}
};
template <typename T>
struct popper<T, std::enable_if_t<is_stack_based<meta::unqualified_t<T>>::value>> {
static_assert(meta::neg<is_stack_based<meta::unqualified_t<T>>>::value, "You cannot pop something that lives solely on the stack: it will not remain on the stack when popped and thusly will go out of scope!");
};
}
} // namespace sol::stack
// end of sol/stack_pop.hpp
// beginning of sol/stack_field.hpp
namespace sol {
namespace stack {
template <typename T, bool, bool, typename>
struct field_getter {
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = -2) {
push(L, std::forward<Key>(key));
lua_gettable(L, tableindex);
}
};
template <typename T, bool global, typename C>
struct field_getter<T, global, true, C> {
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = -2) {
push(L, std::forward<Key>(key));
lua_rawget(L, tableindex);
}
};
template <bool b, bool raw, typename C>
struct field_getter<metatable_t, b, raw, C> {
void get(lua_State* L, metatable_t, int tableindex = -1) {
if (lua_getmetatable(L, tableindex) == 0)
push(L, lua_nil);
}
};
template <bool b, bool raw, typename C>
struct field_getter<env_t, b, raw, C> {
void get(lua_State* L, env_t, int tableindex = -1) {
#if SOL_LUA_VERSION < 502
// Use lua_setfenv
lua_getfenv(L, tableindex);
#else
// Use upvalues as explained in Lua 5.2 and beyond's manual
if (lua_getupvalue(L, tableindex, 1) == nullptr) {
push(L, lua_nil);
}
#endif
}
};
template <typename T, bool raw>
struct field_getter<T, true, raw, std::enable_if_t<meta::is_c_str<T>::value>> {
template <typename Key>
void get(lua_State* L, Key&& key, int = -1) {
lua_getglobal(L, &key[0]);
}
};
template <typename T>
struct field_getter<T, false, false, std::enable_if_t<meta::is_c_str<T>::value>> {
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = -1) {
lua_getfield(L, tableindex, &key[0]);
}
};
#if SOL_LUA_VERSION >= 503
template <typename T>
struct field_getter<T, false, false, std::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> {
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = -1) {
lua_geti(L, tableindex, static_cast<lua_Integer>(key));
}
};
#endif // Lua 5.3.x
#if SOL_LUA_VERSION >= 502
template <typename C>
struct field_getter<void*, false, true, C> {
void get(lua_State* L, void* key, int tableindex = -1) {
lua_rawgetp(L, tableindex, key);
}
};
#endif // Lua 5.3.x
template <typename T>
struct field_getter<T, false, true, std::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> {
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = -1) {
lua_rawgeti(L, tableindex, static_cast<lua_Integer>(key));
}
};
template <typename... Args, bool b, bool raw, typename C>
struct field_getter<std::tuple<Args...>, b, raw, C> {
template <std::size_t... I, typename Keys>
void apply(std::index_sequence<0, I...>, lua_State* L, Keys&& keys, int tableindex) {
get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex);
void(detail::swallow{(get_field<false, raw>(L, detail::forward_get<I>(keys)), 0)...});
reference saved(L, -1);
lua_pop(L, static_cast<int>(sizeof...(I)));
saved.push();
}
template <typename Keys>
void get(lua_State* L, Keys&& keys) {
apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), lua_absindex(L, -1));
}
template <typename Keys>
void get(lua_State* L, Keys&& keys, int tableindex) {
apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), tableindex);
}
};
template <typename A, typename B, bool b, bool raw, typename C>
struct field_getter<std::pair<A, B>, b, raw, C> {
template <typename Keys>
void get(lua_State* L, Keys&& keys, int tableindex) {
get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex);
get_field<false, raw>(L, detail::forward_get<1>(keys));
reference saved(L, -1);
lua_pop(L, static_cast<int>(2));
saved.push();
}
template <typename Keys>
void get(lua_State* L, Keys&& keys) {
get_field<b, raw>(L, detail::forward_get<0>(keys));
get_field<false, raw>(L, detail::forward_get<1>(keys));
reference saved(L, -1);
lua_pop(L, static_cast<int>(2));
saved.push();
}
};
template <typename T, bool, bool, typename>
struct field_setter {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = -3) {
push(L, std::forward<Key>(key));
push(L, std::forward<Value>(value));
lua_settable(L, tableindex);
}
};
template <typename T, bool b, typename C>
struct field_setter<T, b, true, C> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = -3) {
push(L, std::forward<Key>(key));
push(L, std::forward<Value>(value));
lua_rawset(L, tableindex);
}
};
template <bool b, bool raw, typename C>
struct field_setter<metatable_t, b, raw, C> {
template <typename Value>
void set(lua_State* L, metatable_t, Value&& value, int tableindex = -2) {
push(L, std::forward<Value>(value));
lua_setmetatable(L, tableindex);
}
};
template <typename T, bool raw>
struct field_setter<T, true, raw, std::enable_if_t<meta::is_c_str<T>::value>> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int = -2) {
push(L, std::forward<Value>(value));
lua_setglobal(L, &key[0]);
}
};
template <typename T>
struct field_setter<T, false, false, std::enable_if_t<meta::is_c_str<T>::value>> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) {
push(L, std::forward<Value>(value));
lua_setfield(L, tableindex, &key[0]);
}
};
#if SOL_LUA_VERSION >= 503
template <typename T>
struct field_setter<T, false, false, std::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) {
push(L, std::forward<Value>(value));
lua_seti(L, tableindex, static_cast<lua_Integer>(key));
}
};
#endif // Lua 5.3.x
template <typename T>
struct field_setter<T, false, true, std::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) {
push(L, std::forward<Value>(value));
lua_rawseti(L, tableindex, static_cast<lua_Integer>(key));
}
};
#if SOL_LUA_VERSION >= 502
template <typename C>
struct field_setter<void*, false, true, C> {
template <typename Key, typename Value>
void set(lua_State* L, void* key, Value&& value, int tableindex = -2) {
push(L, std::forward<Value>(value));
lua_rawsetp(L, tableindex, key);
}
};
#endif // Lua 5.2.x
template <typename... Args, bool b, bool raw, typename C>
struct field_setter<std::tuple<Args...>, b, raw, C> {
template <bool g, std::size_t I, typename Key, typename Value>
void apply(std::index_sequence<I>, lua_State* L, Key&& keys, Value&& value, int tableindex) {
I < 1 ? set_field<g, raw>(L, detail::forward_get<I>(keys), std::forward<Value>(value), tableindex) : set_field<g, raw>(L, detail::forward_get<I>(keys), std::forward<Value>(value));
}
template <bool g, std::size_t I0, std::size_t I1, std::size_t... I, typename Keys, typename Value>
void apply(std::index_sequence<I0, I1, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
I0 < 1 ? get_field<g, raw>(L, detail::forward_get<I0>(keys), tableindex) : get_field<g, raw>(L, detail::forward_get<I0>(keys), -1);
apply<false>(std::index_sequence<I1, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), -1);
}
template <bool g, std::size_t I0, std::size_t... I, typename Keys, typename Value>
void top_apply(std::index_sequence<I0, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
apply<g>(std::index_sequence<I0, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
lua_pop(L, static_cast<int>(sizeof...(I)));
}
template <typename Keys, typename Value>
void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -3) {
top_apply<b>(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
}
};
template <typename A, typename B, bool b, bool raw, typename C>
struct field_setter<std::pair<A, B>, b, raw, C> {
template <typename Keys, typename Value>
void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -1) {
get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex);
set_field<false, raw>(L, detail::forward_get<1>(keys), std::forward<Value>(value));
lua_pop(L, 1);
}
};
}
} // namespace sol::stack
// end of sol/stack_field.hpp
// beginning of sol/stack_probe.hpp
namespace sol {
namespace stack {
template <typename T, bool b, bool raw, typename>
struct probe_field_getter {
template <typename Key>
probe get(lua_State* L, Key&& key, int tableindex = -2) {
if (!b && !maybe_indexable(L, tableindex)) {
return probe(false, 0);
}
get_field<b, raw>(L, std::forward<Key>(key), tableindex);
return probe(!check<lua_nil_t>(L), 1);
}
};
template <typename A, typename B, bool b, bool raw, typename C>
struct probe_field_getter<std::pair<A, B>, b, raw, C> {
template <typename Keys>
probe get(lua_State* L, Keys&& keys, int tableindex = -2) {
if (!b && !maybe_indexable(L, tableindex)) {
return probe(false, 0);
}
get_field<b, raw>(L, std::get<0>(keys), tableindex);
if (!maybe_indexable(L)) {
return probe(false, 1);
}
get_field<false, raw>(L, std::get<1>(keys), tableindex);
return probe(!check<lua_nil_t>(L), 2);
}
};
template <typename... Args, bool b, bool raw, typename C>
struct probe_field_getter<std::tuple<Args...>, b, raw, C> {
template <std::size_t I, typename Keys>
probe apply(std::index_sequence<I>, int sofar, lua_State* L, Keys&& keys, int tableindex) {
get_field < I<1 && b, raw>(L, std::get<I>(keys), tableindex);
return probe(!check<lua_nil_t>(L), sofar);
}
template <std::size_t I, std::size_t I1, std::size_t... In, typename Keys>
probe apply(std::index_sequence<I, I1, In...>, int sofar, lua_State* L, Keys&& keys, int tableindex) {
get_field < I<1 && b, raw>(L, std::get<I>(keys), tableindex);
if (!maybe_indexable(L)) {
return probe(false, sofar);
}
return apply(std::index_sequence<I1, In...>(), sofar + 1, L, std::forward<Keys>(keys), -1);
}
template <typename Keys>
probe get(lua_State* L, Keys&& keys, int tableindex = -2) {
if (!b && !maybe_indexable(L, tableindex)) {
return probe(false, 0);
}
return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex);
}
};
}
} // namespace sol::stack
// end of sol/stack_probe.hpp
namespace sol {
namespace detail {
using typical_chunk_name_t = char[32];
inline const std::string& default_chunk_name() {
static const std::string name = "";
return name;
}
template <std::size_t N>
const char* make_chunk_name(const string_view& code, const std::string& chunkname, char (&basechunkname)[N]) {
if (chunkname.empty()) {
auto it = code.cbegin();
auto e = code.cend();
std::size_t i = 0;
static const std::size_t n = N - 4;
for (i = 0; i < n && it != e; ++i, ++it) {
basechunkname[i] = *it;
}
if (it != e) {
for (std::size_t c = 0; c < 3; ++i, ++c) {
basechunkname[i] = '.';
}
}
basechunkname[i] = '\0';
return &basechunkname[0];
}
else {
return chunkname.c_str();
}
}
} // namespace detail
namespace stack {
namespace stack_detail {
template <typename T>
inline int push_as_upvalues(lua_State* L, T& item) {
typedef std::decay_t<T> TValue;
static const std::size_t itemsize = sizeof(TValue);
static const std::size_t voidsize = sizeof(void*);
static const std::size_t voidsizem1 = voidsize - 1;
static const std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize;
typedef std::array<void*, data_t_count> data_t;
data_t data{ {} };
std::memcpy(&data[0], std::addressof(item), itemsize);
int pushcount = 0;
for (auto&& v : data) {
pushcount += push(L, lightuserdata_value(v));
}
return pushcount;
}
template <typename T>
inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 2) {
static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
typedef std::array<void*, data_t_count> data_t;
data_t voiddata{ {} };
for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) {
voiddata[i] = get<lightuserdata_value>(L, upvalue_index(index++));
}
return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
}
struct evaluator {
template <typename Fx, typename... Args>
static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, record&, Fx&& fx, Args&&... args) {
return std::forward<Fx>(fx)(std::forward<Args>(args)...);
}
template <typename Fx, typename Arg, typename... Args, std::size_t I, std::size_t... Is, typename... FxArgs>
static decltype(auto) eval(types<Arg, Args...>, std::index_sequence<I, Is...>, lua_State* L, int start, record& tracking, Fx&& fx, FxArgs&&... fxargs) {
return eval(types<Args...>(), std::index_sequence<Is...>(), L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)..., stack_detail::unchecked_get<Arg>(L, start + tracking.used, tracking));
}
};
template <bool checkargs = detail::default_safe_function_calls , std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value >>
inline decltype(auto) call(types<R>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
#ifndef _MSC_VER
static_assert(meta::all<meta::is_not_move_only<Args>...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention.");
#endif // This compiler make me so sad
argument_handler<types<R, Args...>> handler{};
multi_check<checkargs, Args...>(L, start, handler);
record tracking{};
return evaluator{}.eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool checkargs = detail::default_safe_function_calls, std::size_t... I, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
#ifndef _MSC_VER
static_assert(meta::all<meta::is_not_move_only<Args>...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention.");
#endif // This compiler make me so fucking sad
argument_handler<types<void, Args...>> handler{};
multi_check<checkargs, Args...>(L, start, handler);
record tracking{};
evaluator{}.eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
} // namespace stack_detail
template <typename T>
int set_ref(lua_State* L, T&& arg, int tableindex = -2) {
push(L, std::forward<T>(arg));
return luaL_ref(L, tableindex);
}
template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
typedef std::make_index_sequence<sizeof...(Args)> args_indices;
return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = detail::default_safe_function_calls, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
typedef std::make_index_sequence<sizeof...(Args)> args_indices;
stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = detail::default_safe_function_calls, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
typedef meta::count_for_pack<lua_size, Args...> expected_count;
return call<check_args>(tr, ta, L, (std::max)(static_cast<int>(lua_gettop(L) - expected_count::value), static_cast<int>(0)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = detail::default_safe_function_calls, typename... Args, typename Fx, typename... FxArgs>
inline void call_from_top(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
typedef meta::count_for_pack<lua_size, Args...> expected_count;
call<check_args>(tr, ta, L, (std::max)(static_cast<int>(lua_gettop(L) - expected_count::value), static_cast<int>(0)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename... Args, typename Fx, typename... FxArgs>
inline int call_into_lua(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
if (clean_stack) {
lua_settop(L, 0);
}
return 0;
}
template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Ret0, typename... Ret, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<meta::neg<std::is_void<Ret0>>::value>>
inline int call_into_lua(types<Ret0, Ret...>, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
decltype(auto) r = call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
typedef meta::unqualified_t<decltype(r)> R;
typedef meta::any<is_stack_based<R>,
std::is_same<R, absolute_index>,
std::is_same<R, ref_index>,
std::is_same<R, raw_index>>
is_stack;
if (clean_stack && !is_stack::value) {
lua_settop(L, 0);
}
return push_reference(L, std::forward<decltype(r)>(r));
}
template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Fx, typename... FxArgs>
inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
typedef lua_bind_traits<meta::unqualified_t<Fx>> traits_type;
typedef typename traits_type::args_list args_list;
typedef typename traits_type::returns_list returns_list;
return call_into_lua<check_args, clean_stack>(returns_list(), args_list(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
}
inline call_syntax get_call_syntax(lua_State* L, const string_view& key, int index) {
if (lua_gettop(L) == 0) {
return call_syntax::dot;
}
luaL_getmetatable(L, key.data());
auto pn = pop_n(L, 1);
if (lua_compare(L, -1, index, LUA_OPEQ) != 1) {
return call_syntax::dot;
}
return call_syntax::colon;
}
inline void script(lua_State* L, const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
}
inline void script_file(lua_State* L, const std::string& filename, load_mode mode = load_mode::any) {
if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
}
inline void luajit_exception_handler(lua_State* L, int (*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) {
#if defined(SOL_LUAJIT) && !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
if (L == nullptr) {
return;
}
lua_pushlightuserdata(L, (void*)handler);
auto pn = pop_n(L, 1);
luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON);
#else
(void)L;
(void)handler;
#endif
}
inline void luajit_exception_off(lua_State* L) {
#if defined(SOL_LUAJIT)
if (L == nullptr) {
return;
}
luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF);
#else
(void)L;
#endif
}
} // namespace stack
} // namespace sol
// end of sol/stack.hpp
// beginning of sol/unsafe_function.hpp
// beginning of sol/function_result.hpp
// beginning of sol/protected_function_result.hpp
// beginning of sol/proxy_base.hpp
namespace sol {
struct proxy_base_tag {};
template <typename Super>
struct proxy_base : proxy_base_tag {
operator std::string() const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.template get<std::string>();
}
template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, is_proxy_primitive<meta::unqualified_t<T>>> = meta::enabler>
operator T() const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.template get<T>();
}
template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, meta::neg<is_proxy_primitive<meta::unqualified_t<T>>>> = meta::enabler>
operator T&() const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.template get<T&>();
}
lua_State* lua_state() const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.lua_state();
}
};
} // namespace sol
// end of sol/proxy_base.hpp
// beginning of sol/stack_iterator.hpp
namespace sol {
template <typename proxy_t, bool is_const>
struct stack_iterator {
typedef std::conditional_t<is_const, const proxy_t, proxy_t> reference;
typedef std::conditional_t<is_const, const proxy_t*, proxy_t*> pointer;
typedef proxy_t value_type;
typedef std::ptrdiff_t difference_type;
typedef std::random_access_iterator_tag iterator_category;
lua_State* L;
int index;
int stacktop;
proxy_t sp;
stack_iterator()
: L(nullptr), index((std::numeric_limits<int>::max)()), stacktop((std::numeric_limits<int>::max)()), sp() {
}
stack_iterator(const stack_iterator<proxy_t, true>& r)
: L(r.L), index(r.index), stacktop(r.stacktop), sp(r.sp) {
}
stack_iterator(lua_State* luastate, int idx, int topidx)
: L(luastate), index(idx), stacktop(topidx), sp(luastate, idx) {
}
reference operator*() {
return proxy_t(L, index);
}
reference operator*() const {
return proxy_t(L, index);
}
pointer operator->() {
sp = proxy_t(L, index);
return &sp;
}
pointer operator->() const {
const_cast<proxy_t&>(sp) = proxy_t(L, index);
return &sp;
}
stack_iterator& operator++() {
++index;
return *this;
}
stack_iterator operator++(int) {
auto r = *this;
this->operator++();
return r;
}
stack_iterator& operator--() {
--index;
return *this;
}
stack_iterator operator--(int) {
auto r = *this;
this->operator--();
return r;
}
stack_iterator& operator+=(difference_type idx) {
index += static_cast<int>(idx);
return *this;
}
stack_iterator& operator-=(difference_type idx) {
index -= static_cast<int>(idx);
return *this;
}
difference_type operator-(const stack_iterator& r) const {
return index - r.index;
}
stack_iterator operator+(difference_type idx) const {
stack_iterator r = *this;
r += idx;
return r;
}
reference operator[](difference_type idx) const {
return proxy_t(L, index + static_cast<int>(idx));
}
bool operator==(const stack_iterator& r) const {
if (stacktop == (std::numeric_limits<int>::max)()) {
return r.index == r.stacktop;
}
else if (r.stacktop == (std::numeric_limits<int>::max)()) {
return index == stacktop;
}
return index == r.index;
}
bool operator!=(const stack_iterator& r) const {
return !(this->operator==(r));
}
bool operator<(const stack_iterator& r) const {
return index < r.index;
}
bool operator>(const stack_iterator& r) const {
return index > r.index;
}
bool operator<=(const stack_iterator& r) const {
return index <= r.index;
}
bool operator>=(const stack_iterator& r) const {
return index >= r.index;
}
};
template <typename proxy_t, bool is_const>
inline stack_iterator<proxy_t, is_const> operator+(typename stack_iterator<proxy_t, is_const>::difference_type n, const stack_iterator<proxy_t, is_const>& r) {
return r + n;
}
} // namespace sol
// end of sol/stack_iterator.hpp
// beginning of sol/stack_proxy.hpp
// beginning of sol/stack_proxy_base.hpp
namespace sol {
struct stack_proxy_base : public proxy_base<stack_proxy_base> {
private:
lua_State* L;
int index;
public:
stack_proxy_base()
: L(nullptr), index(0) {
}
stack_proxy_base(lua_State* L, int index)
: L(L), index(index) {
}
template <typename T>
decltype(auto) get() const {
return stack::get<T>(L, stack_index());
}
template <typename T>
bool is() const {
return stack::check<T>(L, stack_index());
}
template <typename T>
decltype(auto) as() const {
return get<T>();
}
type get_type() const noexcept {
return type_of(lua_state(), stack_index());
}
int push() const {
return push(L);
}
int push(lua_State* Ls) const {
lua_pushvalue(Ls, index);
return 1;
}
lua_State* lua_state() const {
return L;
}
int stack_index() const {
return index;
}
};
namespace stack {
template <>
struct getter<stack_proxy_base> {
static stack_proxy_base get(lua_State* L, int index = -1) {
return stack_proxy_base(L, index);
}
};
template <>
struct pusher<stack_proxy_base> {
static int push(lua_State*, const stack_proxy_base& ref) {
return ref.push();
}
};
} // namespace stack
} // namespace sol
// end of sol/stack_proxy_base.hpp
namespace sol {
struct stack_proxy : public stack_proxy_base {
public:
stack_proxy()
: stack_proxy_base() {
}
stack_proxy(lua_State* L, int index)
: stack_proxy_base(L, index) {
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args);
template <typename... Args>
decltype(auto) operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
};
namespace stack {
template <>
struct getter<stack_proxy> {
static stack_proxy get(lua_State* L, int index = -1) {
return stack_proxy(L, index);
}
};
template <>
struct pusher<stack_proxy> {
static int push(lua_State*, const stack_proxy& ref) {
return ref.push();
}
};
} // namespace stack
} // namespace sol
// end of sol/stack_proxy.hpp
namespace sol {
struct protected_function_result : public proxy_base<protected_function_result> {
private:
lua_State* L;
int index;
int returncount;
int popcount;
call_status err;
template <typename T>
decltype(auto) tagged_get(types<optional<T>>, int index_offset) const {
typedef decltype(stack::get<optional<T>>(L, index)) ret_t;
int target = index + index_offset;
if (!valid()) {
return ret_t(nullopt);
}
return stack::get<optional<T>>(L, target);
}
template <typename T>
decltype(auto) tagged_get(types<T>, int index_offset) const {
int target = index + index_offset;
#if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES
if (!valid()) {
type t = type_of(L, target);
type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is not an error)");
}
#endif // Check Argument Safety
return stack::get<T>(L, target);
}
optional<error> tagged_get(types<optional<error>>, int index_offset) const {
int target = index + index_offset;
if (valid()) {
return nullopt;
}
return error(detail::direct_error, stack::get<std::string>(L, target));
}
error tagged_get(types<error>, int index_offset) const {
int target = index + index_offset;
#if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES
if (valid()) {
type t = type_of(L, target);
type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is an error)");
}
#endif // Check Argument Safety
return error(detail::direct_error, stack::get<std::string>(L, target));
}
public:
typedef stack_proxy reference_type;
typedef stack_proxy value_type;
typedef stack_proxy* pointer;
typedef std::ptrdiff_t difference_type;
typedef std::size_t size_type;
typedef stack_iterator<stack_proxy, false> iterator;
typedef stack_iterator<stack_proxy, true> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
protected_function_result() = default;
protected_function_result(lua_State* Ls, int idx = -1, int retnum = 0, int popped = 0, call_status pferr = call_status::ok) noexcept
: L(Ls), index(idx), returncount(retnum), popcount(popped), err(pferr) {
}
protected_function_result(const protected_function_result&) = default;
protected_function_result& operator=(const protected_function_result&) = default;
protected_function_result(protected_function_result&& o) noexcept
: L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.abandon();
}
protected_function_result& operator=(protected_function_result&& o) noexcept {
L = o.L;
index = o.index;
returncount = o.returncount;
popcount = o.popcount;
err = o.err;
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.abandon();
return *this;
}
protected_function_result(const unsafe_function_result& o) = delete;
protected_function_result& operator=(const unsafe_function_result& o) = delete;
protected_function_result(unsafe_function_result&& o) noexcept;
protected_function_result& operator=(unsafe_function_result&& o) noexcept;
call_status status() const noexcept {
return err;
}
bool valid() const noexcept {
return status() == call_status::ok || status() == call_status::yielded;
}
template <typename T>
decltype(auto) get(int index_offset = 0) const {
return tagged_get(types<meta::unqualified_t<T>>(), index_offset);
}
type get_type(difference_type index_offset = 0) const noexcept {
return type_of(L, index + static_cast<int>(index_offset));
}
stack_proxy operator[](difference_type index_offset) const {
return stack_proxy(L, index + static_cast<int>(index_offset));
}
iterator begin() {
return iterator(L, index, stack_index() + return_count());
}
iterator end() {
return iterator(L, stack_index() + return_count(), stack_index() + return_count());
}
const_iterator begin() const {
return const_iterator(L, index, stack_index() + return_count());
}
const_iterator end() const {
return const_iterator(L, stack_index() + return_count(), stack_index() + return_count());
}
const_iterator cbegin() const {
return begin();
}
const_iterator cend() const {
return end();
}
reverse_iterator rbegin() {
return std::reverse_iterator<iterator>(begin());
}
reverse_iterator rend() {
return std::reverse_iterator<iterator>(end());
}
const_reverse_iterator rbegin() const {
return std::reverse_iterator<const_iterator>(begin());
}
const_reverse_iterator rend() const {
return std::reverse_iterator<const_iterator>(end());
}
const_reverse_iterator crbegin() const {
return std::reverse_iterator<const_iterator>(cbegin());
}
const_reverse_iterator crend() const {
return std::reverse_iterator<const_iterator>(cend());
}
lua_State* lua_state() const noexcept {
return L;
};
int stack_index() const noexcept {
return index;
};
int return_count() const noexcept {
return returncount;
};
int pop_count() const noexcept {
return popcount;
};
void abandon() noexcept {
//L = nullptr;
index = 0;
returncount = 0;
popcount = 0;
err = call_status::runtime;
}
~protected_function_result() {
stack::remove(L, index, popcount);
}
};
namespace stack {
template <>
struct pusher<protected_function_result> {
static int push(lua_State* L, const protected_function_result& pfr) {
int p = 0;
for (int i = 0; i < pfr.pop_count(); ++i) {
lua_pushvalue(L, i + pfr.stack_index());
++p;
}
return p;
}
};
} // namespace stack
} // namespace sol
// end of sol/protected_function_result.hpp
// beginning of sol/unsafe_function_result.hpp
namespace sol {
struct unsafe_function_result : public proxy_base<unsafe_function_result> {
private:
lua_State* L;
int index;
int returncount;
public:
typedef stack_proxy reference_type;
typedef stack_proxy value_type;
typedef stack_proxy* pointer;
typedef std::ptrdiff_t difference_type;
typedef std::size_t size_type;
typedef stack_iterator<stack_proxy, false> iterator;
typedef stack_iterator<stack_proxy, true> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
unsafe_function_result() = default;
unsafe_function_result(lua_State* Ls, int idx = -1, int retnum = 0)
: L(Ls), index(idx), returncount(retnum) {
}
unsafe_function_result(const unsafe_function_result&) = default;
unsafe_function_result& operator=(const unsafe_function_result&) = default;
unsafe_function_result(unsafe_function_result&& o)
: L(o.L), index(o.index), returncount(o.returncount) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but will be thorough
o.abandon();
}
unsafe_function_result& operator=(unsafe_function_result&& o) {
L = o.L;
index = o.index;
returncount = o.returncount;
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but will be thorough
o.abandon();
return *this;
}
unsafe_function_result(const protected_function_result& o) = delete;
unsafe_function_result& operator=(const protected_function_result& o) = delete;
unsafe_function_result(protected_function_result&& o) noexcept;
unsafe_function_result& operator=(protected_function_result&& o) noexcept;
template <typename T>
decltype(auto) get(difference_type index_offset = 0) const {
return stack::get<T>(L, index + static_cast<int>(index_offset));
}
type get_type(difference_type index_offset = 0) const noexcept {
return type_of(L, index + static_cast<int>(index_offset));
}
stack_proxy operator[](difference_type index_offset) const {
return stack_proxy(L, index + static_cast<int>(index_offset));
}
iterator begin() {
return iterator(L, index, stack_index() + return_count());
}
iterator end() {
return iterator(L, stack_index() + return_count(), stack_index() + return_count());
}
const_iterator begin() const {
return const_iterator(L, index, stack_index() + return_count());
}
const_iterator end() const {
return const_iterator(L, stack_index() + return_count(), stack_index() + return_count());
}
const_iterator cbegin() const {
return begin();
}
const_iterator cend() const {
return end();
}
reverse_iterator rbegin() {
return std::reverse_iterator<iterator>(begin());
}
reverse_iterator rend() {
return std::reverse_iterator<iterator>(end());
}
const_reverse_iterator rbegin() const {
return std::reverse_iterator<const_iterator>(begin());
}
const_reverse_iterator rend() const {
return std::reverse_iterator<const_iterator>(end());
}
const_reverse_iterator crbegin() const {
return std::reverse_iterator<const_iterator>(cbegin());
}
const_reverse_iterator crend() const {
return std::reverse_iterator<const_iterator>(cend());
}
call_status status() const noexcept {
return call_status::ok;
}
bool valid() const noexcept {
return status() == call_status::ok || status() == call_status::yielded;
}
lua_State* lua_state() const {
return L;
};
int stack_index() const {
return index;
};
int return_count() const {
return returncount;
};
void abandon() noexcept {
//L = nullptr;
index = 0;
returncount = 0;
}
~unsafe_function_result() {
lua_pop(L, returncount);
}
};
namespace stack {
template <>
struct pusher<unsafe_function_result> {
static int push(lua_State* L, const unsafe_function_result& fr) {
int p = 0;
for (int i = 0; i < fr.return_count(); ++i) {
lua_pushvalue(L, i + fr.stack_index());
++p;
}
return p;
}
};
} // namespace stack
} // namespace sol
// end of sol/unsafe_function_result.hpp
namespace sol {
namespace detail {
template <>
struct is_speshul<unsafe_function_result> : std::true_type {};
template <>
struct is_speshul<protected_function_result> : std::true_type {};
template <std::size_t I, typename... Args, typename T>
stack_proxy get(types<Args...>, index_value<0>, index_value<I>, const T& fr) {
return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
}
template <std::size_t I, std::size_t N, typename Arg, typename... Args, typename T, meta::enable<meta::boolean<(N > 0)>> = meta::enabler>
stack_proxy get(types<Arg, Args...>, index_value<N>, index_value<I>, const T& fr) {
return get(types<Args...>(), index_value<N - 1>(), index_value<I + lua_size<Arg>::value>(), fr);
}
} // namespace detail
template <>
struct tie_size<unsafe_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {};
template <>
struct tie_size<protected_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {};
template <std::size_t I>
stack_proxy get(const unsafe_function_result& fr) {
return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
}
template <std::size_t I, typename... Args>
stack_proxy get(types<Args...> t, const unsafe_function_result& fr) {
return detail::get(t, index_value<I>(), index_value<0>(), fr);
}
template <std::size_t I>
stack_proxy get(const protected_function_result& fr) {
return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
}
template <std::size_t I, typename... Args>
stack_proxy get(types<Args...> t, const protected_function_result& fr) {
return detail::get(t, index_value<I>(), index_value<0>(), fr);
}
} // namespace sol
// end of sol/function_result.hpp
// beginning of sol/function_types.hpp
// beginning of sol/function_types_core.hpp
// beginning of sol/wrapper.hpp
namespace sol {
namespace detail {
template <typename T>
using array_return_type = std::conditional_t<std::is_array<T>::value, std::add_lvalue_reference_t<T>, T>;
}
template <typename F, typename = void>
struct wrapper {
typedef lua_bind_traits<meta::unqualified_t<F>> traits_type;
typedef typename traits_type::args_list args_list;
typedef typename traits_type::args_list free_args_list;
typedef typename traits_type::returns_list returns_list;
template <typename... Args>
static decltype(auto) call(F& f, Args&&... args) {
return f(std::forward<Args>(args)...);
}
struct caller {
template <typename... Args>
decltype(auto) operator()(F& fx, Args&&... args) const {
return call(fx, std::forward<Args>(args)...);
}
};
};
template <typename F>
struct wrapper<F, std::enable_if_t<std::is_function<std::remove_pointer_t<meta::unqualified_t<F>>>::value>> {
typedef lua_bind_traits<std::remove_pointer_t<meta::unqualified_t<F>>> traits_type;
typedef typename traits_type::args_list args_list;
typedef typename traits_type::args_list free_args_list;
typedef typename traits_type::returns_list returns_list;
template <F fx, typename... Args>
static decltype(auto) invoke(Args&&... args) {
return fx(std::forward<Args>(args)...);
}
template <typename... Args>
static decltype(auto) call(F& fx, Args&&... args) {
return fx(std::forward<Args>(args)...);
}
struct caller {
template <typename... Args>
decltype(auto) operator()(F& fx, Args&&... args) const {
return call(fx, std::forward<Args>(args)...);
}
};
template <F fx>
struct invoker {
template <typename... Args>
decltype(auto) operator()(Args&&... args) const {
return invoke<fx>(std::forward<Args>(args)...);
}
};
};
template <typename F>
struct wrapper<F, std::enable_if_t<std::is_member_object_pointer<meta::unqualified_t<F>>::value>> {
typedef lua_bind_traits<meta::unqualified_t<F>> traits_type;
typedef typename traits_type::object_type object_type;
typedef typename traits_type::return_type return_type;
typedef typename traits_type::args_list args_list;
typedef types<object_type&, return_type> free_args_list;
typedef typename traits_type::returns_list returns_list;
template <F fx>
static auto call(object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> {
return mem.*fx;
}
template <F fx, typename Arg, typename... Args>
static decltype(auto) invoke(object_type& mem, Arg&& arg, Args&&...) {
return mem.*fx = std::forward<Arg>(arg);
}
template <typename Fx>
static auto call(Fx&& fx, object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> {
return mem.*fx;
}
template <typename Fx, typename Arg, typename... Args>
static void call(Fx&& fx, object_type& mem, Arg&& arg, Args&&...) {
(mem.*fx) = std::forward<Arg>(arg);
}
struct caller {
template <typename Fx, typename... Args>
decltype(auto) operator()(Fx&& fx, object_type& mem, Args&&... args) const {
return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
}
};
template <F fx>
struct invoker {
template <typename... Args>
decltype(auto) operator()(Args&&... args) const {
return invoke<fx>(std::forward<Args>(args)...);
}
};
};
template <typename F, typename R, typename O, typename... FArgs>
struct member_function_wrapper {
typedef O object_type;
typedef lua_bind_traits<F> traits_type;
typedef typename traits_type::args_list args_list;
typedef types<object_type&, FArgs...> free_args_list;
typedef meta::tuple_types<R> returns_list;
template <F fx, typename... Args>
static R invoke(O& mem, Args&&... args) {
return (mem.*fx)(std::forward<Args>(args)...);
}
template <typename Fx, typename... Args>
static R call(Fx&& fx, O& mem, Args&&... args) {
return (mem.*fx)(std::forward<Args>(args)...);
}
struct caller {
template <typename Fx, typename... Args>
decltype(auto) operator()(Fx&& fx, O& mem, Args&&... args) const {
return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
}
};
template <F fx>
struct invoker {
template <typename... Args>
decltype(auto) operator()(O& mem, Args&&... args) const {
return invoke<fx>(mem, std::forward<Args>(args)...);
}
};
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...)> : public member_function_wrapper<R (O::*)(Args...), R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const> : public member_function_wrapper<R (O::*)(Args...) const, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile> : public member_function_wrapper<R (O::*)(Args...) const volatile, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...)&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...)&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const volatile&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) &&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const&&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile&&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) &&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const&&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const volatile&&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> {
};
#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE
//noexcept has become a part of a function's type
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) noexcept> : public member_function_wrapper<R (O::*)(Args...) noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const noexcept> : public member_function_wrapper<R (O::*)(Args...) const noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) & noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) & noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) && noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) && noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> {
};
#endif // noexcept is part of a function's type
} // namespace sol
// end of sol/wrapper.hpp
namespace sol {
namespace function_detail {
template <typename Fx, int start = 1, bool is_yielding = false>
inline int call(lua_State* L) {
Fx& fx = stack::get<user<Fx>>(L, upvalue_index(start));
int nr = fx(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
}
} // namespace sol::function_detail
// end of sol/function_types_core.hpp
// beginning of sol/function_types_templated.hpp
// beginning of sol/call.hpp
// beginning of sol/protect.hpp
namespace sol {
template <typename T>
struct protect_t {
T value;
template <typename Arg, typename... Args, meta::disable<std::is_same<protect_t, meta::unqualified_t<Arg>>> = meta::enabler>
protect_t(Arg&& arg, Args&&... args)
: value(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
protect_t(const protect_t&) = default;
protect_t(protect_t&&) = default;
protect_t& operator=(const protect_t&) = default;
protect_t& operator=(protect_t&&) = default;
};
template <typename T>
auto protect(T&& value) {
return protect_t<std::decay_t<T>>(std::forward<T>(value));
}
} // namespace sol
// end of sol/protect.hpp
// beginning of sol/property.hpp
namespace sol {
struct no_prop {};
template <typename R, typename W>
struct property_wrapper {
typedef std::integral_constant<bool, !std::is_void<R>::value> can_read;
typedef std::integral_constant<bool, !std::is_void<W>::value> can_write;
typedef std::conditional_t<can_read::value, R, no_prop> Read;
typedef std::conditional_t<can_write::value, W, no_prop> Write;
Read read;
Write write;
template <typename Rx, typename Wx>
property_wrapper(Rx&& r, Wx&& w)
: read(std::forward<Rx>(r)), write(std::forward<Wx>(w)) {
}
};
namespace property_detail {
template <typename R, typename W>
inline decltype(auto) property(std::true_type, R&& read, W&& write) {
return property_wrapper<std::decay_t<R>, std::decay_t<W>>(std::forward<R>(read), std::forward<W>(write));
}
template <typename W, typename R>
inline decltype(auto) property(std::false_type, W&& write, R&& read) {
return property_wrapper<std::decay_t<R>, std::decay_t<W>>(std::forward<R>(read), std::forward<W>(write));
}
template <typename R>
inline decltype(auto) property(std::true_type, R&& read) {
return property_wrapper<std::decay_t<R>, void>(std::forward<R>(read), no_prop());
}
template <typename W>
inline decltype(auto) property(std::false_type, W&& write) {
return property_wrapper<void, std::decay_t<W>>(no_prop(), std::forward<W>(write));
}
} // namespace property_detail
template <typename F, typename G>
inline decltype(auto) property(F&& f, G&& g) {
typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
typedef lua_bind_traits<meta::unqualified_t<G>> right_traits;
return property_detail::property(meta::boolean<(left_traits::free_arity < right_traits::free_arity)>(), std::forward<F>(f), std::forward<G>(g));
}
template <typename F>
inline decltype(auto) property(F&& f) {
typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
return property_detail::property(meta::boolean<(left_traits::free_arity < 2)>(), std::forward<F>(f));
}
template <typename F>
inline decltype(auto) readonly_property(F&& f) {
return property_detail::property(std::true_type(), std::forward<F>(f));
}
template <typename F>
inline decltype(auto) writeonly_property(F&& f) {
return property_detail::property(std::false_type(), std::forward<F>(f));
}
template <typename T>
struct readonly_wrapper {
T v;
readonly_wrapper(T v)
: v(std::move(v)) {
}
operator T&() {
return v;
}
operator const T&() const {
return v;
}
};
// Allow someone to make a member variable readonly (const)
template <typename R, typename T>
inline auto readonly(R T::*v) {
return readonly_wrapper<meta::unqualified_t<decltype(v)>>(v);
}
template <typename T>
struct var_wrapper {
T value;
template <typename... Args>
var_wrapper(Args&&... args)
: value(std::forward<Args>(args)...) {
}
var_wrapper(const var_wrapper&) = default;
var_wrapper(var_wrapper&&) = default;
var_wrapper& operator=(const var_wrapper&) = default;
var_wrapper& operator=(var_wrapper&&) = default;
};
template <typename V>
inline auto var(V&& v) {
typedef meta::unqualified_t<V> T;
return var_wrapper<T>(std::forward<V>(v));
}
namespace meta {
template <typename T>
struct is_member_object : std::is_member_object_pointer<T> {};
template <typename T>
struct is_member_object<readonly_wrapper<T>> : std::true_type {};
} // namespace meta
} // namespace sol
// end of sol/property.hpp
namespace sol {
namespace usertype_detail {
} // namespace usertype_detail
namespace filter_detail {
template <int I, int... In>
inline void handle_filter(static_stack_dependencies<I, In...>, lua_State* L, int&) {
if (sizeof...(In) == 0) {
return;
}
absolute_index ai(L, I);
if (type_of(L, ai) != type::userdata) {
return;
}
lua_createtable(L, static_cast<int>(sizeof...(In)), 0);
stack_reference deps(L, -1);
auto per_dep = [&L, &deps](int i) {
lua_pushvalue(L, i);
luaL_ref(L, deps.stack_index());
};
(void)per_dep;
(void)detail::swallow{ int(), (per_dep(In), int())... };
lua_setuservalue(L, ai);
}
template <int... In>
inline void handle_filter(returns_self_with<In...>, lua_State* L, int& pushed) {
pushed = stack::push(L, raw_index(1));
handle_filter(static_stack_dependencies<-1, In...>(), L, pushed);
}
inline void handle_filter(const stack_dependencies& sdeps, lua_State* L, int&) {
absolute_index ai(L, sdeps.target);
if (type_of(L, ai) != type::userdata) {
return;
}
lua_createtable(L, static_cast<int>(sdeps.size()), 0);
stack_reference deps(L, -1);
for (std::size_t i = 0; i < sdeps.size(); ++i) {
lua_pushvalue(L, sdeps.stack_indices[i]);
luaL_ref(L, deps.stack_index());
}
lua_setuservalue(L, ai);
}
template <typename P, meta::disable<std::is_base_of<detail::filter_base_tag, meta::unqualified_t<P>>> = meta::enabler>
inline void handle_filter(P&& p, lua_State* L, int& pushed) {
pushed = std::forward<P>(p)(L, pushed);
}
} // namespace filter_detail
namespace function_detail {
inline int no_construction_error(lua_State* L) {
return luaL_error(L, "sol: cannot call this constructor (tagged as non-constructible)");
}
} // namespace function_detail
namespace call_detail {
template <typename R, typename W>
inline auto& pick(std::true_type, property_wrapper<R, W>& f) {
return f.read;
}
template <typename R, typename W>
inline auto& pick(std::false_type, property_wrapper<R, W>& f) {
return f.write;
}
template <typename T, typename List>
struct void_call : void_call<T, meta::function_args_t<List>> {};
template <typename T, typename... Args>
struct void_call<T, types<Args...>> {
static void call(Args...) {
}
};
template <typename T, bool checked, bool clean_stack>
struct constructor_match {
T* obj;
constructor_match(T* o)
: obj(o) {
}
template <typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(types<Fx>, index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const {
detail::default_construct func{};
return stack::call_into_lua<checked, clean_stack>(r, a, L, start, func, obj);
}
};
namespace overload_detail {
template <std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&&, lua_State* L, int, int, Args&&...) {
return luaL_error(L, "sol: no matching function call takes this number of arguments and the specified types");
}
template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
typedef meta::tuple_types<typename traits::return_type> return_types;
typedef typename traits::free_args_list args_list;
// compile-time eliminate any functions that we know ahead of time are of improper arity
if (!traits::runtime_variadics_t::value && meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) {
return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
stack::record tracking{};
if (!stack::stack_detail::check_types<true>{}.check(args_list(), L, start, no_panic, tracking)) {
return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
}
template <std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity_single(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename Fx, std::size_t I, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity_single(types<Fx>, std::index_sequence<I>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
typedef meta::tuple_types<typename traits::return_type> return_types;
typedef typename traits::free_args_list args_list;
// compile-time eliminate any functions that we know ahead of time are of improper arity
if (!traits::runtime_variadics_t::value && meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) {
return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename Fx, typename Fx1, typename... Fxs, std::size_t I, std::size_t I1, std::size_t... In, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity_single(types<Fx, Fx1, Fxs...>, std::index_sequence<I, I1, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
typedef meta::tuple_types<typename traits::return_type> return_types;
typedef typename traits::free_args_list args_list;
// compile-time eliminate any functions that we know ahead of time are of improper arity
if (!traits::runtime_variadics_t::value && meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) {
return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
stack::record tracking{};
if (!stack::stack_detail::check_types<true>{}.check(args_list(), L, start, no_panic, tracking)) {
return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
}
} // namespace overload_detail
template <typename... Functions, typename Match, typename... Args>
inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
return overload_detail::overload_match_arity_single(types<Functions...>(), std::make_index_sequence<sizeof...(Functions)>(), std::index_sequence<>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename... Functions, typename Match, typename... Args>
inline int overload_match(Match&& matchfx, lua_State* L, int start, Args&&... args) {
int fxarity = lua_gettop(L) - (start - 1);
return overload_match_arity<Functions...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename T, typename... TypeLists, typename Match, typename... Args>
inline int construct_match(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
// use same overload resolution matching as all other parts of the framework
return overload_match_arity<decltype(void_call<T, TypeLists>::call)...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename T, bool checked, bool clean_stack, typename... TypeLists>
inline int construct(lua_State* L) {
static const auto& meta = usertype_traits<T>::metatable();
int argcount = lua_gettop(L);
call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot;
argcount -= static_cast<int>(syntax);
T* obj = detail::usertype_allocate<T>(L);
reference userdataref(L, -1);
userdataref.pop();
construct_match<T, TypeLists...>(constructor_match<T, checked, clean_stack>(obj), L, argcount, 1 + static_cast<int>(syntax));
userdataref.push();
stack::stack_detail::undefined_metatable<T> umf(L, &meta[0]);
umf();
return 1;
}
template <typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename = void>
struct agnostic_lua_call_wrapper {
typedef wrapper<meta::unqualified_t<F>> wrap;
template <typename Fx, typename... Args>
static int convertible_call(std::true_type, lua_State* L, Fx&& f, Args&&... args) {
typedef typename wrap::traits_type traits_type;
typedef typename traits_type::function_pointer_type fp_t;
fp_t fx = f;
return agnostic_lua_call_wrapper<fp_t, is_index, is_variable, checked, boost, clean_stack>{}.call(L, fx, std::forward<Args>(args)...);
}
template <typename Fx, typename... Args>
static int convertible_call(std::false_type, lua_State* L, Fx&& f, Args&&... args) {
typedef typename wrap::returns_list returns_list;
typedef typename wrap::free_args_list args_list;
typedef typename wrap::caller caller;
return stack::call_into_lua<checked, clean_stack>(returns_list(), args_list(), L, boost + 1, caller(), std::forward<Fx>(f), std::forward<Args>(args)...);
}
template <typename Fx, typename... Args>
static int call(lua_State* L, Fx&& f, Args&&... args) {
typedef typename wrap::traits_type traits_type;
typedef typename traits_type::function_pointer_type fp_t;
return convertible_call(std::conditional_t<std::is_class<meta::unqualified_t<F>>::value, std::is_convertible<std::decay_t<Fx>, fp_t>, std::false_type>(), L, std::forward<Fx>(f), std::forward<Args>(args)...);
}
};
template <typename T, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<var_wrapper<T>, true, is_variable, checked, boost, clean_stack, C> {
template <typename F>
static int call(lua_State* L, F&& f) {
typedef is_stack_based<meta::unqualified_t<decltype(detail::unwrap(f.value))>> is_stack;
if (clean_stack && !is_stack::value) {
lua_settop(L, 0);
}
return stack::push_reference(L, detail::unwrap(f.value));
}
};
template <typename T, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<var_wrapper<T>, false, is_variable, checked, boost, clean_stack, C> {
template <typename V>
static int call_assign(std::true_type, lua_State* L, V&& f) {
detail::unwrap(f.value) = stack::get<meta::unwrapped_t<T>>(L, boost + (is_variable ? 3 : 1));
if (clean_stack) {
lua_settop(L, 0);
}
return 0;
}
template <typename... Args>
static int call_assign(std::false_type, lua_State* L, Args&&...) {
return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
}
template <typename... Args>
static int call_const(std::false_type, lua_State* L, Args&&... args) {
typedef meta::unwrapped_t<T> R;
return call_assign(std::is_assignable<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>(), L, std::forward<Args>(args)...);
}
template <typename... Args>
static int call_const(std::true_type, lua_State* L, Args&&...) {
return luaL_error(L, "sol: cannot write to a readonly (const) variable");
}
template <typename V>
static int call(lua_State* L, V&& f) {
return call_const(std::is_const<meta::unwrapped_t<T>>(), L, f);
}
};
template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<lua_CFunction_ref, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, lua_CFunction_ref f) {
return f(L);
}
};
template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<lua_CFunction, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, lua_CFunction f) {
return f(L);
}
};
#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE
template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<detail::lua_CFunction_noexcept, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, detail::lua_CFunction_noexcept f) {
return f(L);
}
};
#endif // noexcept function types
template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<no_prop, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, const no_prop&) {
return luaL_error(L, is_index ? "sol: cannot read from a writeonly property" : "sol: cannot write to a readonly property");
}
};
template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<no_construction, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, const no_construction&) {
return function_detail::no_construction_error(L);
}
};
template <typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<bases<Args...>, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State*, const bases<Args...>&) {
// Uh. How did you even call this, lul
return 0;
}
};
template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<std::reference_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> {
static int call(lua_State* L, std::reference_wrapper<T> f) {
return agnostic_lua_call_wrapper<T, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f.get());
}
};
template <typename T, typename F, bool is_index, bool is_variable, bool checked = detail::default_safe_function_calls, int boost = 0, bool clean_stack = true, typename = void>
struct lua_call_wrapper : agnostic_lua_call_wrapper<F, is_index, is_variable, checked, boost, clean_stack> {};
template <typename T, typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack>
struct lua_call_wrapper<T, F, is_index, is_variable, checked, boost, clean_stack, std::enable_if_t<std::is_member_function_pointer<F>::value>> {
typedef wrapper<meta::unqualified_t<F>> wrap;
typedef typename wrap::object_type object_type;
template <typename Fx>
static int call(lua_State* L, Fx&& f, object_type& o) {
typedef typename wrap::returns_list returns_list;
typedef typename wrap::args_list args_list;
typedef typename wrap::caller caller;
return stack::call_into_lua<checked, clean_stack>(returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(f), o);
}
template <typename Fx>
static int call(lua_State* L, Fx&& f) {
typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta;
#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE
auto maybeo = stack::check_get<Ta*>(L, 1);
if (!maybeo || maybeo.value() == nullptr) {
return luaL_error(L, "sol: received nil for 'self' argument (use ':' for accessing member functions, make sure member variables are preceeded by the actual object with '.' syntax)");
}
object_type* o = static_cast<object_type*>(maybeo.value());
return call(L, std::forward<Fx>(f), *o);
#else
object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
return call(L, std::forward<Fx>(f), o);
#endif // Safety
}
};
template <typename T, typename F, bool is_variable, bool checked, int boost, bool clean_stack>
struct lua_call_wrapper<T, F, false, is_variable, checked, boost, clean_stack, std::enable_if_t<std::is_member_object_pointer<F>::value>> {
typedef lua_bind_traits<F> traits_type;
typedef wrapper<meta::unqualified_t<F>> wrap;
typedef typename wrap::object_type object_type;
template <typename V>
static int call_assign(std::true_type, lua_State* L, V&& f, object_type& o) {
typedef typename wrap::args_list args_list;
typedef typename wrap::caller caller;
return stack::call_into_lua<checked, clean_stack>(types<void>(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), f, o);
}
template <typename V>
static int call_assign(std::true_type, lua_State* L, V&& f) {
typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta;
#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE
auto maybeo = stack::check_get<Ta*>(L, 1);
if (!maybeo || maybeo.value() == nullptr) {
if (is_variable) {
return luaL_error(L, "sol: received nil for 'self' argument (bad '.' access?)");
}
return luaL_error(L, "sol: received nil for 'self' argument (pass 'self' as first argument)");
}
object_type* o = static_cast<object_type*>(maybeo.value());
return call_assign(std::true_type(), L, f, *o);
#else
object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
return call_assign(std::true_type(), L, f, o);
#endif // Safety
}
template <typename... Args>
static int call_assign(std::false_type, lua_State* L, Args&&...) {
return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
}
template <typename... Args>
static int call_const(std::false_type, lua_State* L, Args&&... args) {
typedef typename traits_type::return_type R;
return call_assign(std::is_copy_assignable<meta::unqualified_t<R>>(), L, std::forward<Args>(args)...);
}
template <typename... Args>
static int call_const(std::true_type, lua_State* L, Args&&...) {
return luaL_error(L, "sol: cannot write to a readonly (const) variable");
}
template <typename V>
static int call(lua_State* L, V&& f) {
return call_const(std::is_const<typename traits_type::return_type>(), L, std::forward<V>(f));
}
template <typename V>
static int call(lua_State* L, V&& f, object_type& o) {
return call_const(std::is_const<typename traits_type::return_type>(), L, std::forward<V>(f), o);
}
};
template <typename T, typename F, bool is_variable, bool checked, int boost, bool clean_stack>
struct lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, std::enable_if_t<std::is_member_object_pointer<F>::value>> {
typedef lua_bind_traits<F> traits_type;
typedef wrapper<meta::unqualified_t<F>> wrap;
typedef typename wrap::object_type object_type;
template <typename V>
static int call(lua_State* L, V&& v, object_type& o) {
typedef typename wrap::returns_list returns_list;
typedef typename wrap::caller caller;
F f(std::forward<V>(v));
return stack::call_into_lua<checked, clean_stack>(returns_list(), types<>(), L, boost + (is_variable ? 3 : 2), caller(), f, o);
}
template <typename V>
static int call(lua_State* L, V&& f) {
typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta;
#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE
auto maybeo = stack::check_get<Ta*>(L, 1);
if (!maybeo || maybeo.value() == nullptr) {
if (is_variable) {
return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
}
return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
}
object_type* o = static_cast<object_type*>(maybeo.value());
return call(L, f, *o);
#else
object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
return call(L, f, o);
#endif // Safety
}
};
template <typename T, typename F, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, readonly_wrapper<F>, false, is_variable, checked, boost, clean_stack, C> {
typedef lua_bind_traits<F> traits_type;
typedef wrapper<meta::unqualified_t<F>> wrap;
typedef typename wrap::object_type object_type;
template <typename V>
static int call(lua_State* L, V&&) {
return luaL_error(L, "sol: cannot write to a sol::readonly variable");
}
template <typename V>
static int call(lua_State* L, V&&, object_type&) {
return luaL_error(L, "sol: cannot write to a sol::readonly variable");
}
};
template <typename T, typename F, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, readonly_wrapper<F>, true, is_variable, checked, boost, clean_stack, C> : lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> {
};
template <typename T, typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, constructor_list<Args...>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef constructor_list<Args...> F;
static int call(lua_State* L, F&) {
const auto& meta = usertype_traits<T>::metatable();
int argcount = lua_gettop(L);
call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot;
argcount -= static_cast<int>(syntax);
T* obj = detail::usertype_allocate<T>(L);
reference userdataref(L, -1);
construct_match<T, Args...>(constructor_match<T, false, clean_stack>(obj), L, argcount, boost + 1 + static_cast<int>(syntax));
userdataref.push();
stack::stack_detail::undefined_metatable<T> umf(L, &meta[0]);
umf();
return 1;
}
};
template <typename T, typename... Cxs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, constructor_wrapper<Cxs...>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef constructor_wrapper<Cxs...> F;
struct onmatch {
template <typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(types<Fx>, index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start, F& f) {
const auto& meta = usertype_traits<T>::metatable();
T* obj = detail::usertype_allocate<T>(L);
reference userdataref(L, -1);
auto& func = std::get<I>(f.functions);
stack::call_into_lua<checked, clean_stack>(r, a, L, boost + start, func, detail::implicit_wrapper<T>(obj));
userdataref.push();
stack::stack_detail::undefined_metatable<T> umf(L, &meta[0]);
umf();
return 1;
}
};
static int call(lua_State* L, F& f) {
call_syntax syntax = stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1);
int syntaxval = static_cast<int>(syntax);
int argcount = lua_gettop(L) - syntaxval;
return construct_match<T, meta::pop_front_type_t<meta::function_args_t<Cxs>>...>(onmatch(), L, argcount, 1 + syntaxval, f);
}
};
template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack>
struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, clean_stack, std::enable_if_t<std::is_void<Fx>::value>> {
typedef destructor_wrapper<Fx> F;
static int call(lua_State* L, const F&) {
return detail::usertype_alloc_destruct<T>(L);
}
};
template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack>
struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, clean_stack, std::enable_if_t<!std::is_void<Fx>::value>> {
typedef destructor_wrapper<Fx> F;
static int call_void(std::true_type, lua_State* L, const F& f) {
typedef meta::bind_traits<meta::unqualified_t<decltype(f.fx)>> bt;
typedef typename bt::template arg_at<0> arg0;
typedef meta::unqualified_t<arg0> O;
O& obj = stack::get<O>(L);
f.fx(detail::implicit_wrapper<O>(obj));
return 0;
}
static int call_void(std::false_type, lua_State* L, const F& f) {
T& obj = stack::get<T>(L);
f.fx(detail::implicit_wrapper<T>(obj));
return 0;
}
static int call(lua_State* L, const F& f) {
return call_void(std::is_void<T>(), L, f);
}
};
template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, overload_set<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef overload_set<Fs...> F;
struct on_match {
template <typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
auto& f = std::get<I>(fx.functions);
return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost>{}.call(L, f);
}
};
static int call(lua_State* L, F& fx) {
return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L), 1, fx);
}
};
template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, factory_wrapper<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef factory_wrapper<Fs...> F;
struct on_match {
template <typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
auto& f = std::get<I>(fx.functions);
return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f);
}
};
static int call(lua_State* L, F& fx) {
return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L) - boost, 1 + boost, fx);
}
};
template <typename T, typename R, typename W, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, property_wrapper<R, W>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef std::conditional_t<is_index, R, W> P;
typedef meta::unqualified_t<P> U;
typedef wrapper<U> wrap;
typedef lua_bind_traits<U> traits_type;
typedef meta::unqualified_t<typename traits_type::template arg_at<0>> object_type;
template <typename F>
static int self_call(std::true_type, lua_State* L, F&& f) {
// The type being void means we don't have any arguments, so it might be a free functions?
typedef typename traits_type::free_args_list args_list;
typedef typename wrap::returns_list returns_list;
typedef typename wrap::caller caller;
return stack::call_into_lua<checked, clean_stack>(returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), f);
}
template <typename F>
static int self_call(std::false_type, lua_State* L, F&& f) {
typedef meta::pop_front_type_t<typename traits_type::free_args_list> args_list;
typedef T Ta;
typedef std::remove_pointer_t<object_type> Oa;
#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE
auto maybeo = stack::check_get<Ta*>(L, 1);
if (!maybeo || maybeo.value() == nullptr) {
if (is_variable) {
return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
}
return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
}
Oa* o = static_cast<Oa*>(maybeo.value());
#else
Oa* o = static_cast<Oa*>(stack::get<non_null<Ta*>>(L, 1));
#endif // Safety
typedef typename wrap::returns_list returns_list;
typedef typename wrap::caller caller;
return stack::call_into_lua<checked, clean_stack>(returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), f, detail::implicit_wrapper<Oa>(*o));
}
template <typename F, typename... Args>
static int defer_call(std::false_type, lua_State* L, F&& f, Args&&... args) {
return self_call(meta::any<std::is_void<object_type>, meta::boolean<lua_type_of<meta::unwrap_unqualified_t<object_type>>::value != type::userdata>>(), L, pick(meta::boolean<is_index>(), f), std::forward<Args>(args)...);
}
template <typename F, typename... Args>
static int defer_call(std::true_type, lua_State* L, F&& f, Args&&... args) {
auto& p = pick(meta::boolean<is_index>(), std::forward<F>(f));
return lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, p, std::forward<Args>(args)...);
}
template <typename F, typename... Args>
static int call(lua_State* L, F&& f, Args&&... args) {
typedef meta::any<
std::is_void<U>,
std::is_same<U, no_prop>,
meta::is_specialization_of<U, var_wrapper>,
meta::is_specialization_of<U, constructor_wrapper>,
meta::is_specialization_of<U, constructor_list>,
std::is_member_pointer<U>>
is_specialized;
return defer_call(is_specialized(), L, std::forward<F>(f), std::forward<Args>(args)...);
}
};
template <typename T, typename V, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, protect_t<V>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef protect_t<V> F;
template <typename... Args>
static int call(lua_State* L, F& fx, Args&&... args) {
return lua_call_wrapper<T, V, is_index, is_variable, true, boost, clean_stack>{}.call(L, fx.value, std::forward<Args>(args)...);
}
};
template <typename T, typename F, typename... Filters, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, filter_wrapper<F, Filters...>, is_index, is_variable, checked, boost, clean_stack, C> {
typedef filter_wrapper<F, Filters...> P;
template <std::size_t... In>
static int call(std::index_sequence<In...>, lua_State* L, P& fx) {
int pushed = lua_call_wrapper<T, F, is_index, is_variable, checked, boost, false, C>{}.call(L, fx.value);
(void)detail::swallow{ int(), (filter_detail::handle_filter(std::get<In>(fx.filters), L, pushed), int())... };
return pushed;
}
static int call(lua_State* L, P& fx) {
typedef typename P::indices indices;
return call(indices(), L, fx);
}
};
template <typename T, typename Sig, typename P, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, function_arguments<Sig, P>, is_index, is_variable, checked, boost, clean_stack, C> {
template <typename F>
static int call(lua_State* L, F&& f) {
return lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, std::get<0>(f.arguments));
}
};
template <typename T, bool is_index, bool is_variable, int boost = 0, bool checked = detail::default_safe_function_calls, bool clean_stack = true, typename Fx, typename... Args>
inline int call_wrapped(lua_State* L, Fx&& fx, Args&&... args) {
return lua_call_wrapper<T, meta::unqualified_t<Fx>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <typename T, bool is_index, bool is_variable, typename F, int start = 1, bool checked = detail::default_safe_function_calls, bool clean_stack = true>
inline int call_user(lua_State* L) {
auto& fx = stack::get<user<F>>(L, upvalue_index(start));
return call_wrapped<T, is_index, is_variable, 0, checked, clean_stack>(L, fx);
}
template <typename T, typename = void>
struct is_var_bind : std::false_type {};
template <typename T>
struct is_var_bind<T, std::enable_if_t<std::is_member_object_pointer<T>::value>> : std::true_type {};
template <>
struct is_var_bind<no_prop> : std::true_type {};
template <typename R, typename W>
struct is_var_bind<property_wrapper<R, W>> : std::true_type {};
template <typename T>
struct is_var_bind<var_wrapper<T>> : std::true_type {};
template <typename T>
struct is_var_bind<readonly_wrapper<T>> : is_var_bind<meta::unqualified_t<T>> {};
template <typename F, typename... Filters>
struct is_var_bind<filter_wrapper<F, Filters...>> : is_var_bind<meta::unqualified_t<F>> {};
} // namespace call_detail
template <typename T>
struct is_variable_binding : call_detail::is_var_bind<meta::unqualified_t<T>> {};
template <typename T>
struct is_function_binding : meta::neg<is_variable_binding<T>> {};
} // namespace sol
// end of sol/call.hpp
namespace sol {
namespace function_detail {
template <typename F, F fx>
inline int call_wrapper_variable(std::false_type, lua_State* L) {
typedef meta::bind_traits<meta::unqualified_t<F>> traits_type;
typedef typename traits_type::args_list args_list;
typedef meta::tuple_types<typename traits_type::return_type> return_type;
return stack::call_into_lua(return_type(), args_list(), L, 1, fx);
}
template <typename R, typename V, V, typename T>
inline int call_set_assignable(std::false_type, T&&, lua_State* L) {
return luaL_error(L, "cannot write to this type: copy assignment/constructor not available");
}
template <typename R, typename V, V variable, typename T>
inline int call_set_assignable(std::true_type, lua_State* L, T&& mem) {
(mem.*variable) = stack::get<R>(L, 2);
return 0;
}
template <typename R, typename V, V, typename T>
inline int call_set_variable(std::false_type, lua_State* L, T&&) {
return luaL_error(L, "cannot write to a const variable");
}
template <typename R, typename V, V variable, typename T>
inline int call_set_variable(std::true_type, lua_State* L, T&& mem) {
return call_set_assignable<R, V, variable>(std::is_assignable<std::add_lvalue_reference_t<R>, R>(), L, std::forward<T>(mem));
}
template <typename V, V variable>
inline int call_wrapper_variable(std::true_type, lua_State* L) {
typedef meta::bind_traits<meta::unqualified_t<V>> traits_type;
typedef typename traits_type::object_type T;
typedef typename traits_type::return_type R;
auto& mem = stack::get<T>(L, 1);
switch (lua_gettop(L)) {
case 1: {
decltype(auto) r = (mem.*variable);
stack::push_reference(L, std::forward<decltype(r)>(r));
return 1;
}
case 2:
return call_set_variable<R, V, variable>(meta::neg<std::is_const<R>>(), L, mem);
default:
return luaL_error(L, "incorrect number of arguments to member variable function call");
}
}
template <typename F, F fx>
inline int call_wrapper_function(std::false_type, lua_State* L) {
return call_wrapper_variable<F, fx>(std::is_member_object_pointer<F>(), L);
}
template <typename F, F fx>
inline int call_wrapper_function(std::true_type, lua_State* L) {
return call_detail::call_wrapped<void, false, false>(L, fx);
}
template <typename F, F fx>
int call_wrapper_entry(lua_State* L) noexcept(meta::bind_traits<F>::is_noexcept) {
return call_wrapper_function<F, fx>(std::is_member_function_pointer<meta::unqualified_t<F>>(), L);
}
template <typename... Fxs>
struct c_call_matcher {
template <typename Fx, std::size_t I, typename R, typename... Args>
int operator()(types<Fx>, index_value<I>, types<R>, types<Args...>, lua_State* L, int, int) const {
typedef meta::at_in_pack_t<I, Fxs...> target;
return target::call(L);
}
};
template <typename F, F fx>
inline int c_call_raw(std::true_type, lua_State* L) {
return fx(L);
}
template <typename F, F fx>
inline int c_call_raw(std::false_type, lua_State* L) {
#ifdef __clang__
return detail::trampoline(L, function_detail::call_wrapper_entry<F, fx>);
#else
return detail::typed_static_trampoline<decltype(&function_detail::call_wrapper_entry<F, fx>), (&function_detail::call_wrapper_entry<F, fx>)>(L);
#endif // fuck you clang :c
}
} // namespace function_detail
template <typename F, F fx>
inline int c_call(lua_State* L) {
typedef meta::unqualified_t<F> Fu;
typedef std::integral_constant<bool, std::is_same<Fu, lua_CFunction>::value
#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE
|| std::is_same<Fu, detail::lua_CFunction_noexcept>::value
#endif
> is_raw;
return function_detail::c_call_raw<F, fx>(is_raw(), L);
}
template <typename F, F f>
struct wrap {
typedef F type;
static int call(lua_State* L) {
return c_call<type, f>(L);
}
};
template <typename... Fxs>
inline int c_call(lua_State* L) {
if (sizeof...(Fxs) < 2) {
return meta::at_in_pack_t<0, Fxs...>::call(L);
}
else {
return call_detail::overload_match_arity<typename Fxs::type...>(function_detail::c_call_matcher<Fxs...>(), L, lua_gettop(L), 1);
}
}
} // namespace sol
// end of sol/function_types_templated.hpp
// beginning of sol/function_types_stateless.hpp
namespace sol {
namespace function_detail {
template <typename Function, bool is_yielding>
struct upvalue_free_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef meta::bind_traits<function_type> traits_type;
static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) {
auto udata = stack::stack_detail::get_as_upvalues<function_type*>(L);
function_type* fx = udata.first;
return call_detail::call_wrapped<void, true, false>(L, fx);
}
static int call(lua_State* L) {
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
template <typename T, typename Function, bool is_yielding>
struct upvalue_member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) {
// Layout:
// idx 1...n: verbatim data of member function pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
function_type& memfx = memberdata.first;
auto& item = *objdata.first;
return call_detail::call_wrapped<T, true, false, -1>(L, memfx, item);
}
static int call(lua_State* L) {
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
template <typename T, typename Function, bool is_yielding>
struct upvalue_member_variable {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) {
// Layout:
// idx 1...n: verbatim data of member variable pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
auto& mem = *objdata.first;
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 0:
return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
case 1:
return call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
static int call(lua_State* L) {
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
template <typename T, typename Function, bool is_yielding>
struct upvalue_member_variable<T, readonly_wrapper<Function>, is_yielding> {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) {
// Layout:
// idx 1...n: verbatim data of member variable pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
auto& mem = *objdata.first;
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 0:
return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
static int call(lua_State* L) {
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
template <typename T, typename Function, bool is_yielding>
struct upvalue_this_member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) {
// Layout:
// idx 1...n: verbatim data of member variable pointer
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
function_type& memfx = memberdata.first;
return call_detail::call_wrapped<T, false, false>(L, memfx);
}
static int call(lua_State* L) {
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
template <typename T, typename Function, bool is_yielding>
struct upvalue_this_member_variable {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
static int real_call(lua_State* L) noexcept(false) {
// Layout:
// idx 1...n: verbatim data of member variable pointer
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 1:
return call_detail::call_wrapped<T, true, false>(L, var);
case 2:
return call_detail::call_wrapped<T, false, false>(L, var);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
static int call(lua_State* L) {
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
template <typename T, typename Function, bool is_yielding>
struct upvalue_this_member_variable<T, readonly_wrapper<Function>, is_yielding> {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L) noexcept(false) {
// Layout:
// idx 1...n: verbatim data of member variable pointer
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 1:
return call_detail::call_wrapped<T, true, false>(L, var);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
static int call(lua_State* L) {
int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
return call(L);
}
};
}
} // namespace sol::function_detail
// end of sol/function_types_stateless.hpp
// beginning of sol/function_types_stateful.hpp
namespace sol {
namespace function_detail {
template <typename Func, bool is_yielding>
struct functor_function {
typedef std::decay_t<meta::unwrap_unqualified_t<Func>> function_type;
function_type fx;
template <typename... Args>
functor_function(function_type f, Args&&... args)
: fx(std::move(f), std::forward<Args>(args)...) {
}
int call(lua_State* L) {
int nr = call_detail::call_wrapped<void, true, false>(L, fx);
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
auto f = [&](lua_State*) -> int { return this->call(L); };
return detail::trampoline(L, f);
}
};
template <typename T, typename Function, bool is_yielding>
struct member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef meta::function_return_t<function_type> return_type;
typedef meta::function_args_t<function_type> args_lists;
function_type invocation;
T member;
template <typename... Args>
member_function(function_type f, Args&&... args)
: invocation(std::move(f)), member(std::forward<Args>(args)...) {
}
int call(lua_State* L) {
int nr = call_detail::call_wrapped<T, true, false, -1>(L, invocation, detail::unwrap(detail::deref(member)));
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
auto f = [&](lua_State*) -> int { return this->call(L); };
return detail::trampoline(L, f);
}
};
template <typename T, typename Function, bool is_yielding>
struct member_variable {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef typename meta::bind_traits<function_type>::return_type return_type;
typedef typename meta::bind_traits<function_type>::args_list args_lists;
function_type var;
T member;
typedef std::add_lvalue_reference_t<meta::unwrapped_t<std::remove_reference_t<decltype(detail::deref(member))>>> M;
template <typename... Args>
member_variable(function_type v, Args&&... args)
: var(std::move(v)), member(std::forward<Args>(args)...) {
}
int call(lua_State* L) {
int nr;
{
M mem = detail::unwrap(detail::deref(member));
switch (lua_gettop(L)) {
case 0:
nr = call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
break;
case 1:
nr = call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
break;
default:
nr = luaL_error(L, "sol: incorrect number of arguments to member variable function");
break;
}
}
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) {
auto f = [&](lua_State*) -> int { return this->call(L); };
return detail::trampoline(L, f);
}
};
}
} // namespace sol::function_detail
// end of sol/function_types_stateful.hpp
// beginning of sol/function_types_overloaded.hpp
namespace sol {
namespace function_detail {
template <int start_skew = 0, typename... Functions>
struct overloaded_function {
typedef std::tuple<Functions...> overload_list;
typedef std::make_index_sequence<sizeof...(Functions)> indices;
overload_list overloads;
overloaded_function(overload_list set)
: overloads(std::move(set)) {
}
overloaded_function(Functions... fxs)
: overloads(fxs...) {
}
template <typename Fx, std::size_t I, typename... R, typename... Args>
int call(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int) {
auto& func = std::get<I>(overloads);
return call_detail::call_wrapped<void, true, false, start_skew>(L, func);
}
int operator()(lua_State* L) {
auto mfx = [&](auto&&... args) { return this->call(std::forward<decltype(args)>(args)...); };
return call_detail::overload_match<Functions...>(mfx, L, 1 + start_skew);
}
};
}
} // namespace sol::function_detail
// end of sol/function_types_overloaded.hpp
// beginning of sol/resolve.hpp
namespace sol {
#ifndef __clang__
// constexpr is fine for not-clang
namespace detail {
template <typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>>
inline constexpr auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...) {
using Sig = R(Args...);
typedef meta::unqualified_t<F> Fu;
return static_cast<Sig Fu::*>(&Fu::operator());
}
template <typename F, typename U = meta::unqualified_t<F>>
inline constexpr auto resolve_f(std::true_type, F&& f)
-> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
}
template <typename F>
inline constexpr void resolve_f(std::false_type, F&&) {
static_assert(meta::has_deducible_signature<F>::value,
"Cannot use no-template-parameter call with an overloaded functor: specify the signature");
}
template <typename F, typename U = meta::unqualified_t<F>>
inline constexpr auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) {
return resolve_f(meta::has_deducible_signature<U>{}, std::forward<F>(f));
}
template <typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>>
inline constexpr auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) {
return resolve_i(types<R(Args...)>(), std::forward<F>(f));
}
template <typename Sig, typename C>
inline constexpr Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) {
return mem_func_ptr;
}
template <typename Sig, typename C>
inline constexpr Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) {
return mem_variable_ptr;
}
} // namespace detail
template <typename... Args, typename R>
inline constexpr auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) {
return fun_ptr;
}
template <typename Sig>
inline constexpr Sig* resolve(Sig* fun_ptr) {
return fun_ptr;
}
template <typename... Args, typename R, typename C>
inline constexpr auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) {
return mem_ptr;
}
template <typename Sig, typename C>
inline constexpr Sig C::*resolve(Sig C::*mem_ptr) {
return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
}
template <typename... Sig, typename F, meta::disable<std::is_function<meta::unqualified_t<F>>> = meta::enabler>
inline constexpr auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) {
return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
}
#else
// Clang has distinct problems with constexpr arguments,
// so don't use the constexpr versions inside of clang.
namespace detail {
template <typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>>
inline auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...) {
using Sig = R(Args...);
typedef meta::unqualified_t<F> Fu;
return static_cast<Sig Fu::*>(&Fu::operator());
}
template <typename F, typename U = meta::unqualified_t<F>>
inline auto resolve_f(std::true_type, F&& f)
-> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
}
template <typename F>
inline void resolve_f(std::false_type, F&&) {
static_assert(meta::has_deducible_signature<F>::value,
"Cannot use no-template-parameter call with an overloaded functor: specify the signature");
}
template <typename F, typename U = meta::unqualified_t<F>>
inline auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) {
return resolve_f(meta::has_deducible_signature<U>{}, std::forward<F>(f));
}
template <typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>>
inline auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) {
return resolve_i(types<R(Args...)>(), std::forward<F>(f));
}
template <typename Sig, typename C>
inline Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) {
return mem_func_ptr;
}
template <typename Sig, typename C>
inline Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) {
return mem_variable_ptr;
}
} // namespace detail
template <typename... Args, typename R>
inline auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) {
return fun_ptr;
}
template <typename Sig>
inline Sig* resolve(Sig* fun_ptr) {
return fun_ptr;
}
template <typename... Args, typename R, typename C>
inline auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) {
return mem_ptr;
}
template <typename Sig, typename C>
inline Sig C::*resolve(Sig C::*mem_ptr) {
return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
}
template <typename... Sig, typename F>
inline auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) {
return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
}
#endif
} // namespace sol
// end of sol/resolve.hpp
namespace sol {
namespace function_detail {
template <typename T>
struct class_indicator {};
struct call_indicator {};
} // namespace function_detail
namespace stack {
template <typename... Sigs>
struct pusher<function_sig<Sigs...>> {
template <bool is_yielding, typename... Sig, typename Fx, typename... Args>
static void select_convertible(std::false_type, types<Sig...>, lua_State* L, Fx&& fx, Args&&... args) {
typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx;
typedef function_detail::functor_function<clean_fx, is_yielding> F;
set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <bool is_yielding, typename R, typename... A, typename Fx, typename... Args>
static void select_convertible(std::true_type, types<R(A...)>, lua_State* L, Fx&& fx, Args&&... args) {
using fx_ptr_t = R (*)(A...);
fx_ptr_t fxptr = detail::unwrap(std::forward<Fx>(fx));
select_function<is_yielding>(std::true_type(), L, fxptr, std::forward<Args>(args)...);
}
template <bool is_yielding, typename R, typename... A, typename Fx, typename... Args>
static void select_convertible(types<R(A...)> t, lua_State* L, Fx&& fx, Args&&... args) {
typedef std::decay_t<meta::unwrap_unqualified_t<Fx>> raw_fx_t;
typedef R (*fx_ptr_t)(A...);
typedef std::is_convertible<raw_fx_t, fx_ptr_t> is_convertible;
select_convertible<is_yielding>(is_convertible(), t, L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <bool is_yielding, typename Fx, typename... Args>
static void select_convertible(types<>, lua_State* L, Fx&& fx, Args&&... args) {
typedef meta::function_signature_t<meta::unwrap_unqualified_t<Fx>> Sig;
select_convertible<is_yielding>(types<Sig>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <bool is_yielding, typename Fx, typename T, typename... Args>
static void select_reference_member_variable(std::false_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx;
typedef function_detail::member_variable<meta::unwrap_unqualified_t<T>, clean_fx, is_yielding> F;
set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
}
template <bool is_yielding, typename Fx, typename T, typename... Args>
static void select_reference_member_variable(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
typedef std::decay_t<Fx> dFx;
dFx memfxptr(std::forward<Fx>(fx));
auto userptr = detail::ptr(std::forward<T>(obj), std::forward<Args>(args)...);
lua_CFunction freefunc = &function_detail::upvalue_member_variable<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::stack_detail::push_as_upvalues(L, memfxptr);
upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr)));
stack::push(L, c_closure(freefunc, upvalues));
}
template <bool is_yielding, typename Fx, typename... Args>
static void select_member_variable(std::false_type, lua_State* L, Fx&& fx, Args&&... args) {
select_convertible<is_yielding>(types<Sigs...>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <bool is_yielding, typename Fx, typename T, typename... Args, meta::disable<meta::is_specialization_of<meta::unqualified_t<T>, function_detail::class_indicator>> = meta::enabler>
static void select_member_variable(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
typedef meta::boolean<meta::is_specialization_of<meta::unqualified_t<T>, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference;
select_reference_member_variable<is_yielding>(is_reference(), L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
}
template <bool is_yielding, typename Fx, typename C>
static void select_member_variable(std::true_type, lua_State* L, Fx&& fx, function_detail::class_indicator<C>) {
lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::stack_detail::push_as_upvalues(L, fx);
stack::push(L, c_closure(freefunc, upvalues));
}
template <bool is_yielding, typename Fx>
static void select_member_variable(std::true_type, lua_State* L, Fx&& fx) {
typedef typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type C;
lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::stack_detail::push_as_upvalues(L, fx);
stack::push(L, c_closure(freefunc, upvalues));
}
template <bool is_yielding, typename Fx, typename T, typename... Args>
static void select_reference_member_function(std::false_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
typedef std::decay_t<Fx> clean_fx;
typedef function_detail::member_function<meta::unwrap_unqualified_t<T>, clean_fx, is_yielding> F;
set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
}
template <bool is_yielding, typename Fx, typename T, typename... Args>
static void select_reference_member_function(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
typedef std::decay_t<Fx> dFx;
dFx memfxptr(std::forward<Fx>(fx));
auto userptr = detail::ptr(std::forward<T>(obj), std::forward<Args>(args)...);
lua_CFunction freefunc = &function_detail::upvalue_member_function<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::stack_detail::push_as_upvalues(L, memfxptr);
upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr)));
stack::push(L, c_closure(freefunc, upvalues));
}
template <bool is_yielding, typename Fx, typename... Args>
static void select_member_function(std::false_type, lua_State* L, Fx&& fx, Args&&... args) {
select_member_variable<is_yielding>(meta::is_member_object<meta::unqualified_t<Fx>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <bool is_yielding, typename Fx, typename T, typename... Args, meta::disable<meta::is_specialization_of<meta::unqualified_t<T>, function_detail::class_indicator>> = meta::enabler>
static void select_member_function(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
typedef meta::boolean<meta::is_specialization_of<meta::unqualified_t<T>, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference;
select_reference_member_function<is_yielding>(is_reference(), L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
}
template <bool is_yielding, typename Fx, typename C>
static void select_member_function(std::true_type, lua_State* L, Fx&& fx, function_detail::class_indicator<C>) {
lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, Fx, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::stack_detail::push_as_upvalues(L, fx);
stack::push(L, c_closure(freefunc, upvalues));
}
template <bool is_yielding, typename Fx>
static void select_member_function(std::true_type, lua_State* L, Fx&& fx) {
typedef typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type C;
lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, Fx, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::stack_detail::push_as_upvalues(L, fx);
stack::push(L, c_closure(freefunc, upvalues));
}
template <bool is_yielding, typename Fx, typename... Args>
static void select_function(std::false_type, lua_State* L, Fx&& fx, Args&&... args) {
select_member_function<is_yielding>(std::is_member_function_pointer<meta::unqualified_t<Fx>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <bool is_yielding, typename Fx, typename... Args>
static void select_function(std::true_type, lua_State* L, Fx&& fx, Args&&... args) {
std::decay_t<Fx> target(std::forward<Fx>(fx), std::forward<Args>(args)...);
lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx, is_yielding>::call;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::stack_detail::push_as_upvalues(L, target);
stack::push(L, c_closure(freefunc, upvalues));
}
template <bool is_yielding>
static void select_function(std::true_type, lua_State* L, lua_CFunction f) {
// TODO: support yielding
stack::push(L, f);
}
#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE
template <bool is_yielding>
static void select_function(std::true_type, lua_State* L, detail::lua_CFunction_noexcept f) {
// TODO: support yielding
stack::push(L, f);
}
#endif // noexcept function type
template <bool is_yielding, typename Fx, typename... Args, meta::disable<is_lua_reference<meta::unqualified_t<Fx>>> = meta::enabler>
static void select(lua_State* L, Fx&& fx, Args&&... args) {
select_function<is_yielding>(std::is_function<std::remove_pointer_t<meta::unqualified_t<Fx>>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <bool is_yielding, typename Fx, meta::enable<is_lua_reference<meta::unqualified_t<Fx>>> = meta::enabler>
static void select(lua_State* L, Fx&& fx) {
// TODO: hoist into lambda in this case??
stack::push(L, std::forward<Fx>(fx));
}
template <bool is_yielding, typename Fx, typename... Args>
static void set_fx(lua_State* L, Args&&... args) {
lua_CFunction freefunc = function_detail::call<meta::unqualified_t<Fx>, 2, is_yielding>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<Fx>>(L, std::forward<Args>(args)...);
stack::push(L, c_closure(freefunc, upvalues));
}
template <typename Arg0, typename... Args, meta::disable<std::is_same<detail::yield_tag_t, meta::unqualified_t<Arg0>>> = meta::enabler>
static int push(lua_State* L, Arg0&& arg0, Args&&... args) {
// Set will always place one thing (function) on the stack
select<false>(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
return 1;
}
template <typename... Args>
static int push(lua_State* L, detail::yield_tag_t, Args&&... args) {
// Set will always place one thing (function) on the stack
select<true>(L, std::forward<Args>(args)...);
return 1;
}
};
template <typename T>
struct pusher<yielding_t<T>> {
template <typename... Args>
static int push(lua_State* L, const yielding_t<T>& f, Args&&... args) {
pusher<function_sig<>> p{};
(void)p;
return p.push(L, detail::yield_tag, f.func, std::forward<Args>(args)...);
}
template <typename... Args>
static int push(lua_State* L, yielding_t<T>&& f, Args&&... args) {
pusher<function_sig<>> p{};
(void)p;
return p.push(L, detail::yield_tag, f.func, std::forward<Args>(args)...);
}
};
template <typename T, typename... Args>
struct pusher<function_arguments<T, Args...>> {
template <std::size_t... I, typename FP>
static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp) {
return stack::push<T>(L, detail::forward_get<I>(fp.arguments)...);
}
static int push(lua_State* L, const function_arguments<T, Args...>& fp) {
return push_func(std::make_index_sequence<sizeof...(Args)>(), L, fp);
}
static int push(lua_State* L, function_arguments<T, Args...>&& fp) {
return push_func(std::make_index_sequence<sizeof...(Args)>(), L, std::move(fp));
}
};
template <typename Signature>
struct pusher<std::function<Signature>> {
static int push(lua_State* L, const std::function<Signature>& fx) {
return pusher<function_sig<Signature>>{}.push(L, fx);
}
static int push(lua_State* L, std::function<Signature>&& fx) {
return pusher<function_sig<Signature>>{}.push(L, std::move(fx));
}
};
template <typename Signature>
struct pusher<Signature, std::enable_if_t<std::is_member_pointer<Signature>::value>> {
template <typename F, typename... Args>
static int push(lua_State* L, F&& f, Args&&... args) {
pusher<function_sig<>> p{};
(void)p;
return p.push(L, std::forward<F>(f), std::forward<Args>(args)...);
}
};
template <typename Signature>
struct pusher<Signature, std::enable_if_t<meta::all<std::is_function<std::remove_pointer_t<Signature>>, meta::neg<std::is_same<Signature, lua_CFunction>>, meta::neg<std::is_same<Signature, std::remove_pointer_t<lua_CFunction>>>
#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE
,
meta::neg<std::is_same<Signature, detail::lua_CFunction_noexcept>>, meta::neg<std::is_same<Signature, std::remove_pointer_t<detail::lua_CFunction_noexcept>>>
#endif // noexcept function types
>::value>> {
template <typename F>
static int push(lua_State* L, F&& f) {
return pusher<function_sig<>>{}.push(L, std::forward<F>(f));
}
};
template <typename... Functions>
struct pusher<overload_set<Functions...>> {
static int push(lua_State* L, overload_set<Functions...>&& set) {
// TODO: yielding
typedef function_detail::overloaded_function<0, Functions...> F;
pusher<function_sig<>>{}.set_fx<false, F>(L, std::move(set.functions));
return 1;
}
static int push(lua_State* L, const overload_set<Functions...>& set) {
// TODO: yielding
typedef function_detail::overloaded_function<0, Functions...> F;
pusher<function_sig<>>{}.set_fx<false, F>(L, set.functions);
return 1;
}
};
template <typename T>
struct pusher<protect_t<T>> {
static int push(lua_State* L, protect_t<T>&& pw) {
lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<protect_t<T>>>(L, std::move(pw.value));
return stack::push(L, c_closure(cf, upvalues));
}
static int push(lua_State* L, const protect_t<T>& pw) {
lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<protect_t<T>>>(L, pw.value);
return stack::push(L, c_closure(cf, upvalues));
}
};
template <typename F, typename G>
struct pusher<property_wrapper<F, G>, std::enable_if_t<!std::is_void<F>::value && !std::is_void<G>::value>> {
static int push(lua_State* L, property_wrapper<F, G>&& pw) {
return stack::push(L, overload(std::move(pw.read), std::move(pw.write)));
}
static int push(lua_State* L, const property_wrapper<F, G>& pw) {
return stack::push(L, overload(pw.read, pw.write));
}
};
template <typename F>
struct pusher<property_wrapper<F, void>> {
static int push(lua_State* L, property_wrapper<F, void>&& pw) {
return stack::push(L, std::move(pw.read));
}
static int push(lua_State* L, const property_wrapper<F, void>& pw) {
return stack::push(L, pw.read);
}
};
template <typename F>
struct pusher<property_wrapper<void, F>> {
static int push(lua_State* L, property_wrapper<void, F>&& pw) {
return stack::push(L, std::move(pw.write));
}
static int push(lua_State* L, const property_wrapper<void, F>& pw) {
return stack::push(L, pw.write);
}
};
template <typename T>
struct pusher<var_wrapper<T>> {
static int push(lua_State* L, var_wrapper<T>&& vw) {
return stack::push(L, std::move(vw.value));
}
static int push(lua_State* L, const var_wrapper<T>& vw) {
return stack::push(L, vw.value);
}
};
template <typename... Functions>
struct pusher<factory_wrapper<Functions...>> {
static int push(lua_State* L, const factory_wrapper<Functions...>& fw) {
typedef function_detail::overloaded_function<0, Functions...> F;
pusher<function_sig<>>{}.set_fx<false, F>(L, fw.functions);
return 1;
}
static int push(lua_State* L, factory_wrapper<Functions...>&& fw) {
typedef function_detail::overloaded_function<0, Functions...> F;
pusher<function_sig<>>{}.set_fx<false, F>(L, std::move(fw.functions));
return 1;
}
static int push(lua_State* L, const factory_wrapper<Functions...>& set, function_detail::call_indicator) {
typedef function_detail::overloaded_function<1, Functions...> F;
pusher<function_sig<>>{}.set_fx<false, F>(L, set.functions);
return 1;
}
static int push(lua_State* L, factory_wrapper<Functions...>&& set, function_detail::call_indicator) {
typedef function_detail::overloaded_function<1, Functions...> F;
pusher<function_sig<>>{}.set_fx<false, F>(L, std::move(set.functions));
return 1;
}
};
template <>
struct pusher<no_construction> {
static int push(lua_State* L, no_construction) {
lua_CFunction cf = &function_detail::no_construction_error;
return stack::push(L, cf);
}
static int push(lua_State* L, no_construction c, function_detail::call_indicator) {
return push(L, c);
}
};
template <typename T, typename... Lists>
struct pusher<detail::tagged<T, constructor_list<Lists...>>> {
static int push(lua_State* L, detail::tagged<T, constructor_list<Lists...>>) {
lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>;
return stack::push(L, cf);
}
static int push(lua_State* L, constructor_list<Lists...>) {
lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>;
return stack::push(L, cf);
}
};
template <typename L0, typename... Lists>
struct pusher<constructor_list<L0, Lists...>> {
typedef constructor_list<L0, Lists...> cl_t;
static int push(lua_State* L, cl_t cl) {
typedef typename meta::bind_traits<L0>::return_type T;
return stack::push<detail::tagged<T, cl_t>>(L, cl);
}
};
template <typename T, typename... Fxs>
struct pusher<detail::tagged<T, constructor_wrapper<Fxs...>>> {
template <typename C>
static int push(lua_State* L, C&& c) {
lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, std::forward<C>(c));
return stack::push(L, c_closure(cf, upvalues));
}
};
template <typename F, typename... Fxs>
struct pusher<constructor_wrapper<F, Fxs...>> {
template <typename C>
static int push(lua_State* L, C&& c) {
typedef typename meta::bind_traits<F>::template arg_at<0> arg0;
typedef meta::unqualified_t<std::remove_pointer_t<arg0>> T;
return stack::push<detail::tagged<T, constructor_wrapper<F, Fxs...>>>(L, std::forward<C>(c));
}
};
template <typename T>
struct pusher<detail::tagged<T, destructor_wrapper<void>>> {
static int push(lua_State* L, destructor_wrapper<void>) {
lua_CFunction cf = detail::usertype_alloc_destruct<T>;
return stack::push(L, cf);
}
};
template <typename T, typename Fx>
struct pusher<detail::tagged<T, destructor_wrapper<Fx>>> {
static int push(lua_State* L, destructor_wrapper<Fx>&& c) {
lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c));
return stack::push(L, c_closure(cf, upvalues));
}
static int push(lua_State* L, const destructor_wrapper<Fx>& c) {
lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c);
return stack::push(L, c_closure(cf, upvalues));
}
};
template <typename Fx>
struct pusher<destructor_wrapper<Fx>> {
static int push(lua_State* L, destructor_wrapper<Fx>&& c) {
lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c));
return stack::push(L, c_closure(cf, upvalues));
}
static int push(lua_State* L, const destructor_wrapper<Fx>& c) {
lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c);
return stack::push(L, c_closure(cf, upvalues));
}
};
template <typename F, typename... Filters>
struct pusher<filter_wrapper<F, Filters...>> {
typedef filter_wrapper<F, Filters...> P;
static int push(lua_State* L, const P& p) {
lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<P>>(L, p);
return stack::push(L, c_closure(cf, upvalues));
}
static int push(lua_State* L, P&& p) {
lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>;
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push<user<P>>(L, std::move(p));
return stack::push(L, c_closure(cf, upvalues));
}
};
} // namespace stack
} // namespace sol
// end of sol/function_types.hpp
namespace sol {
template <typename base_t, bool aligned = false>
class basic_function : public base_t {
private:
void luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount) const {
lua_call(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount));
}
template <std::size_t... I, typename... Ret>
auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) const {
luacall(n, lua_size<std::tuple<Ret...>>::value);
return stack::pop<std::tuple<Ret...>>(lua_state());
}
template <std::size_t I, typename Ret>
Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) const {
luacall(n, lua_size<Ret>::value);
return stack::pop<Ret>(lua_state());
}
template <std::size_t I>
void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) const {
luacall(n, 0);
}
unsafe_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) const {
int stacksize = lua_gettop(lua_state());
int firstreturn = (std::max)(1, stacksize - static_cast<int>(n));
luacall(n, LUA_MULTRET);
int poststacksize = lua_gettop(lua_state());
int returncount = poststacksize - (firstreturn - 1);
return unsafe_function_result(lua_state(), firstreturn, returncount);
}
public:
using base_t::lua_state;
basic_function() = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_function>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_function(T&& r) noexcept
: base_t(std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
if (!is_function<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_function>(lua_state(), -1, handler);
}
#endif // Safety
}
basic_function(const basic_function&) = default;
basic_function& operator=(const basic_function&) = default;
basic_function(basic_function&&) = default;
basic_function& operator=(basic_function&&) = default;
basic_function(const stack_reference& r)
: basic_function(r.lua_state(), r.stack_index()) {
}
basic_function(stack_reference&& r)
: basic_function(r.lua_state(), r.stack_index()) {
}
basic_function(lua_nil_t n)
: base_t(n) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_function(lua_State* L, T&& r)
: base_t(L, std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_function>(lua_state(), -1, handler);
#endif // Safety
}
basic_function(lua_State* L, int index = -1)
: base_t(L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_function>(L, index, handler);
#endif // Safety
}
basic_function(lua_State* L, ref_index index)
: base_t(L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_function>(lua_state(), -1, handler);
#endif // Safety
}
template <typename... Args>
unsafe_function_result operator()(Args&&... args) const {
return call<>(std::forward<Args>(args)...);
}
template <typename... Ret, typename... Args>
decltype(auto) operator()(types<Ret...>, Args&&... args) const {
return call<Ret...>(std::forward<Args>(args)...);
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) const {
if (!aligned) {
base_t::push();
}
int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount);
}
};
} // namespace sol
// end of sol/unsafe_function.hpp
// beginning of sol/protected_function.hpp
// beginning of sol/protected_handler.hpp
namespace sol {
namespace detail {
inline const char(&default_handler_name())[9]{
static const char name[9] = "sol.\xF0\x9F\x94\xA9";
return name;
}
template <bool b, typename target_t = reference>
struct protected_handler {
typedef is_stack_based<target_t> is_stack;
const target_t& target;
int stackindex;
protected_handler(std::false_type, const target_t& target)
: target(target), stackindex(0) {
if (b) {
stackindex = lua_gettop(target.lua_state()) + 1;
target.push();
}
}
protected_handler(std::true_type, const target_t& target)
: target(target), stackindex(0) {
if (b) {
stackindex = target.stack_index();
}
}
protected_handler(const target_t& target)
: protected_handler(is_stack(), target) {
}
bool valid() const noexcept {
return b;
}
~protected_handler() {
if (!is_stack::value && stackindex != 0) {
lua_remove(target.lua_state(), stackindex);
}
}
};
template <typename base_t, typename T>
basic_function<base_t> force_cast(T& p) {
return p;
}
template <typename Reference, bool is_main_ref = false>
static Reference get_default_handler(lua_State* L) {
if (is_stack_based<Reference>::value || L == nullptr)
return Reference(L, lua_nil);
L = is_main_ref ? main_thread(L, L) : L;
lua_getglobal(L, default_handler_name());
auto pp = stack::pop_n(L, 1);
return Reference(L, -1);
}
template <typename T>
static void set_default_handler(lua_State* L, const T& ref) {
if (L == nullptr) {
return;
}
if (!ref.valid()) {
lua_pushnil(L);
lua_setglobal(L, default_handler_name());
}
else {
ref.push(L);
lua_setglobal(L, default_handler_name());
}
}
} // namespace detail
} // namespace sol
// end of sol/protected_handler.hpp
namespace sol {
template <typename base_t, bool aligned = false, typename handler_t = reference>
class basic_protected_function : public base_t {
public:
typedef is_stack_based<handler_t> is_stack_handler;
static handler_t get_default_handler(lua_State* L) {
return detail::get_default_handler<handler_t, is_main_threaded<base_t>::value>(L);
}
template <typename T>
static void set_default_handler(const T& ref) {
detail::set_default_handler(ref.lua_state(), ref);
}
private:
template <bool b>
call_status luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, detail::protected_handler<b, handler_t>& h) const {
return static_cast<call_status>(lua_pcall(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount), h.stackindex));
}
template <std::size_t... I, bool b, typename... Ret>
auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
luacall(n, sizeof...(Ret), h);
return stack::pop<std::tuple<Ret...>>(lua_state());
}
template <std::size_t I, bool b, typename Ret>
Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
luacall(n, 1, h);
return stack::pop<Ret>(lua_state());
}
template <std::size_t I, bool b>
void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
luacall(n, 0, h);
}
template <bool b>
protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
int stacksize = lua_gettop(lua_state());
int poststacksize = stacksize;
int firstreturn = 1;
int returncount = 0;
call_status code = call_status::ok;
#if !defined(SOL_NO_EXCEPTIONS) || !SOL_NO_EXCEPTIONS
auto onexcept = [&](optional<const std::exception&> maybe_ex, const char* error) {
h.stackindex = 0;
if (b) {
h.target.push();
detail::call_exception_handler(lua_state(), maybe_ex, error);
lua_call(lua_state(), 1, 1);
}
else {
detail::call_exception_handler(lua_state(), maybe_ex, error);
}
};
(void)onexcept;
#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) || (defined(SOL_LUAJIT) && SOL_LUAJIT)
try {
#endif // Safe Exception Propagation
#endif // No Exceptions
firstreturn = (std::max)(1, static_cast<int>(stacksize - n - static_cast<int>(h.valid())));
code = luacall(n, LUA_MULTRET, h);
poststacksize = lua_gettop(lua_state()) - static_cast<int>(h.valid());
returncount = poststacksize - (firstreturn - 1);
#ifndef SOL_NO_EXCEPTIONS
#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) || (defined(SOL_LUAJIT) && SOL_LUAJIT)
}
// Handle C++ errors thrown from C++ functions bound inside of lua
catch (const char* error) {
onexcept(optional<const std::exception&>(nullopt), error);
firstreturn = lua_gettop(lua_state());
return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
}
catch (const std::string& error) {
onexcept(optional<const std::exception&>(nullopt), error.c_str());
firstreturn = lua_gettop(lua_state());
return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
}
catch (const std::exception& error) {
onexcept(optional<const std::exception&>(error), error.what());
firstreturn = lua_gettop(lua_state());
return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
}
#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION)
// LuaJIT cannot have the catchall when the safe propagation is on
// but LuaJIT will swallow all C++ errors
// if we don't at least catch std::exception ones
catch (...) {
onexcept(optional<const std::exception&>(nullopt), "caught (...) unknown error during protected_function call");
firstreturn = lua_gettop(lua_state());
return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
}
#endif // LuaJIT
#else
// do not handle exceptions: they can be propogated into C++ and keep all type information / rich information
#endif // Safe Exception Propagation
#endif // Exceptions vs. No Exceptions
return protected_function_result(lua_state(), firstreturn, returncount, returncount, code);
}
public:
using base_t::lua_state;
handler_t error_handler;
basic_protected_function() = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_protected_function>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_protected_function(T&& r) noexcept
: base_t(std::forward<T>(r)), error_handler(get_default_handler(r.lua_state())) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
if (!is_function<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_protected_function>(lua_state(), -1, handler);
}
#endif // Safety
}
basic_protected_function(const basic_protected_function&) = default;
basic_protected_function& operator=(const basic_protected_function&) = default;
basic_protected_function(basic_protected_function&&) = default;
basic_protected_function& operator=(basic_protected_function&&) = default;
basic_protected_function(const basic_function<base_t>& b)
: basic_protected_function(b, get_default_handler(b.lua_state())) {
}
basic_protected_function(basic_function<base_t>&& b)
: basic_protected_function(std::move(b), get_default_handler(b.lua_state())) {
}
basic_protected_function(const basic_function<base_t>& b, handler_t eh)
: base_t(b), error_handler(std::move(eh)) {
}
basic_protected_function(basic_function<base_t>&& b, handler_t eh)
: base_t(std::move(b)), error_handler(std::move(eh)) {
}
basic_protected_function(const stack_reference& r)
: basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) {
}
basic_protected_function(stack_reference&& r)
: basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) {
}
basic_protected_function(const stack_reference& r, handler_t eh)
: basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) {
}
basic_protected_function(stack_reference&& r, handler_t eh)
: basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) {
}
template <typename Super>
basic_protected_function(const proxy_base<Super>& p)
: basic_protected_function(p, get_default_handler(p.lua_state())) {
}
template <typename Super>
basic_protected_function(proxy_base<Super>&& p)
: basic_protected_function(std::move(p), get_default_handler(p.lua_state())) {
}
template <typename Proxy, typename Handler, meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler>
basic_protected_function(Proxy&& p, Handler&& eh)
: basic_protected_function(detail::force_cast<base_t>(p), std::forward<Handler>(eh)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_protected_function(lua_State* L, T&& r)
: basic_protected_function(L, std::forward<T>(r), get_default_handler(L)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_protected_function(lua_State* L, T&& r, handler_t eh)
: base_t(L, std::forward<T>(r)), error_handler(std::move(eh)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_protected_function>(lua_state(), -1, handler);
#endif // Safety
}
basic_protected_function(lua_nil_t n)
: base_t(n), error_handler(n) {
}
basic_protected_function(lua_State* L, int index = -1)
: basic_protected_function(L, index, get_default_handler(L)) {
}
basic_protected_function(lua_State* L, int index, handler_t eh)
: base_t(L, index), error_handler(std::move(eh)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_protected_function>(L, index, handler);
#endif // Safety
}
basic_protected_function(lua_State* L, absolute_index index)
: basic_protected_function(L, index, get_default_handler(L)) {
}
basic_protected_function(lua_State* L, absolute_index index, handler_t eh)
: base_t(L, index), error_handler(std::move(eh)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_protected_function>(L, index, handler);
#endif // Safety
}
basic_protected_function(lua_State* L, raw_index index)
: basic_protected_function(L, index, get_default_handler(L)) {
}
basic_protected_function(lua_State* L, raw_index index, handler_t eh)
: base_t(L, index), error_handler(std::move(eh)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_protected_function>(L, index, handler);
#endif // Safety
}
basic_protected_function(lua_State* L, ref_index index)
: basic_protected_function(L, index, get_default_handler(L)) {
}
basic_protected_function(lua_State* L, ref_index index, handler_t eh)
: base_t(L, index), error_handler(std::move(eh)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_protected_function>(lua_state(), -1, handler);
#endif // Safety
}
template <typename... Args>
protected_function_result operator()(Args&&... args) const {
return call<>(std::forward<Args>(args)...);
}
template <typename... Ret, typename... Args>
decltype(auto) operator()(types<Ret...>, Args&&... args) const {
return call<Ret...>(std::forward<Args>(args)...);
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) const {
if (!aligned) {
// we do not expect the function to already be on the stack: push it
if (error_handler.valid()) {
detail::protected_handler<true, handler_t> h(error_handler);
base_t::push();
int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
}
else {
detail::protected_handler<false, handler_t> h(error_handler);
base_t::push();
int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
}
}
else {
// the function is already on the stack at the right location
if (error_handler.valid()) {
// the handler will be pushed onto the stack manually,
// since it's not already on the stack this means we need to push our own
// function on the stack too and swap things to be in-place
if (!is_stack_handler::value) {
// so, we need to remove the function at the top and then dump the handler out ourselves
base_t::push();
}
detail::protected_handler<true, handler_t> h(error_handler);
if (!is_stack_handler::value) {
lua_replace(lua_state(), -3);
h.stackindex = lua_absindex(lua_state(), -2);
}
int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
}
else {
detail::protected_handler<false, handler_t> h(error_handler);
int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
}
}
}
};
} // namespace sol
// end of sol/protected_function.hpp
namespace sol {
template <typename... Ret, typename... Args>
inline decltype(auto) stack_proxy::call(Args&&... args) {
stack_function sf(this->lua_state(), this->stack_index());
return sf.template call<Ret...>(std::forward<Args>(args)...);
}
inline protected_function_result::protected_function_result(unsafe_function_result&& o) noexcept
: L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()), popcount(o.return_count()), err(o.status()) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.abandon();
}
inline protected_function_result& protected_function_result::operator=(unsafe_function_result&& o) noexcept {
L = o.lua_state();
index = o.stack_index();
returncount = o.return_count();
popcount = o.return_count();
err = o.status();
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.abandon();
return *this;
}
inline unsafe_function_result::unsafe_function_result(protected_function_result&& o) noexcept
: L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.abandon();
}
inline unsafe_function_result& unsafe_function_result::operator=(protected_function_result&& o) noexcept {
L = o.lua_state();
index = o.stack_index();
returncount = o.return_count();
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.abandon();
return *this;
}
namespace stack {
template <typename Signature>
struct getter<std::function<Signature>> {
typedef meta::bind_traits<Signature> fx_t;
typedef typename fx_t::args_list args_lists;
typedef meta::tuple_types<typename fx_t::return_type> return_types;
template <typename... Args, typename... Ret>
static std::function<Signature> get_std_func(types<Ret...>, types<Args...>, lua_State* L, int index) {
unsafe_function f(L, index);
auto fx = [ f = std::move(f) ](Args && ... args) -> meta::return_type_t<Ret...> {
return f.call<Ret...>(std::forward<Args>(args)...);
};
return std::move(fx);
}
template <typename... FxArgs>
static std::function<Signature> get_std_func(types<void>, types<FxArgs...>, lua_State* L, int index) {
unsafe_function f(L, index);
auto fx = [f = std::move(f)](FxArgs&&... args) -> void {
f(std::forward<FxArgs>(args)...);
};
return std::move(fx);
}
template <typename... FxArgs>
static std::function<Signature> get_std_func(types<>, types<FxArgs...> t, lua_State* L, int index) {
return get_std_func(types<void>(), t, L, index);
}
static std::function<Signature> get(lua_State* L, int index, record& tracking) {
tracking.last = 1;
tracking.used += 1;
type t = type_of(L, index);
if (t == type::none || t == type::lua_nil) {
return nullptr;
}
return get_std_func(return_types(), args_lists(), L, index);
}
};
} // namespace stack
} // namespace sol
// end of sol/function.hpp
namespace sol {
template <typename Table, typename Key>
struct proxy : public proxy_base<proxy<Table, Key>> {
private:
typedef meta::condition<meta::is_specialization_of<Key, std::tuple>, Key, std::tuple<meta::condition<std::is_array<meta::unqualified_t<Key>>, Key&, meta::unqualified_t<Key>>>> key_type;
template <typename T, std::size_t... I>
decltype(auto) tuple_get(std::index_sequence<I...>) const {
return tbl.template traverse_get<T>(std::get<I>(key)...);
}
template <std::size_t... I, typename T>
void tuple_set(std::index_sequence<I...>, T&& value) {
tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value));
}
auto setup_table(std::true_type) {
auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, tbl.stack_index());
lua_pop(lua_state(), p.levels);
return p;
}
bool is_valid(std::false_type) {
auto pp = stack::push_pop(tbl);
auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
lua_pop(lua_state(), p.levels);
return p;
}
public:
Table tbl;
key_type key;
template <typename T>
proxy(Table table, T&& k)
: tbl(table), key(std::forward<T>(k)) {
}
template <typename T>
proxy& set(T&& item) {
tuple_set(std::make_index_sequence<std::tuple_size<meta::unqualified_t<key_type>>::value>(), std::forward<T>(item));
return *this;
}
template <typename... Args>
proxy& set_function(Args&&... args) {
tbl.set_function(key, std::forward<Args>(args)...);
return *this;
}
template <typename U, meta::enable<meta::neg<is_lua_reference_or_proxy<meta::unwrap_unqualified_t<U>>>, meta::is_callable<meta::unwrap_unqualified_t<U>>> = meta::enabler>
proxy& operator=(U&& other) {
return set_function(std::forward<U>(other));
}
template <typename U, meta::disable<meta::neg<is_lua_reference_or_proxy<meta::unwrap_unqualified_t<U>>>, meta::is_callable<meta::unwrap_unqualified_t<U>>> = meta::enabler>
proxy& operator=(U&& other) {
return set(std::forward<U>(other));
}
template <typename T>
proxy& operator=(std::initializer_list<T> other) {
return set(std::move(other));
}
template <typename T>
decltype(auto) get() const {
return tuple_get<T>(std::make_index_sequence<std::tuple_size<meta::unqualified_t<key_type>>::value>());
}
template <typename T>
decltype(auto) get_or(T&& otherwise) const {
typedef decltype(get<T>()) U;
optional<U> option = get<optional<U>>();
if (option) {
return static_cast<U>(option.value());
}
return static_cast<U>(std::forward<T>(otherwise));
}
template <typename T, typename D>
decltype(auto) get_or(D&& otherwise) const {
optional<T> option = get<optional<T>>();
if (option) {
return static_cast<T>(option.value());
}
return static_cast<T>(std::forward<D>(otherwise));
}
template <typename K>
decltype(auto) operator[](K&& k) const {
auto keys = meta::tuplefy(key, std::forward<K>(k));
return proxy<Table, decltype(keys)>(tbl, std::move(keys));
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) {
#if defined(_MSC_FULL_VER) && _MSC_FULL_VER <= 191326131 && _MSC_FULL_VER >= 191200000
// MSVC is ass sometimes
return get<function>().call<Ret...>(std::forward<Args>(args)...);
#else
return get<function>().template call<Ret...>(std::forward<Args>(args)...);
#endif
}
template <typename... Args>
decltype(auto) operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
bool valid() const {
auto pp = stack::push_pop(tbl);
auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
lua_pop(lua_state(), p.levels);
return p;
}
int push() const noexcept {
return push(this->lua_state());
}
int push(lua_State* L) const noexcept {
return get<reference>().push(L);
}
type get_type() const {
type t = type::none;
auto pp = stack::push_pop(tbl);
auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
if (p) {
t = type_of(lua_state(), -1);
}
lua_pop(lua_state(), p.levels);
return t;
}
lua_State* lua_state() const {
return tbl.lua_state();
}
};
template <typename Table, typename Key, typename T>
inline bool operator==(T&& left, const proxy<Table, Key>& right) {
typedef decltype(stack::get<T>(nullptr, 0)) U;
return right.template get<optional<U>>() == left;
}
template <typename Table, typename Key, typename T>
inline bool operator==(const proxy<Table, Key>& right, T&& left) {
typedef decltype(stack::get<T>(nullptr, 0)) U;
return right.template get<optional<U>>() == left;
}
template <typename Table, typename Key, typename T>
inline bool operator!=(T&& left, const proxy<Table, Key>& right) {
typedef decltype(stack::get<T>(nullptr, 0)) U;
return right.template get<optional<U>>() != left;
}
template <typename Table, typename Key, typename T>
inline bool operator!=(const proxy<Table, Key>& right, T&& left) {
typedef decltype(stack::get<T>(nullptr, 0)) U;
return right.template get<optional<U>>() != left;
}
template <typename Table, typename Key>
inline bool operator==(lua_nil_t, const proxy<Table, Key>& right) {
return !right.valid();
}
template <typename Table, typename Key>
inline bool operator==(const proxy<Table, Key>& right, lua_nil_t) {
return !right.valid();
}
template <typename Table, typename Key>
inline bool operator!=(lua_nil_t, const proxy<Table, Key>& right) {
return right.valid();
}
template <typename Table, typename Key>
inline bool operator!=(const proxy<Table, Key>& right, lua_nil_t) {
return right.valid();
}
template <bool b>
template <typename Super>
basic_reference<b>& basic_reference<b>::operator=(proxy_base<Super>&& r) {
basic_reference<b> v = r;
this->operator=(std::move(v));
return *this;
}
template <bool b>
template <typename Super>
basic_reference<b>& basic_reference<b>::operator=(const proxy_base<Super>& r) {
basic_reference<b> v = r;
this->operator=(std::move(v));
return *this;
}
namespace stack {
template <typename Table, typename Key>
struct pusher<proxy<Table, Key>> {
static int push(lua_State* L, const proxy<Table, Key>& p) {
reference r = p;
return r.push(L);
}
};
} // namespace stack
} // namespace sol
// end of sol/proxy.hpp
// beginning of sol/usertype.hpp
// beginning of sol/usertype_metatable.hpp
// beginning of sol/deprecate.hpp
#ifndef SOL_DEPRECATED
#ifdef _MSC_VER
#define SOL_DEPRECATED __declspec(deprecated)
#elif __GNUC__
#define SOL_DEPRECATED __attribute__((deprecated))
#else
#define SOL_DEPRECATED [[deprecated]]
#endif // compilers
#endif // SOL_DEPRECATED
namespace sol {
namespace detail {
template <typename T>
struct SOL_DEPRECATED deprecate_type {
using type = T;
};
}
} // namespace sol::detail
// end of sol/deprecate.hpp
// beginning of sol/object.hpp
// beginning of sol/object_base.hpp
namespace sol {
template <typename base_t>
class basic_object_base : public base_t {
private:
template <typename T>
decltype(auto) as_stack(std::true_type) const {
return stack::get<T>(base_t::lua_state(), base_t::stack_index());
}
template <typename T>
decltype(auto) as_stack(std::false_type) const {
base_t::push();
return stack::pop<T>(base_t::lua_state());
}
template <typename T>
bool is_stack(std::true_type) const {
return stack::check<T>(base_t::lua_state(), base_t::stack_index(), no_panic);
}
template <typename T>
bool is_stack(std::false_type) const {
int r = base_t::registry_index();
if (r == LUA_REFNIL)
return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false;
if (r == LUA_NOREF)
return false;
auto pp = stack::push_pop(*this);
return stack::check<T>(base_t::lua_state(), -1, no_panic);
}
public:
basic_object_base() noexcept = default;
basic_object_base(const basic_object_base&) = default;
basic_object_base(basic_object_base&&) = default;
basic_object_base& operator=(const basic_object_base&) = default;
basic_object_base& operator=(basic_object_base&&) = default;
template <typename T, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object_base>>> = meta::enabler>
basic_object_base(T&& arg, Args&&... args)
: base_t(std::forward<T>(arg), std::forward<Args>(args)...) {
}
template <typename T>
decltype(auto) as() const {
return as_stack<T>(is_stack_based<base_t>());
}
template <typename T>
bool is() const {
return is_stack<T>(is_stack_based<base_t>());
}
};
} // namespace sol
// end of sol/object_base.hpp
// beginning of sol/userdata.hpp
namespace sol {
template <typename base_type>
class basic_userdata : public basic_table<base_type> {
typedef basic_table<base_type> base_t;
public:
using base_t::lua_state;
basic_userdata() noexcept = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_userdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_userdata(T&& r) noexcept
: base_t(std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
if (!is_userdata<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
type_assert(lua_state(), -1, type::userdata);
}
#endif // Safety
}
basic_userdata(const basic_userdata&) = default;
basic_userdata(basic_userdata&&) = default;
basic_userdata& operator=(const basic_userdata&) = default;
basic_userdata& operator=(basic_userdata&&) = default;
basic_userdata(const stack_reference& r)
: basic_userdata(r.lua_state(), r.stack_index()) {
}
basic_userdata(stack_reference&& r)
: basic_userdata(r.lua_state(), r.stack_index()) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_userdata(lua_State* L, T&& r)
: base_t(L, std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_userdata>(L, -1, handler);
#endif // Safety
}
basic_userdata(lua_State* L, int index = -1)
: base_t(detail::no_safety, L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_userdata>(L, index, handler);
#endif // Safety
}
basic_userdata(lua_State* L, ref_index index)
: base_t(detail::no_safety, L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_userdata>(L, -1, handler);
#endif // Safety
}
};
template <typename base_type>
class basic_lightuserdata : public basic_object_base<base_type> {
typedef basic_object_base<base_type> base_t;
public:
using base_t::lua_state;
basic_lightuserdata() noexcept = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_lightuserdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_lightuserdata(T&& r) noexcept
: base_t(std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
if (!is_lightuserdata<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
type_assert(lua_state(), -1, type::lightuserdata);
}
#endif // Safety
}
basic_lightuserdata(const basic_lightuserdata&) = default;
basic_lightuserdata(basic_lightuserdata&&) = default;
basic_lightuserdata& operator=(const basic_lightuserdata&) = default;
basic_lightuserdata& operator=(basic_lightuserdata&&) = default;
basic_lightuserdata(const stack_reference& r)
: basic_lightuserdata(r.lua_state(), r.stack_index()) {
}
basic_lightuserdata(stack_reference&& r)
: basic_lightuserdata(r.lua_state(), r.stack_index()) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_lightuserdata(lua_State* L, T&& r)
: basic_lightuserdata(L, std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_lightuserdata>(lua_state(), -1, handler);
#endif // Safety
}
basic_lightuserdata(lua_State* L, int index = -1)
: base_t(L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_lightuserdata>(L, index, handler);
#endif // Safety
}
basic_lightuserdata(lua_State* L, ref_index index)
: base_t(L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_lightuserdata>(lua_state(), index, handler);
#endif // Safety
}
};
} // namespace sol
// end of sol/userdata.hpp
// beginning of sol/as_args.hpp
namespace sol {
template <typename T>
struct as_args_t {
T src;
};
template <typename Source>
auto as_args(Source&& source) {
return as_args_t<Source>{ std::forward<Source>(source) };
}
namespace stack {
template <typename T>
struct pusher<as_args_t<T>> {
int push(lua_State* L, const as_args_t<T>& e) {
int p = 0;
for (const auto& i : e.src) {
p += stack::push(L, i);
}
return p;
}
};
} // namespace stack
} // namespace sol
// end of sol/as_args.hpp
// beginning of sol/variadic_args.hpp
namespace sol {
struct variadic_args {
private:
lua_State* L;
int index;
int stacktop;
public:
typedef stack_proxy reference_type;
typedef stack_proxy value_type;
typedef stack_proxy* pointer;
typedef std::ptrdiff_t difference_type;
typedef std::size_t size_type;
typedef stack_iterator<stack_proxy, false> iterator;
typedef stack_iterator<stack_proxy, true> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
variadic_args() = default;
variadic_args(lua_State* luastate, int stackindex = -1)
: L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lua_gettop(luastate)) {
}
variadic_args(lua_State* luastate, int stackindex, int lastindex)
: L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lastindex) {
}
variadic_args(const variadic_args&) = default;
variadic_args& operator=(const variadic_args&) = default;
variadic_args(variadic_args&& o)
: L(o.L), index(o.index), stacktop(o.stacktop) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but will be thorough
o.L = nullptr;
o.index = 0;
o.stacktop = 0;
}
variadic_args& operator=(variadic_args&& o) {
L = o.L;
index = o.index;
stacktop = o.stacktop;
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but will be thorough
o.L = nullptr;
o.index = 0;
o.stacktop = 0;
return *this;
}
iterator begin() {
return iterator(L, index, stacktop + 1);
}
iterator end() {
return iterator(L, stacktop + 1, stacktop + 1);
}
const_iterator begin() const {
return const_iterator(L, index, stacktop + 1);
}
const_iterator end() const {
return const_iterator(L, stacktop + 1, stacktop + 1);
}
const_iterator cbegin() const {
return begin();
}
const_iterator cend() const {
return end();
}
reverse_iterator rbegin() {
return std::reverse_iterator<iterator>(begin());
}
reverse_iterator rend() {
return std::reverse_iterator<iterator>(end());
}
const_reverse_iterator rbegin() const {
return std::reverse_iterator<const_iterator>(begin());
}
const_reverse_iterator rend() const {
return std::reverse_iterator<const_iterator>(end());
}
const_reverse_iterator crbegin() const {
return std::reverse_iterator<const_iterator>(cbegin());
}
const_reverse_iterator crend() const {
return std::reverse_iterator<const_iterator>(cend());
}
int push() const {
return push(L);
}
int push(lua_State* target) const {
int pushcount = 0;
for (int i = index; i <= stacktop; ++i) {
lua_pushvalue(L, i);
pushcount += 1;
}
if (target != L) {
lua_xmove(L, target, pushcount);
}
return pushcount;
}
template <typename T>
decltype(auto) get(difference_type index_offset = 0) const {
return stack::get<T>(L, index + static_cast<int>(index_offset));
}
type get_type(difference_type index_offset = 0) const noexcept {
return type_of(L, index + static_cast<int>(index_offset));
}
stack_proxy operator[](difference_type index_offset) const {
return stack_proxy(L, index + static_cast<int>(index_offset));
}
lua_State* lua_state() const {
return L;
};
int stack_index() const {
return index;
};
int leftover_count() const {
return stacktop - (index - 1);
}
std::size_t size() const {
return static_cast<std::size_t>(leftover_count());
}
int top() const {
return stacktop;
}
};
namespace stack {
template <>
struct getter<variadic_args> {
static variadic_args get(lua_State* L, int index, record& tracking) {
tracking.last = 0;
return variadic_args(L, index);
}
};
template <>
struct pusher<variadic_args> {
static int push(lua_State* L, const variadic_args& ref) {
return ref.push(L);
}
};
} // namespace stack
} // namespace sol
// end of sol/variadic_args.hpp
namespace sol {
template <typename R = reference, bool should_pop = !is_stack_based<R>::value, typename T>
R make_reference(lua_State* L, T&& value) {
int backpedal = stack::push(L, std::forward<T>(value));
R r = stack::get<R>(L, -backpedal);
if (should_pop) {
lua_pop(L, backpedal);
}
return r;
}
template <typename T, typename R = reference, bool should_pop = !is_stack_based<R>::value, typename... Args>
R make_reference(lua_State* L, Args&&... args) {
int backpedal = stack::push<T>(L, std::forward<Args>(args)...);
R r = stack::get<R>(L, -backpedal);
if (should_pop) {
lua_pop(L, backpedal);
}
return r;
}
template <typename base_type>
class basic_object : public basic_object_base<base_type> {
private:
typedef basic_object_base<base_type> base_t;
template <bool invert_and_pop = false>
basic_object(std::integral_constant<bool, invert_and_pop>, lua_State* L, int index = -1) noexcept
: base_t(L, index) {
if (invert_and_pop) {
lua_pop(L, -index);
}
}
public:
basic_object() noexcept = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_object(T&& r)
: base_t(std::forward<T>(r)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_object(lua_State* L, T&& r)
: base_t(L, std::forward<T>(r)) {
}
basic_object(lua_nil_t r)
: base_t(r) {
}
basic_object(const basic_object&) = default;
basic_object(basic_object&&) = default;
basic_object(const stack_reference& r) noexcept
: basic_object(r.lua_state(), r.stack_index()) {
}
basic_object(stack_reference&& r) noexcept
: basic_object(r.lua_state(), r.stack_index()) {
}
template <typename Super>
basic_object(const proxy_base<Super>& r) noexcept
: basic_object(r.operator basic_object()) {
}
template <typename Super>
basic_object(proxy_base<Super>&& r) noexcept
: basic_object(r.operator basic_object()) {
}
basic_object(lua_State* L, lua_nil_t r) noexcept
: base_t(L, r) {
}
basic_object(lua_State* L, int index = -1) noexcept
: base_t(L, index) {
}
basic_object(lua_State* L, absolute_index index) noexcept
: base_t(L, index) {
}
basic_object(lua_State* L, raw_index index) noexcept
: base_t(L, index) {
}
basic_object(lua_State* L, ref_index index) noexcept
: base_t(L, index) {
}
template <typename T, typename... Args>
basic_object(lua_State* L, in_place_type_t<T>, Args&&... args) noexcept
: basic_object(std::integral_constant<bool, !is_stack_based<base_t>::value>(), L, -stack::push<T>(L, std::forward<Args>(args)...)) {
}
template <typename T, typename... Args>
basic_object(lua_State* L, in_place_t, T&& arg, Args&&... args) noexcept
: basic_object(L, in_place_type<T>, std::forward<T>(arg), std::forward<Args>(args)...) {
}
basic_object& operator=(const basic_object&) = default;
basic_object& operator=(basic_object&&) = default;
basic_object& operator=(const base_type& b) {
base_t::operator=(b);
return *this;
}
basic_object& operator=(base_type&& b) {
base_t::operator=(std::move(b));
return *this;
}
template <typename Super>
basic_object& operator=(const proxy_base<Super>& r) {
this->operator=(r.operator basic_object());
return *this;
}
template <typename Super>
basic_object& operator=(proxy_base<Super>&& r) {
this->operator=(r.operator basic_object());
return *this;
}
};
template <typename T>
object make_object(lua_State* L, T&& value) {
return make_reference<object, true>(L, std::forward<T>(value));
}
template <typename T, typename... Args>
object make_object(lua_State* L, Args&&... args) {
return make_reference<T, object, true>(L, std::forward<Args>(args)...);
}
} // namespace sol
// end of sol/object.hpp
// beginning of sol/container_usertype_metatable.hpp
// beginning of sol/container_traits.hpp
namespace sol {
template <typename T>
struct container_traits;
template <typename T>
struct as_container_t {
T source;
as_container_t(T value)
: source(std::move(value)) {
}
operator std::add_rvalue_reference_t<T>() {
return std::move(source);
}
operator std::add_lvalue_reference_t<std::add_const_t<T>>() const {
return source;
}
};
template <typename T>
struct as_container_t<T&> {
std::reference_wrapper<T> source;
as_container_t(T& value)
: source(value) {
}
operator T&() {
return source;
}
};
template <typename T>
auto as_container(T&& value) {
return as_container_t<T>(std::forward<T>(value));
}
namespace container_detail {
template <typename T>
struct has_clear_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::clear));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_empty_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::empty));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_erase_after_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(std::declval<C>().erase_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>()))*);
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T, typename = void>
struct has_find_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_find_test<T, std::enable_if_t<meta::is_lookup<T>::value>> {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::key_type>>()))*);
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_erase_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(std::declval<C>().erase(std::declval<typename C::iterator>()))*);
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_traits_find_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::find));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_traits_insert_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::insert));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_traits_erase_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::erase));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_traits_index_set_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::index_set));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_traits_index_get_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::index_get));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_traits_set_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::set));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_traits_get_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::get));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_traits_at_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::at));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_traits_pairs_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::pairs));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_traits_ipairs_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::ipairs));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_traits_next_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::next));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_traits_add_test {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C>
static one test(decltype(&C::add));
template <typename C>
static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
using has_clear = meta::boolean<has_clear_test<T>::value>;
template <typename T>
using has_empty = meta::boolean<has_empty_test<T>::value>;
template <typename T>
using has_find = meta::boolean<has_find_test<T>::value>;
template <typename T>
using has_erase = meta::boolean<has_erase_test<T>::value>;
template <typename T>
using has_erase_after = meta::boolean<has_erase_after_test<T>::value>;
template <typename T>
using has_traits_get = meta::boolean<has_traits_get_test<T>::value>;
template <typename T>
using has_traits_at = meta::boolean<has_traits_at_test<T>::value>;
template <typename T>
using has_traits_set = meta::boolean<has_traits_set_test<T>::value>;
template <typename T>
using has_traits_index_get = meta::boolean<has_traits_index_get_test<T>::value>;
template <typename T>
using has_traits_index_set = meta::boolean<has_traits_index_set_test<T>::value>;
template <typename T>
using has_traits_pairs = meta::boolean<has_traits_pairs_test<T>::value>;
template <typename T>
using has_traits_ipairs = meta::boolean<has_traits_ipairs_test<T>::value>;
template <typename T>
using has_traits_next = meta::boolean<has_traits_next_test<T>::value>;
template <typename T>
using has_traits_add = meta::boolean<has_traits_add_test<T>::value>;
template <typename T>
using has_traits_size = meta::has_size<T>;
template <typename T>
using has_traits_clear = has_clear<T>;
template <typename T>
using has_traits_empty = has_empty<T>;
template <typename T>
using has_traits_find = meta::boolean<has_traits_find_test<T>::value>;
template <typename T>
using has_traits_insert = meta::boolean<has_traits_insert_test<T>::value>;
template <typename T>
using has_traits_erase = meta::boolean<has_traits_erase_test<T>::value>;
template <typename T>
struct is_forced_container : is_container<T> {};
template <typename T>
struct is_forced_container<as_container_t<T>> : std::true_type {};
template <typename T>
struct container_decay {
typedef T type;
};
template <typename T>
struct container_decay<as_container_t<T>> {
typedef T type;
};
template <typename T>
using container_decay_t = typename container_decay<meta::unqualified_t<T>>::type;
template <typename T>
decltype(auto) get_key(std::false_type, T&& t) {
return std::forward<T>(t);
}
template <typename T>
decltype(auto) get_key(std::true_type, T&& t) {
return t.first;
}
template <typename T>
decltype(auto) get_value(std::false_type, T&& t) {
return std::forward<T>(t);
}
template <typename T>
decltype(auto) get_value(std::true_type, T&& t) {
return t.second;
}
struct error_result {
int results;
const char* fmt;
std::array<const char*, 4> args;
error_result() : results(0), fmt(nullptr) {
}
error_result(int results) : results(results), fmt(nullptr) {
}
error_result(const char* fmt, const char* msg) : results(0), fmt(fmt) {
args[0] = msg;
}
};
inline int handle_errors(lua_State* L, const error_result& er) {
if (er.fmt == nullptr) {
return er.results;
}
return luaL_error(L, er.fmt, er.args[0], er.args[1], er.args[2], er.args[3]);
}
template <typename X, typename = void>
struct container_traits_default {
private:
typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T;
public:
typedef lua_nil_t iterator;
typedef lua_nil_t value_type;
static int at(lua_State* L) {
return luaL_error(L, "sol: cannot call 'at(index)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int get(lua_State* L) {
return luaL_error(L, "sol: cannot call 'get(key)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int index_get(lua_State* L) {
return luaL_error(L, "sol: cannot call 'container[key]' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int set(lua_State* L) {
return luaL_error(L, "sol: cannot call 'set(key, value)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int index_set(lua_State* L) {
return luaL_error(L, "sol: cannot call 'container[key] = value' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int add(lua_State* L) {
return luaL_error(L, "sol: cannot call 'add' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int insert(lua_State* L) {
return luaL_error(L, "sol: cannot call 'insert' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int find(lua_State* L) {
return luaL_error(L, "sol: cannot call 'find' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int size(lua_State* L) {
return luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int clear(lua_State* L) {
return luaL_error(L, "sol: cannot call 'clear' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int empty(lua_State* L) {
return luaL_error(L, "sol: cannot call 'empty' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int erase(lua_State* L) {
return luaL_error(L, "sol: cannot call 'erase' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int next(lua_State* L) {
return luaL_error(L, "sol: cannot call 'next' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int pairs(lua_State* L) {
return luaL_error(L, "sol: cannot call '__pairs/pairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static int ipairs(lua_State* L) {
return luaL_error(L, "sol: cannot call '__ipairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
}
static iterator begin(lua_State* L, T&) {
luaL_error(L, "sol: cannot call 'being' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
return lua_nil;
}
static iterator end(lua_State* L, T&) {
luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
return lua_nil;
}
};
template <typename X>
struct container_traits_default<X, std::enable_if_t<meta::all<is_forced_container<meta::unqualified_t<X>>, meta::has_value_type<meta::unqualified_t<container_decay_t<X>>>, meta::has_iterator<meta::unqualified_t<container_decay_t<X>>>>::value>> {
private:
typedef std::remove_pointer_t<meta::unwrap_unqualified_t<container_decay_t<X>>> T;
private:
typedef container_traits<X> deferred_traits;
typedef meta::is_associative<T> is_associative;
typedef meta::is_lookup<T> is_lookup;
typedef meta::is_matched_lookup<T> is_matched_lookup;
typedef typename T::iterator iterator;
typedef typename T::value_type value_type;
typedef std::conditional_t<is_matched_lookup::value,
std::pair<value_type, value_type>,
std::conditional_t<is_associative::value || is_lookup::value,
value_type,
std::pair<std::ptrdiff_t, value_type>
>
> KV;
typedef typename KV::first_type K;
typedef typename KV::second_type V;
typedef std::conditional_t<is_matched_lookup::value, std::ptrdiff_t, K> next_K;
typedef decltype(*std::declval<iterator&>()) iterator_return;
typedef std::conditional_t<is_associative::value || is_matched_lookup::value,
std::add_lvalue_reference_t<V>,
std::conditional_t<is_lookup::value,
V,
iterator_return
>
> captured_type;
typedef typename meta::iterator_tag<iterator>::type iterator_category;
typedef std::is_same<iterator_category, std::input_iterator_tag> is_input_iterator;
typedef std::conditional_t<is_input_iterator::value,
V,
decltype(detail::deref_non_pointer(std::declval<captured_type>()))
> push_type;
typedef std::is_copy_assignable<V> is_copyable;
typedef meta::neg<meta::any<
std::is_const<V>, std::is_const<std::remove_reference_t<iterator_return>>, meta::neg<is_copyable>
>> is_writable;
typedef meta::unqualified_t<decltype(get_key(is_associative(), std::declval<std::add_lvalue_reference_t<value_type>>()))> key_type;
typedef meta::all<std::is_integral<K>, meta::neg<meta::any<is_associative, is_lookup>>> is_linear_integral;
struct iter {
T& source;
iterator it;
std::size_t i;
iter(T& source, iterator it)
: source(source), it(std::move(it)), i(0) {
}
};
static auto& get_src(lua_State* L) {
#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE
auto p = stack::check_get<T*>(L, 1);
if (!p) {
luaL_error(L, "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)", detail::demangle<T>().c_str());
}
if (p.value() == nullptr) {
luaL_error(L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str());
}
return *p.value();
#else
return stack::get<T>(L, 1);
#endif // Safe getting with error
}
static error_result at_category(std::input_iterator_tag, lua_State* L, T& self, std::ptrdiff_t pos) {
pos += deferred_traits::index_adjustment(L, self);
if (pos < 0) {
return stack::push(L, lua_nil);
}
auto it = deferred_traits::begin(L, self);
auto e = deferred_traits::end(L, self);
if (it == e) {
return stack::push(L, lua_nil);
}
while (pos > 0) {
--pos;
++it;
if (it == e) {
return stack::push(L, lua_nil);
}
}
return get_associative(is_associative(), L, it);
}
static error_result at_category(std::random_access_iterator_tag, lua_State* L, T& self, std::ptrdiff_t pos) {
std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self));
pos += deferred_traits::index_adjustment(L, self);
if (pos < 0 || pos >= len) {
return stack::push(L, lua_nil);
}
auto it = std::next(deferred_traits::begin(L, self), pos);
return get_associative(is_associative(), L, it);
}
static error_result at_start(lua_State* L, T& self, std::ptrdiff_t pos) {
return at_category(iterator_category(), L, self, pos);
}
static error_result get_associative(std::true_type, lua_State* L, iterator& it) {
auto& v = *it;
return stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(v.second));
}
static error_result get_associative(std::false_type, lua_State* L, iterator& it) {
return stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(*it));
}
static error_result get_category(std::input_iterator_tag, lua_State* L, T& self, K& key) {
key += deferred_traits::index_adjustment(L, self);
if (key < 0) {
return stack::push(L, lua_nil);
}
auto it = deferred_traits::begin(L, self);
auto e = deferred_traits::end(L, self);
if (it == e) {
return stack::push(L, lua_nil);
}
while (key > 0) {
--key;
++it;
if (it == e) {
return stack::push(L, lua_nil);
}
}
return get_associative(is_associative(), L, it);
}
static error_result get_category(std::random_access_iterator_tag, lua_State* L, T& self, K& key) {
std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self));
key += deferred_traits::index_adjustment(L, self);
if (key < 0 || key >= len) {
return stack::push(L, lua_nil);
}
auto it = std::next(deferred_traits::begin(L, self), key);
return get_associative(is_associative(), L, it);
}
static error_result get_it(std::true_type, lua_State* L, T& self, K& key) {
return get_category(iterator_category(), L, self, key);
}
static error_result get_comparative(std::true_type, lua_State* L, T& self, K& key) {
auto fx = [&](const value_type& r) -> bool {
return key == get_key(is_associative(), r);
};
auto e = deferred_traits::end(L, self);
auto it = std::find_if(deferred_traits::begin(L, self), e, std::ref(fx));
if (it == e) {
return stack::push(L, lua_nil);
}
return get_associative(is_associative(), L, it);
}
static error_result get_comparative(std::false_type, lua_State*, T&, K&) {
return error_result("cannot get this key on '%s': no suitable way to increment iterator and compare to key value '%s'", detail::demangle<T>().data(), detail::demangle<K>().data());
}
static error_result get_it(std::false_type, lua_State* L, T& self, K& key) {
return get_comparative(meta::supports_op_equal<K, key_type>(), L, self, key);
}
static error_result set_associative(std::true_type, iterator& it, stack_object value) {
auto& v = *it;
v.second = value.as<V>();
return {};
}
static error_result set_associative(std::false_type, iterator& it, stack_object value) {
auto& v = *it;
v = value.as<V>();
return {};
}
static error_result set_writable(std::true_type, lua_State*, T&, iterator& it, stack_object value) {
return set_associative(is_associative(), it, std::move(value));
}
static error_result set_writable(std::false_type, lua_State*, T&, iterator&, stack_object) {
return error_result("cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data());
}
static error_result set_category(std::input_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value) {
decltype(auto) key = okey.as<K>();
key += deferred_traits::index_adjustment(L, self);
auto e = deferred_traits::end(L, self);
auto it = deferred_traits::begin(L, self);
auto backit = it;
for (; key > 0 && it != e; --key, ++it) {
backit = it;
}
if (it == e) {
if (key == 0) {
return add_copyable(is_copyable(), L, self, std::move(value), meta::has_insert_after<T>::value ? backit : it);
}
return error_result("out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
}
return set_writable(is_writable(), L, self, it, std::move(value));
}
static error_result set_category(std::random_access_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value) {
decltype(auto) key = okey.as<K>();
if (key <= 0) {
return error_result("sol: out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str());
}
key += deferred_traits::index_adjustment(L, self);
std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self));
if (key == len) {
return add_copyable(is_copyable(), L, self, std::move(value));
}
else if (key > len) {
return error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
}
auto it = std::next(deferred_traits::begin(L, self), key);
return set_writable(is_writable(), L, self, it, std::move(value));
}
static error_result set_comparative(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value) {
decltype(auto) key = okey.as<K>();
if (!is_writable::value) {
return error_result("cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data());
}
auto fx = [&](const value_type& r) -> bool {
return key == get_key(is_associative(), r);
};
auto e = deferred_traits::end(L, self);
auto it = std::find_if(deferred_traits::begin(L, self), e, std::ref(fx));
if (it == e) {
return {};
}
return set_writable(is_writable(), L, self, it, std::move(value));
}
static error_result set_comparative(std::false_type, lua_State*, T&, stack_object, stack_object) {
return error_result("cannot set this value on '%s': no suitable way to increment iterator or compare to '%s' key", detail::demangle<T>().data(), detail::demangle<K>().data());
}
static error_result set_associative_insert(std::true_type, lua_State*, T& self, iterator& it, K& key, stack_object value) {
self.insert(it, value_type(key, value.as<V>()));
return {};
}
static error_result set_associative_insert(std::false_type, lua_State*, T& self, iterator& it, K& key, stack_object) {
self.insert(it, key);
return {};
}
static error_result set_associative_find(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value) {
decltype(auto) key = okey.as<K>();
auto it = self.find(key);
if (it == deferred_traits::end(L, self)) {
return set_associative_insert(is_associative(), L, self, it, key, std::move(value));
}
return set_writable(is_writable(), L, self, it, std::move(value));
}
static error_result set_associative_find(std::false_type, lua_State* L, T& self, stack_object key, stack_object value) {
return set_comparative(meta::supports_op_equal<K, key_type>(), L, self, std::move(key), std::move(value));
}
static error_result set_it(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) {
return set_category(iterator_category(), L, self, std::move(key), std::move(value));
}
static error_result set_it(std::false_type, lua_State* L, T& self, stack_object key, stack_object value) {
return set_associative_find(meta::all<has_find<T>, meta::any<is_associative, is_lookup>>(), L, self, std::move(key), std::move(value));
}
static error_result find_has_associative_lookup(std::true_type, lua_State* L, T& self) {
decltype(auto) key = stack::get<K>(L, 2);
auto it = self.find(key);
if (it == deferred_traits::end(L, self)) {
return stack::push(L, lua_nil);
}
return get_associative(is_associative(), L, it);
}
static error_result find_has_associative_lookup(std::false_type, lua_State* L, T& self) {
decltype(auto) value = stack::get<V>(L, 2);
auto it = self.find(value);
if (it == deferred_traits::end(L, self)) {
return stack::push(L, lua_nil);
}
return get_associative(is_associative(), L, it);
}
static error_result find_has(std::true_type, lua_State* L, T& self) {
return find_has_associative_lookup(meta::any<is_lookup, is_associative>(), L, self);
}
static error_result find_associative_lookup(std::true_type, lua_State* L, iterator& it, std::size_t) {
return get_associative(is_associative(), L, it);
}
static error_result find_associative_lookup(std::false_type, lua_State* L, iterator&, std::size_t index) {
return stack::push(L, index);
}
static error_result find_comparative(std::false_type, lua_State*, T&) {
return error_result("cannot call 'find' on '%s': there is no 'find' function and the value_type is not equality comparable", detail::demangle<T>().c_str());
}
static error_result find_comparative(std::true_type, lua_State* L, T& self) {
decltype(auto) value = stack::get<V>(L, 2);
auto it = deferred_traits::begin(L, self);
auto e = deferred_traits::end(L, self);
std::size_t index = 1;
for (;; ++it, ++index) {
if (it == e) {
return stack::push(L, lua_nil);
}
if (value == get_value(is_associative(), *it)) {
break;
}
}
return find_associative_lookup(meta::any<is_lookup, is_associative>(), L, it, index);
}
static error_result find_has(std::false_type, lua_State* L, T& self) {
return find_comparative(meta::supports_op_equal<V>(), L, self);
}
static error_result add_insert_after(std::false_type, lua_State* L, T& self, stack_object value, iterator&) {
return add_insert_after(std::false_type(), L, self, value);
}
static error_result add_insert_after(std::false_type, lua_State*, T&, stack_object) {
return error_result("cannot call 'add' on type '%s': no suitable insert/push_back C++ functions", detail::demangle<T>().data());
}
static error_result add_insert_after(std::true_type, lua_State*, T& self, stack_object value, iterator& pos) {
self.insert_after(pos, value.as<V>());
return {};
}
static error_result add_insert_after(std::true_type, lua_State* L, T& self, stack_object value) {
auto backit = self.before_begin();
{
auto e = deferred_traits::end(L, self);
for (auto it = deferred_traits::begin(L, self); it != e; ++backit, ++it) {
}
}
return add_insert_after(std::true_type(), L, self, value, backit);
}
static error_result add_insert(std::true_type, lua_State*, T& self, stack_object value, iterator& pos) {
self.insert(pos, value.as<V>());
return {};
}
static error_result add_insert(std::true_type, lua_State* L, T& self, stack_object value) {
auto pos = deferred_traits::end(L, self);
return add_insert(std::true_type(), L, self, value, pos);
}
static error_result add_insert(std::false_type, lua_State* L, T& self, stack_object value, iterator& pos) {
return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value), pos);
}
static error_result add_insert(std::false_type, lua_State* L, T& self, stack_object value) {
return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value));
}
static error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value, iterator&) {
self.push_back(value.as<V>());
return {};
}
static error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value) {
self.push_back(value.as<V>());
return {};
}
static error_result add_push_back(std::false_type, lua_State* L, T& self, stack_object value, iterator& pos) {
return add_insert(meta::has_insert<T>(), L, self, value, pos);
}
static error_result add_push_back(std::false_type, lua_State* L, T& self, stack_object value) {
return add_insert(meta::has_insert<T>(), L, self, value);
}
static error_result add_associative(std::true_type, lua_State* L, T& self, stack_object key, iterator& pos) {
self.insert(pos, value_type(key.as<K>(), stack::get<V>(L, 3)));
return {};
}
static error_result add_associative(std::true_type, lua_State* L, T& self, stack_object key) {
auto pos = deferred_traits::end(L, self);
return add_associative(std::true_type(), L, self, std::move(key), pos);
}
static error_result add_associative(std::false_type, lua_State* L, T& self, stack_object value, iterator& pos) {
return add_push_back(meta::has_push_back<T>(), L, self, value, pos);
}
static error_result add_associative(std::false_type, lua_State* L, T& self, stack_object value) {
return add_push_back(meta::has_push_back<T>(), L, self, value);
}
static error_result add_copyable(std::true_type, lua_State* L, T& self, stack_object value, iterator& pos) {
return add_associative(is_associative(), L, self, std::move(value), pos);
}
static error_result add_copyable(std::true_type, lua_State* L, T& self, stack_object value) {
return add_associative(is_associative(), L, self, value);
}
static error_result add_copyable(std::false_type, lua_State* L, T& self, stack_object value, iterator&) {
return add_copyable(std::false_type(), L, self, std::move(value));
}
static error_result add_copyable(std::false_type, lua_State*, T&, stack_object) {
return error_result("cannot call 'add' on '%s': value_type is non-copyable", detail::demangle<T>().data());
}
static error_result insert_lookup(std::true_type, lua_State* L, T& self, stack_object, stack_object value) {
// TODO: should we warn or error about someone calling insert on an ordered / lookup container with no associativity?
return add_copyable(std::true_type(), L, self, std::move(value));
}
static error_result insert_lookup(std::false_type, lua_State* L, T& self, stack_object where, stack_object value) {
auto it = deferred_traits::begin(L, self);
auto key = where.as<K>();
key += deferred_traits::index_adjustment(L, self);
std::advance(it, key);
self.insert(it, value.as<V>());
return {};
}
static error_result insert_after_has(std::true_type, lua_State* L, T& self, stack_object where, stack_object value) {
auto key = where.as<K>();
auto backit = self.before_begin();
{
key += deferred_traits::index_adjustment(L, self);
auto e = deferred_traits::end(L, self);
for (auto it = deferred_traits::begin(L, self); key > 0; ++backit, ++it, --key) {
if (backit == e) {
return error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
}
}
}
self.insert_after(backit, value.as<V>());
return {};
}
static error_result insert_after_has(std::false_type, lua_State*, T&, stack_object, stack_object) {
return error_result("cannot call 'insert' on '%s': no suitable or similar functionality detected on this container", detail::demangle<T>().data());
}
static error_result insert_has(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) {
return insert_lookup(meta::any<is_associative, is_lookup>(), L, self, std::move(key), std::move(value));
}
static error_result insert_has(std::false_type, lua_State* L, T& self, stack_object where, stack_object value) {
return insert_after_has(meta::has_insert_after<T>(), L, self, where, value);
}
static error_result insert_copyable(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) {
return insert_has(meta::has_insert<T>(), L, self, std::move(key), std::move(value));
}
static error_result insert_copyable(std::false_type, lua_State*, T&, stack_object, stack_object) {
return error_result("cannot call 'insert' on '%s': value_type is non-copyable", detail::demangle<T>().data());
}
static error_result erase_integral(std::true_type, lua_State* L, T& self, K& key) {
auto it = deferred_traits::begin(L, self);
key += deferred_traits::index_adjustment(L, self);
std::advance(it, key);
self.erase(it);
return {};
}
static error_result erase_integral(std::false_type, lua_State* L, T& self, const K& key) {
auto fx = [&](const value_type& r) -> bool {
return key == r;
};
auto e = deferred_traits::end(L, self);
auto it = std::find_if(deferred_traits::begin(L, self), e, std::ref(fx));
if (it == e) {
return {};
}
self.erase(it);
return {};
}
static error_result erase_associative_lookup(std::true_type, lua_State*, T& self, const K& key) {
self.erase(key);
return {};
}
static error_result erase_associative_lookup(std::false_type, lua_State* L, T& self, K& key) {
return erase_integral(std::is_integral<K>(), L, self, key);
}
static error_result erase_after_has(std::true_type, lua_State* L, T& self, K& key) {
auto backit = self.before_begin();
{
key += deferred_traits::index_adjustment(L, self);
auto e = deferred_traits::end(L, self);
for (auto it = deferred_traits::begin(L, self); key > 0; ++backit, ++it, --key) {
if (backit == e) {
return error_result("sol: out of bounds for erase on '%s'", detail::demangle<T>().c_str());
}
}
}
self.erase_after(backit);
return {};
}
static error_result erase_after_has(std::false_type, lua_State*, T&, const K&) {
return error_result("sol: cannot call erase on '%s'", detail::demangle<T>().c_str());
}
static error_result erase_has(std::true_type, lua_State* L, T& self, K& key) {
return erase_associative_lookup(meta::any<is_associative, is_lookup>(), L, self, key);
}
static error_result erase_has(std::false_type, lua_State* L, T& self, K& key) {
return erase_after_has(has_erase_after<T>(), L, self, key);
}
static auto size_has(std::false_type, lua_State* L, T& self) {
return std::distance(deferred_traits::begin(L, self), deferred_traits::end(L, self));
}
static auto size_has(std::true_type, lua_State*, T& self) {
return self.size();
}
static void clear_has(std::true_type, lua_State*, T& self) {
self.clear();
}
static void clear_has(std::false_type, lua_State* L, T&) {
luaL_error(L, "sol: cannot call clear on '%s'", detail::demangle<T>().c_str());
}
static bool empty_has(std::true_type, lua_State*, T& self) {
return self.empty();
}
static bool empty_has(std::false_type, lua_State* L, T& self) {
return deferred_traits::begin(L, self) == deferred_traits::end(L, self);
}
static error_result get_start(lua_State* L, T& self, K& key) {
return get_it(is_linear_integral(), L, self, key);
}
static error_result set_start(lua_State* L, T& self, stack_object key, stack_object value) {
return set_it(is_linear_integral(), L, self, std::move(key), std::move(value));
}
static std::size_t size_start(lua_State* L, T& self) {
return size_has(meta::has_size<T>(), L, self);
}
static void clear_start(lua_State* L, T& self) {
clear_has(has_clear<T>(), L, self);
}
static bool empty_start(lua_State* L, T& self) {
return empty_has(has_empty<T>(), L, self);
}
static error_result erase_start(lua_State* L, T& self, K& key) {
return erase_has(has_erase<T>(), L, self, key);
}
template <bool ip>
static int next_associative(std::true_type, lua_State* L) {
iter& i = stack::get<user<iter>>(L, 1);
auto& source = i.source;
auto& it = i.it;
if (it == deferred_traits::end(L, source)) {
return 0;
}
int p;
if (ip) {
++i.i;
p = stack::push_reference(L, i.i);
}
else {
p = stack::push_reference(L, it->first);
}
p += stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(it->second));
std::advance(it, 1);
return p;
}
template <bool>
static int next_associative(std::false_type, lua_State* L) {
iter& i = stack::get<user<iter>>(L, 1);
auto& source = i.source;
auto& it = i.it;
next_K k = stack::get<next_K>(L, 2);
if (it == deferred_traits::end(L, source)) {
return 0;
}
int p;
p = stack::push_reference(L, k + 1);
p += stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(*it));
std::advance(it, 1);
return p;
}
template <bool ip>
static int next_iter(lua_State* L) {
typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc;
return next_associative<ip>(is_assoc(), L);
}
template <bool ip>
static int pairs_associative(std::true_type, lua_State* L) {
auto& src = get_src(L);
stack::push(L, next_iter<ip>);
stack::push<user<iter>>(L, src, deferred_traits::begin(L, src));
stack::push(L, lua_nil);
return 3;
}
template <bool ip>
static int pairs_associative(std::false_type, lua_State* L) {
auto& src = get_src(L);
stack::push(L, next_iter<ip>);
stack::push<user<iter>>(L, src, deferred_traits::begin(L, src));
stack::push(L, 0);
return 3;
}
public:
static int at(lua_State* L) {
auto& self = get_src(L);
error_result er;
{
std::ptrdiff_t pos = stack::get<std::ptrdiff_t>(L);
er = at_start(L, self, pos);
}
return handle_errors(L, er);
}
static int get(lua_State* L) {
auto& self = get_src(L);
error_result er;
{
decltype(auto) key = stack::get<K>(L);
er = get_start(L, self, key);
}
return handle_errors(L, er);
}
static int index_get(lua_State* L) {
return get(L);
}
static int set(lua_State* L) {
stack_object value = stack_object(L, raw_index(3));
if (type_of(L, 3) == type::lua_nil) {
return erase(L);
}
auto& self = get_src(L);
error_result er = set_start(L, self, stack_object(L, raw_index(2)), std::move(value));
return handle_errors(L, er);
}
static int index_set(lua_State* L) {
return set(L);
}
static int add(lua_State* L) {
auto& self = get_src(L);
error_result er = add_copyable(is_copyable(), L, self, stack_object(L, raw_index(2)));
return handle_errors(L, er);
}
static int insert(lua_State* L) {
auto& self = get_src(L);
error_result er = insert_copyable(is_copyable(), L, self, stack_object(L, raw_index(2)), stack_object(L, raw_index(3)));
return handle_errors(L, er);
}
static int find(lua_State* L) {
auto& self = get_src(L);
error_result er = find_has(has_find<T>(), L, self);
return handle_errors(L, er);
}
static iterator begin(lua_State*, T& self) {
using std::begin;
return begin(self);
}
static iterator end(lua_State*, T& self) {
using std::end;
return end(self);
}
static int size(lua_State* L) {
auto& self = get_src(L);
std::size_t r = size_start(L, self);
return stack::push(L, r);
}
static int clear(lua_State* L) {
auto& self = get_src(L);
clear_start(L, self);
return 0;
}
static int erase(lua_State* L) {
auto& self = get_src(L);
error_result er;
{
decltype(auto) key = stack::get<K>(L, 2);
er = erase_start(L, self, key);
}
return handle_errors(L, er);
}
static int empty(lua_State* L) {
auto& self = get_src(L);
return stack::push(L, empty_start(L, self));
}
static std::ptrdiff_t index_adjustment(lua_State*, T&) {
return static_cast<std::ptrdiff_t>(-1);
}
static int pairs(lua_State* L) {
typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc;
return pairs_associative<false>(is_assoc(), L);
}
static int ipairs(lua_State* L) {
typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc;
return pairs_associative<true>(is_assoc(), L);
}
static int next(lua_State* L) {
return stack::push(L, next_iter<false>);
}
};
template <typename X>
struct container_traits_default<X, std::enable_if_t<std::is_array<std::remove_pointer_t<meta::unwrap_unqualified_t<X>>>::value>> {
private:
typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T;
typedef container_traits<X> deferred_traits;
public:
typedef std::remove_extent_t<T> value_type;
typedef value_type* iterator;
private:
struct iter {
T& source;
iterator it;
iter(T& source, iterator it)
: source(source), it(std::move(it)) {
}
};
static auto& get_src(lua_State* L) {
auto p = stack::check_get<T*>(L, 1);
#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE
if (!p) {
luaL_error(L, "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)", detail::demangle<T>().c_str());
}
if (p.value() == nullptr) {
luaL_error(L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str());
}
#endif // Safe getting with error
return *p.value();
}
static int find(std::true_type, lua_State* L) {
T& self = get_src(L);
decltype(auto) value = stack::get<value_type>(L, 2);
std::size_t N = std::extent<T>::value;
for (std::size_t idx = 0; idx < N; ++idx) {
const auto& v = self[idx];
if (v == value) {
return stack::push(L, idx + 1);
}
}
return stack::push(L, lua_nil);
}
static int find(std::false_type, lua_State* L) {
return luaL_error(L, "sol: cannot call 'find' on '%s': no supported comparison operator for the value type", detail::demangle<T>().c_str());
}
static int next_iter(lua_State* L) {
iter& i = stack::get<user<iter>>(L, 1);
auto& source = i.source;
auto& it = i.it;
std::size_t k = stack::get<std::size_t>(L, 2);
if (it == deferred_traits::end(L, source)) {
return 0;
}
int p;
p = stack::push_reference(L, k + 1);
p += stack::push_reference(L, detail::deref_non_pointer(*it));
std::advance(it, 1);
return p;
}
public:
static int clear(lua_State* L) {
return luaL_error(L, "sol: cannot call 'clear' on type '%s': cannot remove all items from a fixed array", detail::demangle<T>().c_str());
}
static int erase(lua_State* L) {
return luaL_error(L, "sol: cannot call 'erase' on type '%s': cannot remove an item from fixed arrays", detail::demangle<T>().c_str());
}
static int add(lua_State* L) {
return luaL_error(L, "sol: cannot call 'add' on type '%s': cannot add to fixed arrays", detail::demangle<T>().c_str());
}
static int insert(lua_State* L) {
return luaL_error(L, "sol: cannot call 'insert' on type '%s': cannot insert new entries into fixed arrays", detail::demangle<T>().c_str());
}
static int at(lua_State* L) {
return get(L);
}
static int get(lua_State* L) {
T& self = get_src(L);
std::ptrdiff_t idx = stack::get<std::ptrdiff_t>(L, 2);
idx += deferred_traits::index_adjustment(L, self);
if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value) || idx < 0) {
return stack::push(L, lua_nil);
}
return stack::push_reference(L, detail::deref_non_pointer(self[idx]));
}
static int index_get(lua_State* L) {
return get(L);
}
static int set(lua_State* L) {
T& self = get_src(L);
std::ptrdiff_t idx = stack::get<std::ptrdiff_t>(L, 2);
idx += deferred_traits::index_adjustment(L, self);
if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value)) {
return luaL_error(L, "sol: index out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
}
if (idx < 0) {
return luaL_error(L, "sol: index out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str());
}
self[idx] = stack::get<value_type>(L, 3);
return 0;
}
static int index_set(lua_State* L) {
return set(L);
}
static int find(lua_State* L) {
return find(meta::supports_op_equal<value_type, value_type>(), L);
}
static int size(lua_State* L) {
return stack::push(L, std::extent<T>::value);
}
static int empty(lua_State* L) {
return stack::push(L, std::extent<T>::value > 0);
}
static int pairs(lua_State* L) {
auto& src = get_src(L);
stack::push(L, next_iter);
stack::push<user<iter>>(L, src, deferred_traits::begin(L, src));
stack::push(L, 0);
return 3;
}
static int ipairs(lua_State* L) {
return pairs(L);
}
static int next(lua_State* L) {
return stack::push(L, next_iter);
}
static std::ptrdiff_t index_adjustment(lua_State*, T&) {
#if defined(SOL_CONTAINERS_START_INDEX)
return (SOL_CONTAINERS_START) == 0 ? 0 : -(SOL_CONTAINERS_START);
#else
return -1;
#endif
}
static iterator begin(lua_State*, T& self) {
return std::addressof(self[0]);
}
static iterator end(lua_State*, T& self) {
return std::addressof(self[0]) + std::extent<T>::value;
}
};
template <typename X>
struct container_traits_default<container_traits<X>> : container_traits_default<X> {};
} // namespace container_detail
template <typename T>
struct container_traits : container_detail::container_traits_default<T> {};
} // namespace sol
// end of sol/container_traits.hpp
namespace sol {
template <typename X>
struct container_usertype_metatable {
typedef std::remove_pointer_t<meta::unqualified_t<X>> T;
typedef container_traits<T> traits;
typedef container_detail::container_traits_default<T> default_traits;
static int real_index_get_traits(std::true_type, lua_State* L) {
return traits::index_get(L);
}
static int real_index_get_traits(std::false_type, lua_State* L) {
return default_traits::index_get(L);
}
static int real_index_call(lua_State* L) {
typedef usertype_detail::map_t<std::string, lua_CFunction> call_map;
static const call_map calls{
{ "at", &at_call },
{ "get", &real_get_call },
{ "set", &real_set_call },
{ "size", &real_length_call },
{ "add", &real_add_call },
{ "empty", &real_empty_call },
{ "insert", &real_insert_call },
{ "clear", &real_clear_call },
{ "find", &real_find_call },
{ "erase", &real_erase_call },
{ "pairs", &pairs_call },
{ "next", &next_call },
};
auto maybenameview = stack::check_get<string_view>(L, 2);
if (maybenameview) {
const string_view& nameview = *maybenameview;
#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH
auto it = calls.find(nameview, string_view_hash(), std::equal_to<string_view>());
#else
std::string name(nameview.data(), nameview.size());
auto it = calls.find(name);
#endif
if (it != calls.cend()) {
return stack::push(L, it->second);
}
}
return real_index_get_traits(container_detail::has_traits_index_get<traits>(), L);
}
static int real_at_traits(std::true_type, lua_State* L) {
return traits::at(L);
}
static int real_at_traits(std::false_type, lua_State* L) {
return default_traits::at(L);
}
static int real_at_call(lua_State* L) {
return real_at_traits(container_detail::has_traits_at<traits>(), L);
}
static int real_get_traits(std::true_type, lua_State* L) {
return traits::get(L);
}
static int real_get_traits(std::false_type, lua_State* L) {
return default_traits::get(L);
}
static int real_get_call(lua_State* L) {
return real_get_traits(container_detail::has_traits_get<traits>(), L);
}
static int real_set_traits(std::true_type, lua_State* L) {
return traits::set(L);
}
static int real_set_traits(std::false_type, lua_State* L) {
return default_traits::set(L);
}
static int real_set_call(lua_State* L) {
return real_set_traits(container_detail::has_traits_set<traits>(), L);
}
static int real_index_set_traits(std::true_type, lua_State* L) {
return traits::index_set(L);
}
static int real_index_set_traits(std::false_type, lua_State* L) {
return default_traits::index_set(L);
}
static int real_new_index_call(lua_State* L) {
return real_index_set_traits(container_detail::has_traits_index_set<traits>(), L);
}
static int real_pairs_traits(std::true_type, lua_State* L) {
return traits::pairs(L);
}
static int real_pairs_traits(std::false_type, lua_State* L) {
return default_traits::pairs(L);
}
static int real_pairs_call(lua_State* L) {
return real_pairs_traits(container_detail::has_traits_pairs<traits>(), L);
}
static int real_ipairs_traits(std::true_type, lua_State* L) {
return traits::ipairs(L);
}
static int real_ipairs_traits(std::false_type, lua_State* L) {
return default_traits::ipairs(L);
}
static int real_ipairs_call(lua_State* L) {
return real_ipairs_traits(container_detail::has_traits_ipairs<traits>(), L);
}
static int real_next_traits(std::true_type, lua_State* L) {
return traits::next(L);
}
static int real_next_traits(std::false_type, lua_State* L) {
return default_traits::next(L);
}
static int real_next_call(lua_State* L) {
return real_next_traits(container_detail::has_traits_next<traits>(), L);
}
static int real_size_traits(std::true_type, lua_State* L) {
return traits::size(L);
}
static int real_size_traits(std::false_type, lua_State* L) {
return default_traits::size(L);
}
static int real_length_call(lua_State* L) {
return real_size_traits(container_detail::has_traits_size<traits>(), L);
}
static int real_add_traits(std::true_type, lua_State* L) {
return traits::add(L);
}
static int real_add_traits(std::false_type, lua_State* L) {
return default_traits::add(L);
}
static int real_add_call(lua_State* L) {
return real_add_traits(container_detail::has_traits_add<traits>(), L);
}
static int real_insert_traits(std::true_type, lua_State* L) {
return traits::insert(L);
}
static int real_insert_traits(std::false_type, lua_State* L) {
return default_traits::insert(L);
}
static int real_insert_call(lua_State* L) {
return real_insert_traits(container_detail::has_traits_insert<traits>(), L);
}
static int real_clear_traits(std::true_type, lua_State* L) {
return traits::clear(L);
}
static int real_clear_traits(std::false_type, lua_State* L) {
return default_traits::clear(L);
}
static int real_clear_call(lua_State* L) {
return real_clear_traits(container_detail::has_traits_clear<traits>(), L);
}
static int real_empty_traits(std::true_type, lua_State* L) {
return traits::empty(L);
}
static int real_empty_traits(std::false_type, lua_State* L) {
return default_traits::empty(L);
}
static int real_empty_call(lua_State* L) {
return real_empty_traits(container_detail::has_traits_empty<traits>(), L);
}
static int real_erase_traits(std::true_type, lua_State* L) {
return traits::erase(L);
}
static int real_erase_traits(std::false_type, lua_State* L) {
return default_traits::erase(L);
}
static int real_erase_call(lua_State* L) {
return real_erase_traits(container_detail::has_traits_erase<traits>(), L);
}
static int real_find_traits(std::true_type, lua_State* L) {
return traits::find(L);
}
static int real_find_traits(std::false_type, lua_State* L) {
return default_traits::find(L);
}
static int real_find_call(lua_State* L) {
return real_find_traits(container_detail::has_traits_find<traits>(), L);
}
static int add_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_add_call), (&real_add_call)>(L);
}
static int erase_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_erase_call), (&real_erase_call)>(L);
}
static int insert_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_insert_call), (&real_insert_call)>(L);
}
static int clear_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_clear_call), (&real_clear_call)>(L);
}
static int empty_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_empty_call), (&real_empty_call)>(L);
}
static int find_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_find_call), (&real_find_call)>(L);
}
static int length_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_length_call), (&real_length_call)>(L);
}
static int pairs_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_pairs_call), (&real_pairs_call)>(L);
}
static int ipairs_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_ipairs_call), (&real_ipairs_call)>(L);
}
static int next_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_next_call), (&real_next_call)>(L);
}
static int at_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_at_call), (&real_at_call)>(L);
}
static int get_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_get_call), (&real_get_call)>(L);
}
static int set_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_set_call), (&real_set_call)>(L);
}
static int index_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_index_call), (&real_index_call)>(L);
}
static int new_index_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_new_index_call), (&real_new_index_call)>(L);
}
};
namespace stack {
namespace stack_detail {
template <typename T, bool is_shim = false>
struct metatable_setup {
lua_State* L;
metatable_setup(lua_State* L)
: L(L) {
}
void operator()() {
typedef container_usertype_metatable<std::conditional_t<is_shim,
as_container_t<std::remove_pointer_t<T>>,
std::remove_pointer_t<T>>>
meta_cumt;
static const char* metakey = is_shim ? &usertype_traits<as_container_t<std::remove_pointer_t<T>>>::metatable()[0] : &usertype_traits<T>::metatable()[0];
static const std::array<luaL_Reg, 19> reg = { {
{ "__pairs", &meta_cumt::pairs_call },
{ "__ipairs", &meta_cumt::ipairs_call },
{ "__len", &meta_cumt::length_call },
{ "__index", &meta_cumt::index_call },
{ "__newindex", &meta_cumt::new_index_call },
{ "pairs", &meta_cumt::pairs_call },
{ "next", &meta_cumt::next_call },
{ "at", &meta_cumt::at_call },
{ "get", &meta_cumt::get_call },
{ "set", &meta_cumt::set_call },
{ "size", &meta_cumt::length_call },
{ "empty", &meta_cumt::empty_call },
{ "clear", &meta_cumt::clear_call },
{ "insert", &meta_cumt::insert_call },
{ "add", &meta_cumt::add_call },
{ "find", &meta_cumt::find_call },
{ "erase", &meta_cumt::erase_call },
std::is_pointer<T>::value ? luaL_Reg{ nullptr, nullptr } : luaL_Reg{ "__gc", &detail::usertype_alloc_destruct<T> },
{ nullptr, nullptr }
} };
if (luaL_newmetatable(L, metakey) == 1) {
luaL_setfuncs(L, reg.data(), 0);
}
lua_setmetatable(L, -2);
}
};
} // namespace stack_detail
template <typename T>
struct pusher<as_container_t<T>> {
typedef meta::unqualified_t<T> C;
static int push_lvalue(std::true_type, lua_State* L, const C& cont) {
stack_detail::metatable_setup<C*, true> fx(L);
return pusher<detail::as_pointer_tag<const C>>{}.push_fx(L, fx, detail::ptr(cont));
}
static int push_lvalue(std::false_type, lua_State* L, const C& cont) {
stack_detail::metatable_setup<C, true> fx(L);
return pusher<detail::as_value_tag<C>>{}.push_fx(L, fx, cont);
}
static int push_rvalue(std::true_type, lua_State* L, C&& cont) {
stack_detail::metatable_setup<C, true> fx(L);
return pusher<detail::as_value_tag<C>>{}.push_fx(L, fx, std::move(cont));
}
static int push_rvalue(std::false_type, lua_State* L, const C& cont) {
return push_lvalue(std::is_lvalue_reference<T>(), L, cont);
}
static int push(lua_State* L, const as_container_t<T>& as_cont) {
return push_lvalue(std::is_lvalue_reference<T>(), L, as_cont.source);
}
static int push(lua_State* L, as_container_t<T>&& as_cont) {
return push_rvalue(meta::all<std::is_rvalue_reference<T>, meta::neg<std::is_lvalue_reference<T>>>(), L, std::forward<T>(as_cont.source));
}
};
template <typename T>
struct pusher<as_container_t<T*>> {
typedef std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>> C;
static int push(lua_State* L, T* cont) {
stack_detail::metatable_setup<C> fx(L);
return pusher<detail::as_pointer_tag<T>>{}.push_fx(L, fx, cont);
}
};
template <typename T>
struct pusher<T, std::enable_if_t<meta::all<is_container<meta::unqualified_t<T>>, meta::neg<is_lua_reference<meta::unqualified_t<T>>>>::value>> {
typedef meta::unqualified_t<T> C;
static int push(lua_State* L, const T& cont) {
stack_detail::metatable_setup<C> fx(L);
return pusher<detail::as_value_tag<T>>{}.push_fx(L, fx, cont);
}
static int push(lua_State* L, T&& cont) {
stack_detail::metatable_setup<C> fx(L);
return pusher<detail::as_value_tag<T>>{}.push_fx(L, fx, std::move(cont));
}
};
template <typename T>
struct pusher<T*, std::enable_if_t<meta::all<is_container<meta::unqualified_t<T>>, meta::neg<is_lua_reference<meta::unqualified_t<T>>>>::value>> {
typedef std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>> C;
static int push(lua_State* L, T* cont) {
stack_detail::metatable_setup<C> fx(L);
return pusher<detail::as_pointer_tag<T>>{}.push_fx(L, fx, cont);
}
};
template <typename T, typename C>
struct checker<as_container_t<T>, type::userdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack::check<T>(L, index, std::forward<Handler>(handler), tracking);
}
};
template <typename T>
struct getter<as_container_t<T>> {
static decltype(auto) get(lua_State* L, int index, record& tracking) {
return stack::get<T>(L, index, tracking);
}
};
template <typename T>
struct getter<as_container_t<T>*> {
static decltype(auto) get(lua_State* L, int index, record& tracking) {
return stack::get<T*>(L, index, tracking);
}
};
} // namespace stack
} // namespace sol
// end of sol/container_usertype_metatable.hpp
// beginning of sol/usertype_core.hpp
#include <sstream>
namespace sol {
namespace usertype_detail {
struct no_comp {
template <typename A, typename B>
bool operator()(A&&, B&&) const {
return false;
}
};
template <typename T>
int is_check(lua_State* L) {
return stack::push(L, stack::check<T>(L, 1, &no_panic));
}
template <typename T>
inline int member_default_to_string(std::true_type, lua_State* L) {
decltype(auto) ts = stack::get<T>(L, 1).to_string();
return stack::push(L, std::forward<decltype(ts)>(ts));
}
template <typename T>
inline int member_default_to_string(std::false_type, lua_State* L) {
return luaL_error(L, "cannot perform to_string on '%s': no 'to_string' overload in namespace, 'to_string' member function, or operator<<(ostream&, ...) present", detail::demangle<T>().data());
}
template <typename T>
inline int adl_default_to_string(std::true_type, lua_State* L) {
using namespace std;
decltype(auto) ts = to_string(stack::get<T>(L, 1));
return stack::push(L, std::forward<decltype(ts)>(ts));
}
template <typename T>
inline int adl_default_to_string(std::false_type, lua_State* L) {
return member_default_to_string<T>(meta::supports_to_string_member<T>(), L);
}
template <typename T>
inline int oss_default_to_string(std::true_type, lua_State* L) {
std::ostringstream oss;
oss << stack::get<T>(L, 1);
return stack::push(L, oss.str());
}
template <typename T>
inline int oss_default_to_string(std::false_type, lua_State* L) {
return adl_default_to_string<T>(meta::supports_adl_to_string<T>(), L);
}
template <typename T>
inline int default_to_string(lua_State* L) {
return oss_default_to_string<T>(meta::supports_ostream_op<T>(), L);
}
template <typename T, typename Op>
int comparsion_operator_wrap(lua_State* L) {
auto maybel = stack::check_get<T>(L, 1);
if (maybel) {
auto mayber = stack::check_get<T>(L, 2);
if (mayber) {
auto& l = *maybel;
auto& r = *mayber;
if (std::is_same<no_comp, Op>::value) {
return stack::push(L, detail::ptr(l) == detail::ptr(r));
}
else {
Op op;
return stack::push(L, (detail::ptr(l) == detail::ptr(r)) || op(detail::deref(l), detail::deref(r)));
}
}
}
return stack::push(L, false);
}
template <typename T, typename Op, typename Supports, typename Regs, meta::enable<Supports> = meta::enabler>
inline void make_reg_op(Regs& l, int& index, const char* name) {
lua_CFunction f = &comparsion_operator_wrap<T, Op>;
l[index] = luaL_Reg{ name, f };
++index;
}
template <typename T, typename Op, typename Supports, typename Regs, meta::disable<Supports> = meta::enabler>
inline void make_reg_op(Regs&, int&, const char*) {
// Do nothing if there's no support
}
template <typename T, typename Supports, typename Regs, meta::enable<Supports> = meta::enabler>
inline void make_to_string_op(Regs& l, int& index) {
const char* name = to_string(meta_function::to_string).c_str();
lua_CFunction f = &detail::static_trampoline<&default_to_string<T>>;
l[index] = luaL_Reg{ name, f };
++index;
}
template <typename T, typename Supports, typename Regs, meta::disable<Supports> = meta::enabler>
inline void make_to_string_op(Regs&, int&) {
// Do nothing if there's no support
}
template <typename T, typename Regs, meta::enable<meta::has_deducible_signature<T>> = meta::enabler>
inline void make_call_op(Regs& l, int& index) {
const char* name = to_string(meta_function::call).c_str();
lua_CFunction f = &c_call<decltype(&T::operator()), &T::operator()>;
l[index] = luaL_Reg{ name, f };
++index;
}
template <typename T, typename Regs, meta::disable<meta::has_deducible_signature<T>> = meta::enabler>
inline void make_call_op(Regs&, int&) {
// Do nothing if there's no support
}
template <typename T, typename Regs>
inline void make_length_op_const(std::true_type, Regs& l, int& index) {
const char* name = to_string(meta_function::length).c_str();
#if defined(__clang__)
l[index] = luaL_Reg{ name, &c_call<decltype(&T::size), &T::size> };
#else
typedef decltype(std::declval<T>().size()) R;
using sz_func = R(T::*)()const;
l[index] = luaL_Reg{ name, &c_call<decltype(static_cast<sz_func>(&T::size)), static_cast<sz_func>(&T::size)> };
#endif
++index;
}
template <typename T, typename Regs>
inline void make_length_op_const(std::false_type, Regs& l, int& index) {
const char* name = to_string(meta_function::length).c_str();
#if defined(__clang__)
l[index] = luaL_Reg{ name, &c_call<decltype(&T::size), &T::size> };
#else
typedef decltype(std::declval<T>().size()) R;
using sz_func = R(T::*)();
l[index] = luaL_Reg{ name, &c_call<decltype(static_cast<sz_func>(&T::size)), static_cast<sz_func>(&T::size)> };
#endif
++index;
}
template <typename T, typename Regs, meta::enable<meta::has_size<T>, meta::has_size<const T>> = meta::enabler>
inline void make_length_op(Regs& l, int& index) {
make_length_op_const<T>(meta::has_size<const T>(), l, index);
}
template <typename T, typename Regs, meta::disable<meta::has_size<T>, meta::has_size<const T>> = meta::enabler>
inline void make_length_op(Regs&, int&) {
// Do nothing if there's no support
}
template <typename T, typename Regs, meta::enable<meta::neg<std::is_pointer<T>>, std::is_destructible<T>>>
void make_destructor(Regs& l, int& index) {
const char* name = to_string(meta_function::garbage_collect).c_str();
l[index] = luaL_Reg{ name, is_unique_usertype<T>::value ? &detail::unique_destruct<T> : &detail::usertype_alloc_destruct<T> };
++index;
}
template <typename T, typename Regs, meta::disable<meta::neg<std::is_pointer<T>>, std::is_destructible<T>>>
void make_destructor(Regs& l, int& index) {
if (!std::is_destructible<T>::value) {
// if the value is not destructible, plant an erroring __gc method
// to warn the user of a problem when it comes around
// this won't trigger if the user performs `new_usertype` / `new_simple_usertype` and
// rigs the class up properly
const char* name = to_string(meta_function::garbage_collect).c_str();
l[index] = luaL_Reg{ name, &detail::cannot_destruct<T> };
++index;
}
}
template <typename T, typename Regs, typename Fx>
void insert_default_registrations(std::false_type, Regs&, int&, Fx&&) {
// no-op
}
template <typename T, typename Regs, typename Fx>
void insert_default_registrations(std::true_type, Regs& l, int& index, Fx&& fx) {
if (fx(meta_function::less_than)) {
const char* name = to_string(meta_function::less_than).c_str();
usertype_detail::make_reg_op<T, std::less<>, meta::supports_op_less<T>>(l, index, name);
}
if (fx(meta_function::less_than_or_equal_to)) {
const char* name = to_string(meta_function::less_than_or_equal_to).c_str();
usertype_detail::make_reg_op<T, std::less_equal<>, meta::supports_op_less_equal<T>>(l, index, name);
}
if (fx(meta_function::equal_to)) {
const char* name = to_string(meta_function::equal_to).c_str();
usertype_detail::make_reg_op<T, std::conditional_t<meta::supports_op_equal<T>::value, std::equal_to<>, usertype_detail::no_comp>, std::true_type>(l, index, name);
}
if (fx(meta_function::pairs)) {
const char* name = to_string(meta_function::pairs).c_str();
l[index] = luaL_Reg{ name, container_usertype_metatable<as_container_t<T>>::pairs_call };
++index;
}
if (fx(meta_function::length)) {
usertype_detail::make_length_op<T>(l, index);
}
if (fx(meta_function::to_string)) {
usertype_detail::make_to_string_op<T, is_to_stringable<T>>(l, index);
}
if (fx(meta_function::call_function)) {
usertype_detail::make_call_op<T>(l, index);
}
}
template <typename T, typename Regs, typename Fx>
void insert_default_registrations(Regs& l, int& index, Fx&& fx) {
insert_default_registrations<T>(is_automagical<T>(), l, index, std::forward<Fx>(fx));
}
} // namespace usertype_detail
namespace stack { namespace stack_detail {
template <typename T>
struct undefined_metatable {
typedef meta::all<meta::neg<std::is_pointer<T>>, std::is_destructible<T>> is_destructible;
typedef std::remove_pointer_t<T> P;
lua_State* L;
const char* key;
undefined_metatable(lua_State* l, const char* k)
: L(l), key(k) {
}
void operator()() const {
if (luaL_newmetatable(L, key) == 1) {
luaL_Reg l[32]{};
int index = 0;
auto fx = [](meta_function) { return true; };
usertype_detail::insert_default_registrations<P>(l, index, fx);
usertype_detail::make_destructor<T>(l, index);
luaL_setfuncs(L, l, 0);
// __type table
lua_createtable(L, 0, 2);
const std::string& name = detail::demangle<T>();
lua_pushlstring(L, name.c_str(), name.size());
lua_setfield(L, -2, "name");
lua_CFunction is_func = &usertype_detail::is_check<T>;
lua_pushcclosure(L, is_func, 0);
lua_setfield(L, -2, "is");
lua_setfield(L, -2, to_string(meta_function::type).c_str());
}
lua_setmetatable(L, -2);
}
};
}
} // namespace stack::stack_detail
} // namespace sol
// end of sol/usertype_core.hpp
#include <cstdio>
#include <bitset>
namespace sol {
namespace usertype_detail {
const int metatable_index = 2;
const int metatable_core_index = 3;
const int filler_index = 4;
const int magic_index = 5;
const int simple_metatable_index = 2;
const int index_function_index = 3;
const int newindex_function_index = 4;
typedef void (*base_walk)(lua_State*, bool&, int&, string_view&);
typedef int (*member_search)(lua_State*, void*, int);
struct call_information {
member_search index;
member_search new_index;
int runtime_target;
call_information(member_search index, member_search newindex)
: call_information(index, newindex, -1) {
}
call_information(member_search index, member_search newindex, int runtimetarget)
: index(index), new_index(newindex), runtime_target(runtimetarget) {
}
};
typedef map_t<std::string, call_information> mapping_t;
struct variable_wrapper {
virtual int index(lua_State* L) = 0;
virtual int new_index(lua_State* L) = 0;
virtual ~variable_wrapper(){};
};
template <typename T, typename F>
struct callable_binding : variable_wrapper {
F fx;
template <typename Arg>
callable_binding(Arg&& arg)
: fx(std::forward<Arg>(arg)) {
}
virtual int index(lua_State* L) override {
return call_detail::call_wrapped<T, true, true>(L, fx);
}
virtual int new_index(lua_State* L) override {
return call_detail::call_wrapped<T, false, true>(L, fx);
}
};
typedef map_t<std::string, std::unique_ptr<variable_wrapper>> variable_map;
typedef map_t<std::string, object> function_map;
struct simple_map {
const char* metakey;
variable_map variables;
function_map functions;
object index;
object newindex;
base_walk indexbaseclasspropogation;
base_walk newindexbaseclasspropogation;
simple_map(const char* mkey, base_walk index, base_walk newindex, object i, object ni, variable_map&& vars, function_map&& funcs)
: metakey(mkey), variables(std::move(vars)), functions(std::move(funcs)), index(std::move(i)), newindex(std::move(ni)), indexbaseclasspropogation(index), newindexbaseclasspropogation(newindex) {
}
};
} // namespace usertype_detail
struct usertype_metatable_core {
usertype_detail::mapping_t mapping;
lua_CFunction indexfunc;
lua_CFunction newindexfunc;
std::vector<object> runtime;
bool mustindex;
usertype_metatable_core(lua_CFunction ifx, lua_CFunction nifx)
: mapping(), indexfunc(ifx), newindexfunc(nifx), runtime(), mustindex(false) {
}
usertype_metatable_core(const usertype_metatable_core&) = default;
usertype_metatable_core(usertype_metatable_core&&) = default;
usertype_metatable_core& operator=(const usertype_metatable_core&) = default;
usertype_metatable_core& operator=(usertype_metatable_core&&) = default;
};
namespace usertype_detail {
const lua_Integer toplevel_magic = static_cast<lua_Integer>(0xCCC2CCC1);
inline int is_indexer(string_view s) {
if (s == to_string(meta_function::index)) {
return 1;
}
else if (s == to_string(meta_function::new_index)) {
return 2;
}
return 0;
}
inline int is_indexer(meta_function mf) {
if (mf == meta_function::index) {
return 1;
}
else if (mf == meta_function::new_index) {
return 2;
}
return 0;
}
inline int is_indexer(call_construction) {
return 0;
}
inline int is_indexer(base_classes_tag) {
return 0;
}
inline auto make_string_view(string_view s) {
return s;
}
inline auto make_string_view(call_construction) {
return string_view(to_string(meta_function::call_function));
}
inline auto make_string_view(meta_function mf) {
return string_view(to_string(mf));
}
inline auto make_string_view(base_classes_tag) {
return string_view(detail::base_class_cast_key());
}
template <typename Arg>
inline std::string make_string(Arg&& arg) {
string_view s = make_string_view(arg);
return std::string(s.data(), s.size());
}
template <typename N>
inline luaL_Reg make_reg(N&& n, lua_CFunction f) {
luaL_Reg l{make_string_view(std::forward<N>(n)).data(), f};
return l;
}
struct registrar {
registrar() = default;
registrar(const registrar&) = default;
registrar(registrar&&) = default;
registrar& operator=(const registrar&) = default;
registrar& operator=(registrar&&) = default;
virtual int push_um(lua_State* L) = 0;
virtual ~registrar() {
}
};
inline bool is_toplevel(lua_State* L, int index = magic_index) {
int isnum = 0;
lua_Integer magic = lua_tointegerx(L, upvalue_index(index), &isnum);
return isnum != 0 && magic == toplevel_magic;
}
inline int runtime_object_call(lua_State* L, void*, int runtimetarget) {
usertype_metatable_core& umc = stack::get<light<usertype_metatable_core>>(L, upvalue_index(metatable_core_index));
std::vector<object>& runtime = umc.runtime;
object& runtimeobj = runtime[runtimetarget];
return stack::push(L, runtimeobj);
}
template <typename T, bool is_index>
inline int indexing_fail(lua_State* L) {
if (is_index) {
#if 0 //defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE
auto maybeaccessor = stack::get<optional<string_view>>(L, is_index ? -1 : -2);
string_view accessor = maybeaccessor.value_or(string_detail::string_shim("(unknown)"));
return luaL_error(L, "sol: attempt to index (get) nil value \"%s\" on userdata (bad (misspelled?) key name or does not exist)", accessor.data());
#else
if (is_toplevel(L)) {
if (lua_getmetatable(L, 1) == 1) {
int metatarget = lua_gettop(L);
stack::get_field(L, stack_reference(L, raw_index(2)), metatarget);
return 1;
}
}
// With runtime extensibility, we can't hard-error things. They have to return nil, like regular table types, unfortunately...
return stack::push(L, lua_nil);
#endif
}
else {
auto maybeaccessor = stack::get<optional<string_view>>(L, is_index ? -1 : -2);
string_view accessor = maybeaccessor.value_or(string_view("(unknown)"));
return luaL_error(L, "sol: attempt to index (set) nil value \"%s\" on userdata (bad (misspelled?) key name or does not exist)", accessor.data());
}
}
int runtime_new_index(lua_State* L, void*, int runtimetarget);
template <typename T, bool is_simple>
inline int metatable_newindex(lua_State* L) {
if (is_toplevel(L)) {
auto non_indexable = [&L]() {
if (is_simple) {
simple_map& sm = stack::get<user<simple_map>>(L, upvalue_index(simple_metatable_index));
function_map& functions = sm.functions;
optional<string_view> maybeaccessor = stack::get<optional<string_view>>(L, 2);
if (!maybeaccessor) {
return;
}
string_view& accessor_view = maybeaccessor.value();
#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH
auto preexistingit = functions.find(accessor_view, string_view_hash(), std::equal_to<string_view>());
#else
std::string accessor(accessor_view.data(), accessor_view.size());
auto preexistingit = functions.find(accessor);
#endif
if (preexistingit == functions.cend()) {
#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH
std::string accessor(accessor_view.data(), accessor_view.size());
#endif
functions.emplace_hint(preexistingit, std::move(accessor), object(L, 3));
}
else {
preexistingit->second = object(L, 3);
}
return;
}
usertype_metatable_core& umc = stack::get<light<usertype_metatable_core>>(L, upvalue_index(metatable_core_index));
bool mustindex = umc.mustindex;
if (!mustindex)
return;
optional<string_view> maybeaccessor = stack::get<optional<string_view>>(L, 2);
if (!maybeaccessor) {
return;
}
string_view& accessor_view = maybeaccessor.value();
mapping_t& mapping = umc.mapping;
std::vector<object>& runtime = umc.runtime;
int target = static_cast<int>(runtime.size());
#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH
auto preexistingit = mapping.find(accessor_view, string_view_hash(), std::equal_to<string_view>());
#else
std::string accessor(accessor_view.data(), accessor_view.size());
auto preexistingit = mapping.find(accessor);
#endif
if (preexistingit == mapping.cend()) {
#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH
std::string accessor(accessor_view.data(), accessor_view.size());
#endif
runtime.emplace_back(L, 3);
mapping.emplace_hint(mapping.cend(), std::move(accessor), call_information(&runtime_object_call, &runtime_new_index, target));
}
else {
target = preexistingit->second.runtime_target;
runtime[target] = object(L, 3);
preexistingit->second = call_information(&runtime_object_call, &runtime_new_index, target);
}
};
non_indexable();
for (std::size_t i = 0; i < 4; lua_settop(L, 3), ++i) {
const char* metakey = nullptr;
switch (i) {
case 0:
metakey = &usertype_traits<T*>::metatable()[0];
luaL_getmetatable(L, metakey);
break;
case 1:
metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0];
luaL_getmetatable(L, metakey);
break;
case 2:
metakey = &usertype_traits<T>::metatable()[0];
luaL_getmetatable(L, metakey);
break;
case 3:
default:
metakey = &usertype_traits<T>::user_metatable()[0];
{
luaL_getmetatable(L, metakey);
lua_getmetatable(L, -1);
}
break;
}
int tableindex = lua_gettop(L);
if (type_of(L, tableindex) == type::lua_nil) {
continue;
}
stack::set_field<false, true>(L, stack_reference(L, raw_index(2)), stack_reference(L, raw_index(3)), tableindex);
}
lua_settop(L, 0);
return 0;
}
return indexing_fail<T, false>(L);
}
inline int runtime_new_index(lua_State* L, void*, int runtimetarget) {
usertype_metatable_core& umc = stack::get<light<usertype_metatable_core>>(L, upvalue_index(metatable_core_index));
std::vector<object>& runtime = umc.runtime;
object& runtimeobj = runtime[runtimetarget];
runtimeobj = object(L, 3);
return 0;
}
template <bool is_index, typename Base>
static void walk_single_base(lua_State* L, bool& found, int& ret, string_view&) {
if (found)
return;
const char* metakey = &usertype_traits<Base>::metatable()[0];
const char* gcmetakey = &usertype_traits<Base>::gc_table()[0];
const char* basewalkkey = is_index ? detail::base_class_index_propogation_key() : detail::base_class_new_index_propogation_key();
luaL_getmetatable(L, metakey);
if (type_of(L, -1) == type::lua_nil) {
lua_pop(L, 1);
return;
}
stack::get_field(L, basewalkkey);
if (type_of(L, -1) == type::lua_nil) {
lua_pop(L, 2);
return;
}
lua_CFunction basewalkfunc = stack::pop<lua_CFunction>(L);
lua_pop(L, 1);
stack::get_field<true>(L, gcmetakey);
int value = basewalkfunc(L);
if (value > -1) {
found = true;
ret = value;
}
}
template <bool is_index, typename... Bases>
static void walk_all_bases(lua_State* L, bool& found, int& ret, string_view& accessor) {
(void)L;
(void)found;
(void)ret;
(void)accessor;
(void)detail::swallow{0, (walk_single_base<is_index, Bases>(L, found, ret, accessor), 0)...};
}
} // namespace usertype_detail
template <typename T>
struct clean_type {
typedef std::conditional_t<std::is_array<meta::unqualified_t<T>>::value, T&, std::decay_t<T>> type;
};
template <typename T>
using clean_type_t = typename clean_type<T>::type;
template <typename T, typename IndexSequence, typename... Tn>
struct usertype_metatable : usertype_detail::registrar {};
template <typename T, std::size_t... I, typename... Tn>
struct usertype_metatable<T, std::index_sequence<I...>, Tn...> : usertype_metatable_core, usertype_detail::registrar {
typedef std::make_index_sequence<sizeof...(I) * 2> indices;
typedef std::index_sequence<I...> half_indices;
typedef std::array<luaL_Reg, sizeof...(Tn) / 2 + 1 + 31> regs_t;
typedef std::tuple<Tn...> RawTuple;
typedef std::tuple<clean_type_t<Tn>...> Tuple;
template <std::size_t Idx>
struct check_binding : is_variable_binding<meta::unqualified_tuple_element_t<Idx, Tuple>> {};
Tuple functions;
lua_CFunction destructfunc;
lua_CFunction callconstructfunc;
lua_CFunction indexbase;
lua_CFunction newindexbase;
usertype_detail::base_walk indexbaseclasspropogation;
usertype_detail::base_walk newindexbaseclasspropogation;
void* baseclasscheck;
void* baseclasscast;
bool secondarymeta;
std::bitset<32> properties;
template <std::size_t Idx, meta::enable<std::is_same<lua_CFunction, meta::unqualified_tuple_element<Idx + 1, RawTuple>>> = meta::enabler>
lua_CFunction make_func() const {
return std::get<Idx + 1>(functions);
}
template <std::size_t Idx, meta::disable<std::is_same<lua_CFunction, meta::unqualified_tuple_element<Idx + 1, RawTuple>>> = meta::enabler>
lua_CFunction make_func() const {
const auto& name = std::get<Idx>(functions);
return (usertype_detail::make_string_view(name) == "__newindex") ? &call<Idx + 1, false> : &call<Idx + 1, true>;
}
static bool contains_variable() {
typedef meta::any<check_binding<(I * 2 + 1)>...> has_variables;
return has_variables::value;
}
bool contains_index() const {
bool idx = false;
(void)detail::swallow{0, ((idx |= (usertype_detail::is_indexer(std::get<I * 2>(functions)) != 0)), 0)...};
return idx;
}
int finish_regs(regs_t& l, int& index) {
auto prop_fx = [&](meta_function mf) { return !properties[static_cast<int>(mf)]; };
usertype_detail::insert_default_registrations<T>(l, index, prop_fx);
if (destructfunc != nullptr) {
l[index] = luaL_Reg{to_string(meta_function::garbage_collect).c_str(), destructfunc};
++index;
}
return index;
}
template <std::size_t Idx, typename F>
void make_regs(regs_t&, int&, call_construction, F&&) {
callconstructfunc = call<Idx + 1>;
secondarymeta = true;
}
template <std::size_t, typename... Bases>
void make_regs(regs_t&, int&, base_classes_tag, bases<Bases...>) {
static_assert(!meta::any_same<T, Bases...>::value, "base classes cannot list the original class as part of the bases");
if (sizeof...(Bases) < 1) {
return;
}
mustindex = true;
(void)detail::swallow{0, ((detail::has_derived<Bases>::value = true), 0)...};
static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report.");
static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report.");
baseclasscheck = (void*)&detail::inheritance<T, Bases...>::type_check;
baseclasscast = (void*)&detail::inheritance<T, Bases...>::type_cast;
indexbaseclasspropogation = usertype_detail::walk_all_bases<true, Bases...>;
newindexbaseclasspropogation = usertype_detail::walk_all_bases<false, Bases...>;
}
template <std::size_t Idx, typename N, typename F, typename = std::enable_if_t<!meta::any_same<meta::unqualified_t<N>, base_classes_tag, call_construction>::value>>
void make_regs(regs_t& l, int& index, N&& n, F&&) {
if (is_variable_binding<meta::unqualified_t<F>>::value) {
return;
}
luaL_Reg reg = usertype_detail::make_reg(std::forward<N>(n), make_func<Idx>());
for (std::size_t i = 0; i < properties.size(); ++i) {
meta_function mf = static_cast<meta_function>(i);
const std::string& mfname = to_string(mf);
if (mfname == reg.name) {
switch (mf) {
case meta_function::construct:
if (properties[i]) {
#if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS)
throw error("sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems");
#else
assert(false && "sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems");
#endif
}
break;
case meta_function::garbage_collect:
if (destructfunc != nullptr) {
#if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS)
throw error("sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems");
#else
assert(false && "sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems");
#endif
}
destructfunc = reg.func;
return;
case meta_function::index:
indexfunc = reg.func;
mustindex = true;
properties.set(i);
return;
case meta_function::new_index:
newindexfunc = reg.func;
mustindex = true;
properties.set(i);
return;
default:
break;
}
properties.set(i);
break;
}
}
l[index] = reg;
++index;
}
template <typename... Args, typename = std::enable_if_t<sizeof...(Args) == sizeof...(Tn)>>
usertype_metatable(Args&&... args)
: usertype_metatable_core(&usertype_detail::indexing_fail<T, true>, &usertype_detail::metatable_newindex<T, false>), usertype_detail::registrar(), functions(std::forward<Args>(args)...), destructfunc(nullptr), callconstructfunc(nullptr), indexbase(&core_indexing_call<true>), newindexbase(&core_indexing_call<false>), indexbaseclasspropogation(usertype_detail::walk_all_bases<true>), newindexbaseclasspropogation(usertype_detail::walk_all_bases<false>), baseclasscheck(nullptr), baseclasscast(nullptr), secondarymeta(contains_variable()), properties() {
properties.reset();
std::initializer_list<typename usertype_detail::mapping_t::value_type> ilist{{std::pair<std::string, usertype_detail::call_information>(usertype_detail::make_string(std::get<I * 2>(functions)),
usertype_detail::call_information(&usertype_metatable::real_find_call<I * 2, I * 2 + 1, true>,
&usertype_metatable::real_find_call<I * 2, I * 2 + 1, false>))}...};
this->mapping.insert(ilist);
for (const auto& n : meta_function_names()) {
this->mapping.erase(n);
}
this->mustindex = contains_variable() || contains_index();
}
usertype_metatable(const usertype_metatable&) = default;
usertype_metatable(usertype_metatable&&) = default;
usertype_metatable& operator=(const usertype_metatable&) = default;
usertype_metatable& operator=(usertype_metatable&&) = default;
template <std::size_t I0, std::size_t I1, bool is_index>
static int real_find_call(lua_State* L, void* um, int) {
auto& f = *static_cast<usertype_metatable*>(um);
if (is_variable_binding<decltype(std::get<I1>(f.functions))>::value) {
return real_call_with<I1, is_index, true>(L, f);
}
// set up upvalues
// for a chained call
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push(L, light<usertype_metatable>(f));
auto cfunc = &call<I1, is_index>;
return stack::push(L, c_closure(cfunc, upvalues));
}
template <bool is_index>
static int real_meta_call(lua_State* L, void* um, int) {
auto& f = *static_cast<usertype_metatable*>(um);
return is_index ? f.indexfunc(L) : f.newindexfunc(L);
}
template <bool is_index, bool toplevel = false>
static int core_indexing_call(lua_State* L) {
usertype_metatable& f = toplevel
? stack::get<light<usertype_metatable>>(L, upvalue_index(usertype_detail::metatable_index))
: stack::pop<light<usertype_metatable>>(L);
static const int keyidx = -2 + static_cast<int>(is_index);
if (toplevel && stack::get<type>(L, keyidx) != type::string) {
return is_index ? f.indexfunc(L) : f.newindexfunc(L);
}
int runtime_target = 0;
usertype_detail::member_search member = nullptr;
{
#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH
string_view name = stack::get<string_view>(L, keyidx);
auto memberit = f.mapping.find(name, string_view_hash(), std::equal_to<string_view>());
#else
std::string name = stack::get<std::string>(L, keyidx);
auto memberit = f.mapping.find(name);
#endif
if (memberit != f.mapping.cend()) {
const usertype_detail::call_information& ci = memberit->second;
member = is_index ? ci.index : ci.new_index;
runtime_target = ci.runtime_target;
}
}
if (member != nullptr) {
return (member)(L, static_cast<void*>(&f), runtime_target);
}
string_view accessor = stack::get<string_view>(L, keyidx);
int ret = 0;
bool found = false;
// Otherwise, we need to do propagating calls through the bases
if (is_index)
f.indexbaseclasspropogation(L, found, ret, accessor);
else
f.newindexbaseclasspropogation(L, found, ret, accessor);
if (found) {
return ret;
}
return toplevel ? (is_index ? f.indexfunc(L) : f.newindexfunc(L)) : -1;
}
static int real_index_call(lua_State* L) {
return core_indexing_call<true, true>(L);
}
static int real_new_index_call(lua_State* L) {
return core_indexing_call<false, true>(L);
}
template <std::size_t Idx, bool is_index = true, bool is_variable = false>
static int real_call(lua_State* L) {
usertype_metatable& f = stack::get<light<usertype_metatable>>(L, upvalue_index(usertype_detail::metatable_index));
return real_call_with<Idx, is_index, is_variable>(L, f);
}
template <std::size_t Idx, bool is_index = true, bool is_variable = false>
static int real_call_with(lua_State* L, usertype_metatable& um) {
typedef meta::unqualified_tuple_element_t<Idx - 1, Tuple> K;
typedef meta::unqualified_tuple_element_t<Idx, Tuple> F;
static const int boost = !detail::is_non_factory_constructor<F>::value
&& std::is_same<K, call_construction>::value
? 1
: 0;
auto& f = std::get<Idx>(um.functions);
return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f);
}
template <std::size_t Idx, bool is_index = true, bool is_variable = false>
static int call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_call<Idx, is_index, is_variable>), (&real_call<Idx, is_index, is_variable>)>(L);
}
template <std::size_t Idx, bool is_index = true, bool is_variable = false>
static int call_with(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_call_with<Idx, is_index, is_variable>), (&real_call_with<Idx, is_index, is_variable>)>(L);
}
static int index_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_index_call), (&real_index_call)>(L);
}
static int new_index_call(lua_State* L) {
return detail::typed_static_trampoline<decltype(&real_new_index_call), (&real_new_index_call)>(L);
}
virtual int push_um(lua_State* L) override {
return stack::push(L, std::move(*this));
}
~usertype_metatable() override {
}
};
namespace stack {
template <typename T, std::size_t... I, typename... Args>
struct pusher<usertype_metatable<T, std::index_sequence<I...>, Args...>> {
typedef usertype_metatable<T, std::index_sequence<I...>, Args...> umt_t;
typedef typename umt_t::regs_t regs_t;
static umt_t& make_cleanup(lua_State* L, umt_t&& umx) {
// ensure some sort of uniqueness
static int uniqueness = 0;
std::string uniquegcmetakey = usertype_traits<T>::user_gc_metatable();
// std::to_string doesn't exist in android still, with NDK, so this bullshit
// is necessary
// thanks, Android :v
int appended = snprintf(nullptr, 0, "%d", uniqueness);
std::size_t insertionpoint = uniquegcmetakey.length() - 1;
uniquegcmetakey.append(appended, '\0');
char* uniquetarget = &uniquegcmetakey[insertionpoint];
snprintf(uniquetarget, uniquegcmetakey.length(), "%d", uniqueness);
++uniqueness;
const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
// Make sure userdata's memory is properly in lua first,
// otherwise all the light userdata we make later will become invalid
stack::push<user<umt_t>>(L, metatable_key, uniquegcmetakey, std::move(umx));
// Create the top level thing that will act as our deleter later on
stack_reference umt(L, -1);
stack::set_field<true>(L, gcmetakey, umt);
umt.pop();
stack::get_field<true>(L, gcmetakey);
umt_t& target_umt = stack::pop<user<umt_t>>(L);
return target_umt;
}
static int push(lua_State* L, umt_t&& umx) {
umt_t& um = make_cleanup(L, std::move(umx));
usertype_metatable_core& umc = um;
regs_t value_table{{}};
int lastreg = 0;
(void)detail::swallow{0, (um.template make_regs<(I * 2)>(value_table, lastreg, std::get<(I * 2)>(um.functions), std::get<(I * 2 + 1)>(um.functions)), 0)...};
um.finish_regs(value_table, lastreg);
value_table[lastreg] = {nullptr, nullptr};
regs_t ref_table = value_table;
regs_t unique_table = value_table;
bool hasdestructor = !value_table.empty() && to_string(meta_function::garbage_collect) == value_table[lastreg - 1].name;
if (hasdestructor) {
ref_table[lastreg - 1] = {nullptr, nullptr};
}
unique_table[lastreg - 1] = {value_table[lastreg - 1].name, detail::unique_destruct<T>};
lua_createtable(L, 0, 2);
stack_reference type_table(L, -1);
stack::set_field(L, "name", detail::demangle<T>(), type_table.stack_index());
stack::set_field(L, "is", &usertype_detail::is_check<T>, type_table.stack_index());
// Now use um
const bool& mustindex = umc.mustindex;
for (std::size_t i = 0; i < 3; ++i) {
// Pointer types, AKA "references" from C++
const char* metakey = nullptr;
luaL_Reg* metaregs = nullptr;
switch (i) {
case 0:
metakey = &usertype_traits<T*>::metatable()[0];
metaregs = ref_table.data();
break;
case 1:
metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0];
metaregs = unique_table.data();
break;
case 2:
default:
metakey = &usertype_traits<T>::metatable()[0];
metaregs = value_table.data();
break;
}
luaL_newmetatable(L, metakey);
stack_reference t(L, -1);
stack::set_field(L, meta_function::type, type_table, t.stack_index());
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push(L, make_light(um));
luaL_setfuncs(L, metaregs, upvalues);
if (um.baseclasscheck != nullptr) {
stack::set_field(L, detail::base_class_check_key(), um.baseclasscheck, t.stack_index());
}
if (um.baseclasscast != nullptr) {
stack::set_field(L, detail::base_class_cast_key(), um.baseclasscast, t.stack_index());
}
stack::set_field(L, detail::base_class_index_propogation_key(), make_closure(um.indexbase, nullptr, make_light(um), make_light(umc)), t.stack_index());
stack::set_field(L, detail::base_class_new_index_propogation_key(), make_closure(um.newindexbase, nullptr, make_light(um), make_light(umc)), t.stack_index());
if (mustindex) {
// Basic index pushing: specialize
// index and newindex to give variables and stuff
stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, nullptr, make_light(um), make_light(umc)), t.stack_index());
stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, nullptr, make_light(um), make_light(umc)), t.stack_index());
}
else {
// If there's only functions, we can use the fast index version
stack::set_field(L, meta_function::index, t, t.stack_index());
}
// metatable on the metatable
// for call constructor purposes and such
lua_createtable(L, 0, 3);
stack_reference metabehind(L, -1);
stack::set_field(L, meta_function::type, type_table, metabehind.stack_index());
if (um.callconstructfunc != nullptr) {
stack::set_field(L, meta_function::call_function, make_closure(um.callconstructfunc, nullptr, make_light(um), make_light(umc)), metabehind.stack_index());
}
if (um.secondarymeta) {
stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, nullptr, make_light(um), make_light(umc)), metabehind.stack_index());
stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, nullptr, make_light(um), make_light(umc)), metabehind.stack_index());
}
// type information needs to be present on the behind-tables too
stack::set_field(L, metatable_key, metabehind, t.stack_index());
metabehind.pop();
// We want to just leave the table
// in the registry only, otherwise we return it
t.pop();
}
// Now for the shim-table that actually gets assigned to the name
luaL_newmetatable(L, &usertype_traits<T>::user_metatable()[0]);
stack_reference t(L, -1);
stack::set_field(L, meta_function::type, type_table, t.stack_index());
int upvalues = 0;
upvalues += stack::push(L, nullptr);
upvalues += stack::push(L, make_light(um));
luaL_setfuncs(L, value_table.data(), upvalues);
{
lua_createtable(L, 0, 3);
stack_reference metabehind(L, -1);
// type information needs to be present on the behind-tables too
stack::set_field(L, meta_function::type, type_table, metabehind.stack_index());
if (um.callconstructfunc != nullptr) {
stack::set_field(L, meta_function::call_function, make_closure(um.callconstructfunc, nullptr, make_light(um), make_light(umc)), metabehind.stack_index());
}
stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, nullptr, make_light(um), make_light(umc), nullptr, usertype_detail::toplevel_magic), metabehind.stack_index());
stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, nullptr, make_light(um), make_light(umc), nullptr, usertype_detail::toplevel_magic), metabehind.stack_index());
stack::set_field(L, metatable_key, metabehind, t.stack_index());
metabehind.pop();
}
lua_remove(L, type_table.stack_index());
return 1;
}
};
} // namespace stack
} // namespace sol
// end of sol/usertype_metatable.hpp
// beginning of sol/simple_usertype_metatable.hpp
namespace sol {
namespace usertype_detail {
inline int call_indexing_object(lua_State* L, object& f) {
int before = lua_gettop(L);
f.push();
for (int i = 1; i <= before; ++i) {
lua_pushvalue(L, i);
}
lua_call(L, before, LUA_MULTRET);
int after = lua_gettop(L);
return after - before;
}
template <typename T, bool is_index, bool toplevel = false, bool has_indexing = false>
inline int simple_core_indexing_call(lua_State* L) {
simple_map& sm = toplevel
? stack::get<user<simple_map>>(L, upvalue_index(simple_metatable_index))
: stack::pop<user<simple_map>>(L);
variable_map& variables = sm.variables;
function_map& functions = sm.functions;
static const int keyidx = -2 + static_cast<int>(is_index);
if (toplevel) {
if (type_of(L, keyidx) != type::string) {
if (has_indexing) {
object& indexingfunc = is_index
? sm.index
: sm.newindex;
return call_indexing_object(L, indexingfunc);
}
else {
return is_index
? indexing_fail<T, is_index>(L)
: metatable_newindex<T, true>(L);
}
}
}
string_view accessor = stack::get<string_view>(L, keyidx);
variable_wrapper* varwrap = nullptr;
{
#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH
string_view& accessorkey = accessor;
auto vit = variables.find(accessorkey, string_view_hash(), std::equal_to<string_view>());
#else
std::string accessorkey(accessor.data(), accessor.size());
auto vit = variables.find(accessorkey);
#endif // Compatible Hash
if (vit != variables.cend()) {
varwrap = vit->second.get();
}
}
if (varwrap != nullptr) {
return is_index ? varwrap->index(L) : varwrap->new_index(L);
}
bool function_failed = false;
{
#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH
string_view& accessorkey = accessor;
auto fit = functions.find(accessorkey, string_view_hash(), std::equal_to<string_view>());
#else
std::string accessorkey(accessor.data(), accessor.size());
auto fit = functions.find(accessorkey);
#endif // Compatible Hash
if (fit != functions.cend()) {
object& func = fit->second;
if (is_index) {
return stack::push(L, func);
}
else {
function_failed = true;
}
}
}
if (function_failed) {
if (has_indexing && !is_toplevel(L)) {
object& indexingfunc = is_index
? sm.index
: sm.newindex;
return call_indexing_object(L, indexingfunc);
}
else {
return is_index
? indexing_fail<T, is_index>(L)
: metatable_newindex<T, true>(L);
}
}
/* Check table storage first for a method that works
luaL_getmetatable(L, sm.metakey);
if (type_of(L, -1) != type::lua_nil) {
stack::get_field<false, true>(L, accessor.c_str(), lua_gettop(L));
if (type_of(L, -1) != type::lua_nil) {
// Woo, we found it?
lua_remove(L, -2);
return 1;
}
lua_pop(L, 1);
}
lua_pop(L, 1);
*/
int ret = 0;
bool found = false;
// Otherwise, we need to do propagating calls through the bases
if (is_index) {
sm.indexbaseclasspropogation(L, found, ret, accessor);
}
else {
sm.newindexbaseclasspropogation(L, found, ret, accessor);
}
if (found) {
return ret;
}
if (toplevel) {
if (has_indexing && !is_toplevel(L)) {
object& indexingfunc = is_index
? sm.index
: sm.newindex;
return call_indexing_object(L, indexingfunc);
}
else {
return is_index
? indexing_fail<T, is_index>(L)
: metatable_newindex<T, true>(L);
}
}
return -1;
}
template <typename T, bool has_indexing = false>
inline int simple_real_index_call(lua_State* L) {
return simple_core_indexing_call<T, true, true, has_indexing>(L);
}
template <typename T, bool has_indexing = false>
inline int simple_real_new_index_call(lua_State* L) {
return simple_core_indexing_call<T, false, true, has_indexing>(L);
}
template <typename T, bool has_indexing = false>
inline int simple_index_call(lua_State* L) {
#if defined(__clang__)
return detail::trampoline(L, &simple_real_index_call<T, has_indexing>);
#else
return detail::typed_static_trampoline<decltype(&simple_real_index_call<T, has_indexing>), (&simple_real_index_call<T, has_indexing>)>(L);
#endif
}
template <typename T, bool has_indexing = false>
inline int simple_new_index_call(lua_State* L) {
#if defined(__clang__)
return detail::trampoline(L, &simple_real_new_index_call<T, has_indexing>);
#else
return detail::typed_static_trampoline<decltype(&simple_real_new_index_call<T, has_indexing>), (&simple_real_new_index_call<T, has_indexing>)>(L);
#endif
}
} // namespace usertype_detail
struct simple_tag {
} const simple{};
template <typename T>
struct simple_usertype_metatable : usertype_detail::registrar {
public:
usertype_detail::function_map registrations;
usertype_detail::variable_map varmap;
object callconstructfunc;
object indexfunc;
object newindexfunc;
lua_CFunction indexbase;
lua_CFunction newindexbase;
usertype_detail::base_walk indexbaseclasspropogation;
usertype_detail::base_walk newindexbaseclasspropogation;
void* baseclasscheck;
void* baseclasscast;
bool mustindex;
bool secondarymeta;
std::array<bool, 32> properties;
template <typename N>
void insert(N&& n, object&& o) {
std::string key = usertype_detail::make_string(std::forward<N>(n));
int is_indexer = static_cast<int>(usertype_detail::is_indexer(n));
if (is_indexer == 1) {
indexfunc = o;
mustindex = true;
}
else if (is_indexer == 2) {
newindexfunc = o;
mustindex = true;
}
auto hint = registrations.find(key);
if (hint == registrations.cend()) {
registrations.emplace_hint(hint, std::move(key), std::move(o));
return;
}
hint->second = std::move(o);
}
template <typename N, typename F, typename... Args>
void insert_prepare(std::true_type, lua_State* L, N&&, F&& f, Args&&... args) {
object o = make_object<F>(L, std::forward<F>(f), function_detail::call_indicator(), std::forward<Args>(args)...);
callconstructfunc = std::move(o);
}
template <typename N, typename F, typename... Args>
void insert_prepare(std::false_type, lua_State* L, N&& n, F&& f, Args&&... args) {
object o = make_object<F>(L, std::forward<F>(f), std::forward<Args>(args)...);
insert(std::forward<N>(n), std::move(o));
}
template <typename N, typename F>
void add_member_function(std::true_type, lua_State* L, N&& n, F&& f) {
insert_prepare(std::is_same<meta::unqualified_t<N>, call_construction>(), L, std::forward<N>(n), std::forward<F>(f), function_detail::class_indicator<T>());
}
template <typename N, typename F>
void add_member_function(std::false_type, lua_State* L, N&& n, F&& f) {
insert_prepare(std::is_same<meta::unqualified_t<N>, call_construction>(), L, std::forward<N>(n), std::forward<F>(f));
}
template <typename N, typename F, meta::enable<meta::is_callable<meta::unwrap_unqualified_t<F>>> = meta::enabler>
void add_function(lua_State* L, N&& n, F&& f) {
object o = make_object(L, as_function_reference(std::forward<F>(f)));
if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
callconstructfunc = std::move(o);
return;
}
insert(std::forward<N>(n), std::move(o));
}
template <typename N, typename F, meta::disable<meta::is_callable<meta::unwrap_unqualified_t<F>>> = meta::enabler>
void add_function(lua_State* L, N&& n, F&& f) {
add_member_function(std::is_member_pointer<meta::unwrap_unqualified_t<F>>(), L, std::forward<N>(n), std::forward<F>(f));
}
template <typename N, typename F, meta::disable<is_variable_binding<meta::unqualified_t<F>>> = meta::enabler>
void add(lua_State* L, N&& n, F&& f) {
add_function(L, std::forward<N>(n), std::forward<F>(f));
}
template <typename N, typename F, meta::enable<is_variable_binding<meta::unqualified_t<F>>> = meta::enabler>
void add(lua_State*, N&& n, F&& f) {
mustindex = true;
secondarymeta = true;
std::string key = usertype_detail::make_string(std::forward<N>(n));
auto o = std::make_unique<usertype_detail::callable_binding<T, std::decay_t<F>>>(std::forward<F>(f));
auto hint = varmap.find(key);
if (hint == varmap.cend()) {
varmap.emplace_hint(hint, std::move(key), std::move(o));
return;
}
hint->second = std::move(o);
}
template <typename N, typename... Fxs>
void add(lua_State* L, N&& n, constructor_wrapper<Fxs...> c) {
object o(L, in_place_type<detail::tagged<T, constructor_wrapper<Fxs...>>>, std::move(c));
if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
callconstructfunc = std::move(o);
return;
}
insert(std::forward<N>(n), std::move(o));
}
template <typename N, typename... Lists>
void add(lua_State* L, N&& n, constructor_list<Lists...> c) {
object o(L, in_place_type<detail::tagged<T, constructor_list<Lists...>>>, std::move(c));
if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
callconstructfunc = std::move(o);
return;
}
insert(std::forward<N>(n), std::move(o));
}
template <typename N>
void add(lua_State* L, N&& n, destructor_wrapper<void> c) {
object o(L, in_place_type<detail::tagged<T, destructor_wrapper<void>>>, std::move(c));
if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
callconstructfunc = std::move(o);
return;
}
insert(std::forward<N>(n), std::move(o));
}
template <typename N, typename Fx>
void add(lua_State* L, N&& n, destructor_wrapper<Fx> c) {
object o(L, in_place_type<detail::tagged<T, destructor_wrapper<Fx>>>, std::move(c));
if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
callconstructfunc = std::move(o);
return;
}
insert(std::forward<N>(n), std::move(o));
}
template <typename... Bases>
void add(lua_State*, base_classes_tag, bases<Bases...>) {
static_assert(sizeof(usertype_detail::base_walk) <= sizeof(void*), "size of function pointer is greater than sizeof(void*); cannot work on this platform. Please file a bug report.");
static_assert(!meta::any_same<T, Bases...>::value, "base classes cannot list the original class as part of the bases");
if (sizeof...(Bases) < 1) {
return;
}
mustindex = true;
(void)detail::swallow{0, ((detail::has_derived<Bases>::value = true), 0)...};
static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: Please file a bug report.");
static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: Please file a bug report.");
baseclasscheck = reinterpret_cast<void*>(&detail::inheritance<T, Bases...>::type_check);
baseclasscast = reinterpret_cast<void*>(&detail::inheritance<T, Bases...>::type_cast);
indexbaseclasspropogation = usertype_detail::walk_all_bases<true, Bases...>;
newindexbaseclasspropogation = usertype_detail::walk_all_bases<false, Bases...>;
}
private:
template <std::size_t... I, typename Tuple>
simple_usertype_metatable(detail::verified_tag, std::index_sequence<I...>, lua_State* L, Tuple&& args)
: callconstructfunc(lua_nil), indexfunc(lua_nil), newindexfunc(lua_nil), indexbase(&usertype_detail::simple_core_indexing_call<T, true>), newindexbase(&usertype_detail::simple_core_indexing_call<T, false>), indexbaseclasspropogation(usertype_detail::walk_all_bases<true>), newindexbaseclasspropogation(&usertype_detail::walk_all_bases<false>), baseclasscheck(nullptr), baseclasscast(nullptr), mustindex(false), secondarymeta(false), properties() {
properties.fill(false);
(void)detail::swallow{0,
(add(L, detail::forward_get<I * 2>(args), detail::forward_get<I * 2 + 1>(args)), 0)...};
}
template <typename... Args>
simple_usertype_metatable(lua_State* L, detail::verified_tag v, Args&&... args)
: simple_usertype_metatable(v, std::make_index_sequence<sizeof...(Args) / 2>(), L, std::forward_as_tuple(std::forward<Args>(args)...)) {
}
template <typename... Args>
simple_usertype_metatable(lua_State* L, detail::add_destructor_tag, Args&&... args)
: simple_usertype_metatable(L, detail::verified, std::forward<Args>(args)..., "__gc", default_destructor) {
}
template <typename... Args>
simple_usertype_metatable(lua_State* L, detail::check_destructor_tag, Args&&... args)
: simple_usertype_metatable(L, meta::condition<meta::all<std::is_destructible<T>, meta::neg<detail::has_destructor<Args...>>>, detail::add_destructor_tag, detail::verified_tag>(), std::forward<Args>(args)...) {
}
public:
simple_usertype_metatable(lua_State* L)
: simple_usertype_metatable(L, meta::condition<meta::all<std::is_default_constructible<T>>, decltype(default_constructor), detail::check_destructor_tag>()) {
}
template <typename Arg, typename... Args, meta::disable_any<meta::any_same<meta::unqualified_t<Arg>, detail::verified_tag, detail::add_destructor_tag, detail::check_destructor_tag>, meta::is_specialization_of<meta::unqualified_t<Arg>, constructors>, meta::is_specialization_of<meta::unqualified_t<Arg>, constructor_wrapper>> = meta::enabler>
simple_usertype_metatable(lua_State* L, Arg&& arg, Args&&... args)
: simple_usertype_metatable(L, meta::condition<meta::all<std::is_default_constructible<T>, meta::neg<detail::has_constructor<Args...>>>, decltype(default_constructor), detail::check_destructor_tag>(), std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
template <typename... Args, typename... CArgs>
simple_usertype_metatable(lua_State* L, constructors<CArgs...> constructorlist, Args&&... args)
: simple_usertype_metatable(L, detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) {
}
template <typename... Args, typename... Fxs>
simple_usertype_metatable(lua_State* L, constructor_wrapper<Fxs...> constructorlist, Args&&... args)
: simple_usertype_metatable(L, detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) {
}
simple_usertype_metatable(const simple_usertype_metatable&) = default;
simple_usertype_metatable(simple_usertype_metatable&&) = default;
simple_usertype_metatable& operator=(const simple_usertype_metatable&) = default;
simple_usertype_metatable& operator=(simple_usertype_metatable&&) = default;
virtual int push_um(lua_State* L) override {
return stack::push(L, std::move(*this));
}
};
namespace stack {
template <typename T>
struct pusher<simple_usertype_metatable<T>> {
typedef simple_usertype_metatable<T> umt_t;
static usertype_detail::simple_map& make_cleanup(lua_State* L, umt_t& umx) {
static int uniqueness = 0;
std::string uniquegcmetakey = usertype_traits<T>::user_gc_metatable();
// std::to_string doesn't exist in android still, with NDK, so this bullshit
// is necessary
// thanks, Android :v
int appended = snprintf(nullptr, 0, "%d", uniqueness);
std::size_t insertionpoint = uniquegcmetakey.length() - 1;
uniquegcmetakey.append(appended, '\0');
char* uniquetarget = &uniquegcmetakey[insertionpoint];
snprintf(uniquetarget, uniquegcmetakey.length(), "%d", uniqueness);
++uniqueness;
const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
stack::push<user<usertype_detail::simple_map>>(L, metatable_key, uniquegcmetakey, &usertype_traits<T>::metatable()[0],
umx.indexbaseclasspropogation, umx.newindexbaseclasspropogation,
std::move(umx.indexfunc), std::move(umx.newindexfunc),
std::move(umx.varmap), std::move(umx.registrations));
stack_reference stackvarmap(L, -1);
stack::set_field<true>(L, gcmetakey, stackvarmap);
stackvarmap.pop();
stack::get_field<true>(L, gcmetakey);
usertype_detail::simple_map& varmap = stack::pop<user<usertype_detail::simple_map>>(L);
return varmap;
}
static int push(lua_State* L, umt_t&& umx) {
bool hasindex = umx.indexfunc.valid();
bool hasnewindex = umx.newindexfunc.valid();
auto& varmap = make_cleanup(L, umx);
auto& properties = umx.properties;
auto sic = hasindex ? &usertype_detail::simple_index_call<T, true> : &usertype_detail::simple_index_call<T, false>;
auto snic = hasnewindex ? &usertype_detail::simple_new_index_call<T, true> : &usertype_detail::simple_new_index_call<T, false>;
lua_createtable(L, 0, 2);
stack_reference type_table(L, -1);
stack::set_field(L, "name", detail::demangle<T>(), type_table.stack_index());
stack::set_field(L, "is", &usertype_detail::is_check<T>, type_table.stack_index());
auto safety_check = [&](const std::string& first) {
for (std::size_t j = 0; j < properties.size(); ++j) {
meta_function mf = static_cast<meta_function>(j);
const std::string& mfname = to_string(mf);
bool& prop = properties[j];
if (mfname != first)
continue;
switch (mf) {
case meta_function::construct:
if (prop) {
#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS
assert(false && "sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems");
#else
throw error("sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems");
#endif
}
break;
case meta_function::garbage_collect:
if (prop) {
#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS
assert(false && "sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems");
#else
throw error("sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems");
#endif
}
return;
default:
break;
}
prop = true;
break;
}
};
for (auto& kvp : varmap.functions) {
auto& first = std::get<0>(kvp);
safety_check(first);
}
auto register_kvp = [&](std::size_t meta_index, stack_reference& t, const std::string& first, object& second) {
meta_function mf = meta_function::construct;
for (std::size_t j = 0; j < properties.size(); ++j) {
mf = static_cast<meta_function>(j);
const std::string& mfname = to_string(mf);
bool& prop = properties[j];
if (mfname != first)
continue;
switch (mf) {
case meta_function::index:
umx.indexfunc = second;
break;
case meta_function::new_index:
umx.newindexfunc = second;
break;
default:
break;
}
prop = true;
break;
}
switch (meta_index) {
case 0:
if (mf == meta_function::garbage_collect) {
return;
}
break;
case 1:
if (mf == meta_function::garbage_collect) {
stack::set_field(L, first, detail::unique_destruct<T>, t.stack_index());
return;
}
break;
case 2:
default:
break;
}
stack::set_field(L, first, second, t.stack_index());
};
for (std::size_t i = 0; i < 3; ++i) {
const char* metakey = nullptr;
switch (i) {
case 0:
metakey = &usertype_traits<T*>::metatable()[0];
break;
case 1:
metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0];
break;
case 2:
default:
metakey = &usertype_traits<T>::metatable()[0];
break;
}
luaL_newmetatable(L, metakey);
stack_reference t(L, -1);
stack::set_field(L, meta_function::type, type_table, t.stack_index());
for (auto& kvp : varmap.functions) {
auto& first = std::get<0>(kvp);
auto& second = std::get<1>(kvp);
register_kvp(i, t, first, second);
}
luaL_Reg opregs[34]{};
int opregsindex = 0;
auto prop_fx = [&](meta_function mf) { return !properties[static_cast<int>(mf)]; };
usertype_detail::insert_default_registrations<T>(opregs, opregsindex, prop_fx);
t.push();
luaL_setfuncs(L, opregs, 0);
t.pop();
if (umx.baseclasscheck != nullptr) {
stack::set_field(L, detail::base_class_check_key(), umx.baseclasscheck, t.stack_index());
}
if (umx.baseclasscast != nullptr) {
stack::set_field(L, detail::base_class_cast_key(), umx.baseclasscast, t.stack_index());
}
// Base class propagation features
stack::set_field(L, detail::base_class_index_propogation_key(), umx.indexbase, t.stack_index());
stack::set_field(L, detail::base_class_new_index_propogation_key(), umx.newindexbase, t.stack_index());
if (umx.mustindex) {
// use indexing function
stack::set_field(L, meta_function::index,
make_closure(sic,
nullptr,
make_light(varmap)),
t.stack_index());
stack::set_field(L, meta_function::new_index,
make_closure(snic,
nullptr,
make_light(varmap)),
t.stack_index());
}
else {
// Metatable indexes itself
stack::set_field(L, meta_function::index, t, t.stack_index());
}
// metatable on the metatable
// for call constructor purposes and such
lua_createtable(L, 0, 2 * static_cast<int>(umx.secondarymeta) + static_cast<int>(umx.callconstructfunc.valid()));
stack_reference metabehind(L, -1);
stack::set_field(L, meta_function::type, type_table, metabehind.stack_index());
if (umx.callconstructfunc.valid()) {
stack::set_field(L, meta_function::call_function, umx.callconstructfunc, metabehind.stack_index());
}
if (umx.secondarymeta) {
stack::set_field(L, meta_function::index,
make_closure(sic,
nullptr,
make_light(varmap)),
metabehind.stack_index());
stack::set_field(L, meta_function::new_index,
make_closure(snic,
nullptr,
make_light(varmap)),
metabehind.stack_index());
}
stack::set_field(L, metatable_key, metabehind, t.stack_index());
metabehind.pop();
t.pop();
}
// Now for the shim-table that actually gets pushed
luaL_newmetatable(L, &usertype_traits<T>::user_metatable()[0]);
stack_reference t(L, -1);
stack::set_field(L, meta_function::type, type_table, t.stack_index());
for (auto& kvp : varmap.functions) {
auto& first = std::get<0>(kvp);
auto& second = std::get<1>(kvp);
register_kvp(2, t, first, second);
}
{
lua_createtable(L, 0, 2 + static_cast<int>(umx.callconstructfunc.valid()));
stack_reference metabehind(L, -1);
stack::set_field(L, meta_function::type, type_table, metabehind.stack_index());
if (umx.callconstructfunc.valid()) {
stack::set_field(L, meta_function::call_function, umx.callconstructfunc, metabehind.stack_index());
}
// use indexing function
stack::set_field(L, meta_function::index,
make_closure(sic,
nullptr,
make_light(varmap),
nullptr,
nullptr,
usertype_detail::toplevel_magic),
metabehind.stack_index());
stack::set_field(L, meta_function::new_index,
make_closure(snic,
nullptr,
make_light(varmap),
nullptr,
nullptr,
usertype_detail::toplevel_magic),
metabehind.stack_index());
stack::set_field(L, metatable_key, metabehind, t.stack_index());
metabehind.pop();
}
lua_remove(L, type_table.stack_index());
// Don't pop the table when we're done;
// return it
return 1;
}
};
} // namespace stack
} // namespace sol
// end of sol/simple_usertype_metatable.hpp
namespace sol {
template <typename T>
class usertype {
private:
std::unique_ptr<usertype_detail::registrar, detail::deleter> metatableregister;
template <typename... Args>
usertype(detail::verified_tag, Args&&... args)
: metatableregister(detail::make_unique_deleter<usertype_metatable<T, std::make_index_sequence<sizeof...(Args) / 2>, Args...>, detail::deleter>(std::forward<Args>(args)...)) {
static_assert(detail::has_destructor<Args...>::value, "this type does not have an explicit destructor declared; please pass a custom destructor function wrapped in sol::destruct, especially if the type does not have an accessible (private) destructor");
}
template <typename... Args>
usertype(detail::add_destructor_tag, Args&&... args)
: usertype(detail::verified, std::forward<Args>(args)..., "__gc", default_destructor) {
}
template <typename... Args>
usertype(detail::check_destructor_tag, Args&&... args)
: usertype(meta::condition<meta::all<std::is_destructible<T>, meta::neg<detail::has_destructor<Args...>>>, detail::add_destructor_tag, detail::verified_tag>(), std::forward<Args>(args)...) {
}
public:
template <typename... Args>
usertype(Args&&... args)
: usertype(meta::condition<meta::all<std::is_default_constructible<T>, meta::neg<detail::has_constructor<Args...>>>, decltype(default_constructor), detail::check_destructor_tag>(), std::forward<Args>(args)...) {
}
template <typename... Args, typename... CArgs>
usertype(constructors<CArgs...> constructorlist, Args&&... args)
: usertype(detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) {
}
template <typename... Args, typename... Fxs>
usertype(constructor_wrapper<Fxs...> constructorlist, Args&&... args)
: usertype(detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) {
}
template <typename... Args>
usertype(simple_tag, lua_State* L, Args&&... args)
: metatableregister(detail::make_unique_deleter<simple_usertype_metatable<T>, detail::deleter>(L, std::forward<Args>(args)...)) {
}
usertype_detail::registrar* registrar_data() {
return metatableregister.get();
}
int push(lua_State* L) {
int r = metatableregister->push_um(L);
metatableregister = nullptr;
return r;
}
};
template <typename T>
class simple_usertype : public usertype<T> {
private:
typedef usertype<T> base_t;
lua_State* state;
public:
template <typename... Args>
simple_usertype(lua_State* L, Args&&... args)
: base_t(simple, L, std::forward<Args>(args)...), state(L) {
}
template <typename N, typename F>
void set(N&& n, F&& f) {
auto meta = static_cast<simple_usertype_metatable<T>*>(base_t::registrar_data());
meta->add(state, std::forward<N>(n), std::forward<F>(f));
}
};
namespace stack {
template <typename T>
struct pusher<usertype<T>> {
static int push(lua_State* L, usertype<T>& user) {
return user.push(L);
}
};
} // namespace stack
} // namespace sol
// end of sol/usertype.hpp
// beginning of sol/table_iterator.hpp
namespace sol {
template <typename reference_type>
class basic_table_iterator : public std::iterator<std::input_iterator_tag, std::pair<object, object>> {
public:
typedef object key_type;
typedef object mapped_type;
typedef std::pair<object, object> value_type;
typedef std::input_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
private:
std::pair<object, object> kvp;
reference_type ref;
int tableidx = 0;
int keyidx = 0;
std::ptrdiff_t idx = 0;
public:
basic_table_iterator()
: keyidx(-1), idx(-1) {
}
basic_table_iterator(reference_type x)
: ref(std::move(x)) {
ref.push();
tableidx = lua_gettop(ref.lua_state());
stack::push(ref.lua_state(), lua_nil);
this->operator++();
if (idx == -1) {
return;
}
--idx;
}
basic_table_iterator& operator++() {
if (idx == -1)
return *this;
if (lua_next(ref.lua_state(), tableidx) == 0) {
idx = -1;
keyidx = -1;
return *this;
}
++idx;
kvp.first = object(ref.lua_state(), -2);
kvp.second = object(ref.lua_state(), -1);
lua_pop(ref.lua_state(), 1);
// leave key on the stack
keyidx = lua_gettop(ref.lua_state());
return *this;
}
basic_table_iterator operator++(int) {
auto saved = *this;
this->operator++();
return saved;
}
reference operator*() {
return kvp;
}
const_reference operator*() const {
return kvp;
}
bool operator==(const basic_table_iterator& right) const {
return idx == right.idx;
}
bool operator!=(const basic_table_iterator& right) const {
return idx != right.idx;
}
~basic_table_iterator() {
if (keyidx != -1) {
stack::remove(ref.lua_state(), keyidx, 1);
}
if (ref.valid()) {
stack::remove(ref.lua_state(), tableidx, 1);
}
}
};
} // namespace sol
// end of sol/table_iterator.hpp
namespace sol {
namespace detail {
template <std::size_t n>
struct clean {
lua_State* L;
clean(lua_State* luastate)
: L(luastate) {
}
~clean() {
lua_pop(L, static_cast<int>(n));
}
};
struct ref_clean {
lua_State* L;
int& n;
ref_clean(lua_State* luastate, int& n)
: L(luastate), n(n) {
}
~ref_clean() {
lua_pop(L, static_cast<int>(n));
}
};
inline int fail_on_newindex(lua_State* L) {
return luaL_error(L, "sol: cannot modify the elements of an enumeration table");
}
} // namespace detail
const new_table create = new_table{};
template <bool top_level, typename base_type>
class basic_table_core : public basic_object_base<base_type> {
typedef basic_object_base<base_type> base_t;
friend class state;
friend class state_view;
template <typename... Args>
using is_global = meta::all<meta::boolean<top_level>, meta::is_c_str<Args>...>;
template <typename Fx>
void for_each(std::true_type, Fx&& fx) const {
auto pp = stack::push_pop(*this);
stack::push(base_t::lua_state(), lua_nil);
while (lua_next(base_t::lua_state(), -2)) {
object key(base_t::lua_state(), -2);
object value(base_t::lua_state(), -1);
std::pair<object&, object&> keyvalue(key, value);
auto pn = stack::pop_n(base_t::lua_state(), 1);
fx(keyvalue);
}
}
template <typename Fx>
void for_each(std::false_type, Fx&& fx) const {
auto pp = stack::push_pop(*this);
stack::push(base_t::lua_state(), lua_nil);
while (lua_next(base_t::lua_state(), -2)) {
object key(base_t::lua_state(), -2);
object value(base_t::lua_state(), -1);
auto pn = stack::pop_n(base_t::lua_state(), 1);
fx(key, value);
}
}
template <bool raw, typename Ret0, typename Ret1, typename... Ret, std::size_t... I, typename Keys>
auto tuple_get(types<Ret0, Ret1, Ret...>, std::index_sequence<0, 1, I...>, Keys&& keys) const
-> decltype(stack::pop<std::tuple<Ret0, Ret1, Ret...>>(nullptr)) {
typedef decltype(stack::pop<std::tuple<Ret0, Ret1, Ret...>>(nullptr)) Tup;
return Tup(
traverse_get_optional<top_level, raw, Ret0>(meta::is_optional<meta::unqualified_t<Ret0>>(), detail::forward_get<0>(keys)),
traverse_get_optional<top_level, raw, Ret1>(meta::is_optional<meta::unqualified_t<Ret1>>(), detail::forward_get<1>(keys)),
traverse_get_optional<top_level, raw, Ret>(meta::is_optional<meta::unqualified_t<Ret>>(), detail::forward_get<I>(keys))...);
}
template <bool raw, typename Ret, std::size_t I, typename Keys>
decltype(auto) tuple_get(types<Ret>, std::index_sequence<I>, Keys&& keys) const {
return traverse_get_optional<top_level, raw, Ret>(meta::is_optional<meta::unqualified_t<Ret>>(), detail::forward_get<I>(keys));
}
template <bool raw, typename Pairs, std::size_t... I>
void tuple_set(std::index_sequence<I...>, Pairs&& pairs) {
auto pp = stack::push_pop < top_level && (is_global<decltype(detail::forward_get<I * 2>(pairs))...>::value) > (*this);
void(detail::swallow{ (stack::set_field<top_level, raw>(base_t::lua_state(),
detail::forward_get<I * 2>(pairs),
detail::forward_get<I * 2 + 1>(pairs),
lua_gettop(base_t::lua_state())),
0)... });
}
template <bool global, bool raw, typename T, typename Key>
decltype(auto) traverse_get_deep(Key&& key) const {
stack::get_field<global, raw>(base_t::lua_state(), std::forward<Key>(key));
return stack::get<T>(base_t::lua_state());
}
template <bool global, bool raw, typename T, typename Key, typename... Keys>
decltype(auto) traverse_get_deep(Key&& key, Keys&&... keys) const {
stack::get_field<global, raw>(base_t::lua_state(), std::forward<Key>(key));
return traverse_get_deep<false, raw, T>(std::forward<Keys>(keys)...);
}
template <bool global, bool raw, typename T, std::size_t I, typename Key>
decltype(auto) traverse_get_deep_optional(int& popcount, Key&& key) const {
typedef decltype(stack::get<T>(base_t::lua_state())) R;
auto p = stack::probe_get_field<global, raw>(base_t::lua_state(), std::forward<Key>(key), lua_gettop(base_t::lua_state()));
popcount += p.levels;
if (!p.success)
return R(nullopt);
return stack::get<T>(base_t::lua_state());
}
template <bool global, bool raw, typename T, std::size_t I, typename Key, typename... Keys>
decltype(auto) traverse_get_deep_optional(int& popcount, Key&& key, Keys&&... keys) const {
auto p = I > 0 ? stack::probe_get_field<global>(base_t::lua_state(), std::forward<Key>(key), -1) : stack::probe_get_field<global>(base_t::lua_state(), std::forward<Key>(key), lua_gettop(base_t::lua_state()));
popcount += p.levels;
if (!p.success)
return T(nullopt);
return traverse_get_deep_optional<false, raw, T, I + 1>(popcount, std::forward<Keys>(keys)...);
}
template <bool global, bool raw, typename T, typename... Keys>
decltype(auto) traverse_get_optional(std::false_type, Keys&&... keys) const {
detail::clean<sizeof...(Keys)> c(base_t::lua_state());
return traverse_get_deep<global, raw, T>(std::forward<Keys>(keys)...);
}
template <bool global, bool raw, typename T, typename... Keys>
decltype(auto) traverse_get_optional(std::true_type, Keys&&... keys) const {
int popcount = 0;
detail::ref_clean c(base_t::lua_state(), popcount);
return traverse_get_deep_optional<global, raw, T, 0>(popcount, std::forward<Keys>(keys)...);
}
template <bool global, bool raw, typename Key, typename Value>
void traverse_set_deep(Key&& key, Value&& value) const {
stack::set_field<global, raw>(base_t::lua_state(), std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global, bool raw, typename Key, typename... Keys>
void traverse_set_deep(Key&& key, Keys&&... keys) const {
stack::get_field<global, raw>(base_t::lua_state(), std::forward<Key>(key));
traverse_set_deep<false, raw>(std::forward<Keys>(keys)...);
}
basic_table_core(lua_State* L, detail::global_tag t) noexcept
: base_t(L, t) {
}
protected:
basic_table_core(detail::no_safety_tag, lua_nil_t n)
: base_t(n) {
}
basic_table_core(detail::no_safety_tag, lua_State* L, int index)
: base_t(L, index) {
}
basic_table_core(detail::no_safety_tag, lua_State* L, ref_index index)
: base_t(L, index) {
}
template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<base_type, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(detail::no_safety_tag, T&& r) noexcept
: base_t(std::forward<T>(r)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(detail::no_safety_tag, lua_State*L, T&& r) noexcept
: base_t(L, std::forward<T>(r)) {
}
public:
typedef basic_table_iterator<base_type> iterator;
typedef iterator const_iterator;
using base_t::lua_state;
basic_table_core() noexcept = default;
basic_table_core(const basic_table_core&) = default;
basic_table_core(basic_table_core&&) = default;
basic_table_core& operator=(const basic_table_core&) = default;
basic_table_core& operator=(basic_table_core&&) = default;
basic_table_core(const stack_reference& r)
: basic_table_core(r.lua_state(), r.stack_index()) {
}
basic_table_core(stack_reference&& r)
: basic_table_core(r.lua_state(), r.stack_index()) {
}
template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(lua_State* L, T&& r)
: base_t(L, std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_table_core>(lua_state(), -1, handler);
#endif // Safety
}
basic_table_core(lua_State* L, const new_table& nt)
: base_t(L, -stack::push(L, nt)) {
if (!is_stack_based<meta::unqualified_t<base_type>>::value) {
lua_pop(L, 1);
}
}
basic_table_core(lua_State* L, int index = -1)
: basic_table_core(detail::no_safety, L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_table_core>(L, index, handler);
#endif // Safety
}
basic_table_core(lua_State* L, ref_index index)
: basic_table_core(detail::no_safety, L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_table_core>(lua_state(), -1, handler);
#endif // Safety
}
template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<base_type, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(T&& r) noexcept
: basic_table_core(detail::no_safety, std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
if (!is_table<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_table_core>(base_t::lua_state(), -1, handler);
}
#endif // Safety
}
basic_table_core(lua_nil_t r) noexcept
: basic_table_core(detail::no_safety, r) {
}
iterator begin() const {
return iterator(*this);
}
iterator end() const {
return iterator();
}
const_iterator cbegin() const {
return begin();
}
const_iterator cend() const {
return end();
}
template <typename... Ret, typename... Keys>
decltype(auto) get(Keys&&... keys) const {
static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
return tuple_get<false>(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), std::forward_as_tuple(std::forward<Keys>(keys)...));
}
template <typename T, typename Key>
decltype(auto) get_or(Key&& key, T&& otherwise) const {
typedef decltype(get<T>("")) U;
optional<U> option = get<optional<U>>(std::forward<Key>(key));
if (option) {
return static_cast<U>(option.value());
}
return static_cast<U>(std::forward<T>(otherwise));
}
template <typename T, typename Key, typename D>
decltype(auto) get_or(Key&& key, D&& otherwise) const {
optional<T> option = get<optional<T>>(std::forward<Key>(key));
if (option) {
return static_cast<T>(option.value());
}
return static_cast<T>(std::forward<D>(otherwise));
}
template <typename T, typename... Keys>
decltype(auto) traverse_get(Keys&&... keys) const {
auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
return traverse_get_optional<top_level, false, T>(meta::is_optional<meta::unqualified_t<T>>(), std::forward<Keys>(keys)...);
}
template <typename... Keys>
basic_table_core& traverse_set(Keys&&... keys) {
auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
auto pn = stack::pop_n(base_t::lua_state(), static_cast<int>(sizeof...(Keys) - 2));
traverse_set_deep<top_level, false>(std::forward<Keys>(keys)...);
return *this;
}
template <typename... Args>
basic_table_core& set(Args&&... args) {
tuple_set<false>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
return *this;
}
template <typename... Ret, typename... Keys>
decltype(auto) raw_get(Keys&&... keys) const {
static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
return tuple_get<true>(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), std::forward_as_tuple(std::forward<Keys>(keys)...));
}
template <typename T, typename Key>
decltype(auto) raw_get_or(Key&& key, T&& otherwise) const {
typedef decltype(raw_get<T>("")) U;
optional<U> option = raw_get<optional<U>>(std::forward<Key>(key));
if (option) {
return static_cast<U>(option.value());
}
return static_cast<U>(std::forward<T>(otherwise));
}
template <typename T, typename Key, typename D>
decltype(auto) raw_get_or(Key&& key, D&& otherwise) const {
optional<T> option = raw_get<optional<T>>(std::forward<Key>(key));
if (option) {
return static_cast<T>(option.value());
}
return static_cast<T>(std::forward<D>(otherwise));
}
template <typename T, typename... Keys>
decltype(auto) traverse_raw_get(Keys&&... keys) const {
auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
return traverse_get_optional<top_level, true, T>(meta::is_optional<meta::unqualified_t<T>>(), std::forward<Keys>(keys)...);
}
template <typename... Keys>
basic_table_core& traverse_raw_set(Keys&&... keys) {
auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
auto pn = stack::pop_n(base_t::lua_state(), static_cast<int>(sizeof...(Keys) - 2));
traverse_set_deep<top_level, true>(std::forward<Keys>(keys)...);
return *this;
}
template <typename... Args>
basic_table_core& raw_set(Args&&... args) {
tuple_set<true>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
return *this;
}
template <typename T>
basic_table_core& set_usertype(usertype<T>& user) {
return set_usertype(usertype_traits<T>::name(), user);
}
template <typename Key, typename T>
basic_table_core& set_usertype(Key&& key, usertype<T>& user) {
return set(std::forward<Key>(key), user);
}
template <typename Class, typename... Args>
basic_table_core& new_usertype(const std::string& name, Args&&... args) {
usertype<Class> utype(std::forward<Args>(args)...);
set_usertype(name, utype);
return *this;
}
template <typename Class, typename CTor0, typename... CTor, typename... Args>
basic_table_core& new_usertype(const std::string& name, Args&&... args) {
constructors<types<CTor0, CTor...>> ctor{};
return new_usertype<Class>(name, ctor, std::forward<Args>(args)...);
}
template <typename Class, typename... CArgs, typename... Args>
basic_table_core& new_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
usertype<Class> utype(ctor, std::forward<Args>(args)...);
set_usertype(name, utype);
return *this;
}
template <typename Class, typename... Args>
basic_table_core& new_simple_usertype(const std::string& name, Args&&... args) {
simple_usertype<Class> utype(base_t::lua_state(), std::forward<Args>(args)...);
set_usertype(name, utype);
return *this;
}
template <typename Class, typename CTor0, typename... CTor, typename... Args>
basic_table_core& new_simple_usertype(const std::string& name, Args&&... args) {
constructors<types<CTor0, CTor...>> ctor{};
return new_simple_usertype<Class>(name, ctor, std::forward<Args>(args)...);
}
template <typename Class, typename... CArgs, typename... Args>
basic_table_core& new_simple_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
simple_usertype<Class> utype(base_t::lua_state(), ctor, std::forward<Args>(args)...);
set_usertype(name, utype);
return *this;
}
template <typename Class, typename... Args>
simple_usertype<Class> create_simple_usertype(Args&&... args) {
simple_usertype<Class> utype(base_t::lua_state(), std::forward<Args>(args)...);
return utype;
}
template <typename Class, typename CTor0, typename... CTor, typename... Args>
simple_usertype<Class> create_simple_usertype(Args&&... args) {
constructors<types<CTor0, CTor...>> ctor{};
return create_simple_usertype<Class>(ctor, std::forward<Args>(args)...);
}
template <typename Class, typename... CArgs, typename... Args>
simple_usertype<Class> create_simple_usertype(constructors<CArgs...> ctor, Args&&... args) {
simple_usertype<Class> utype(base_t::lua_state(), ctor, std::forward<Args>(args)...);
return utype;
}
template <bool read_only = true, typename... Args>
table new_enum(const string_view& name, Args&&... args) {
table target = create_with(std::forward<Args>(args)...);
if (read_only) {
table x = create_with(
meta_function::new_index, detail::fail_on_newindex,
meta_function::index, target);
table shim = create_named(name, metatable_key, x);
return shim;
}
else {
set(name, target);
return target;
}
}
template <typename T, bool read_only = true>
table new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) {
table target = create(static_cast<int>(items.size()), static_cast<int>(0));
for (const auto& kvp : items) {
target.set(kvp.first, kvp.second);
}
if (read_only) {
table x = create_with(
meta_function::new_index, detail::fail_on_newindex,
meta_function::index, target);
table shim = create_named(name, metatable_key, x);
return shim;
}
else {
set(name, target);
return target;
}
}
template <typename Fx>
void for_each(Fx&& fx) const {
typedef meta::is_invokable<Fx(std::pair<object, object>)> is_paired;
for_each(is_paired(), std::forward<Fx>(fx));
}
size_t size() const {
auto pp = stack::push_pop(*this);
lua_len(base_t::lua_state(), -1);
return stack::pop<size_t>(base_t::lua_state());
}
bool empty() const {
return cbegin() == cend();
}
template <typename T>
proxy<basic_table_core&, T> operator[](T&& key) & {
return proxy<basic_table_core&, T>(*this, std::forward<T>(key));
}
template <typename T>
proxy<const basic_table_core&, T> operator[](T&& key) const& {
return proxy<const basic_table_core&, T>(*this, std::forward<T>(key));
}
template <typename T>
proxy<basic_table_core, T> operator[](T&& key) && {
return proxy<basic_table_core, T>(*this, std::forward<T>(key));
}
template <typename Sig, typename Key, typename... Args>
basic_table_core& set_function(Key&& key, Args&&... args) {
set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template <typename Key, typename... Args>
basic_table_core& set_function(Key&& key, Args&&... args) {
set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template <typename... Args>
basic_table_core& add(Args&&... args) {
auto pp = stack::push_pop(*this);
(void)detail::swallow{ 0,
(stack::set_ref(base_t::lua_state(), std::forward<Args>(args)), 0)... };
return *this;
}
private:
template <typename R, typename... Args, typename Fx, typename Key, typename = std::result_of_t<Fx(Args...)>>
void set_fx(types<R(Args...)>, Key&& key, Fx&& fx) {
set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx));
}
template <typename Fx, typename Key, meta::enable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
void set_fx(types<>, Key&& key, Fx&& fx) {
set(std::forward<Key>(key), std::forward<Fx>(fx));
}
template <typename Fx, typename Key, typename... Args, meta::disable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) {
set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...));
}
template <typename... Sig, typename... Args, typename Key>
void set_resolved_function(Key&& key, Args&&... args) {
set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...));
}
public:
static inline table create(lua_State* L, int narr = 0, int nrec = 0) {
lua_createtable(L, narr, nrec);
table result(L);
lua_pop(L, 1);
return result;
}
template <typename Key, typename Value, typename... Args>
static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
lua_createtable(L, narr, nrec);
table result(L);
result.set(std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
lua_pop(L, 1);
return result;
}
template <typename... Args>
static inline table create_with(lua_State* L, Args&&... args) {
static_assert(sizeof...(Args) % 2 == 0, "You must have an even number of arguments for a key, value ... list.");
static const int narr = static_cast<int>(meta::count_2_for_pack<std::is_integral, Args...>::value);
return create(L, narr, static_cast<int>((sizeof...(Args) / 2) - narr), std::forward<Args>(args)...);
}
table create(int narr = 0, int nrec = 0) {
return create(base_t::lua_state(), narr, nrec);
}
template <typename Key, typename Value, typename... Args>
table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename Name>
table create(Name&& name, int narr = 0, int nrec = 0) {
table x = create(base_t::lua_state(), narr, nrec);
this->set(std::forward<Name>(name), x);
return x;
}
template <typename Name, typename Key, typename Value, typename... Args>
table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
table x = create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
this->set(std::forward<Name>(name), x);
return x;
}
template <typename... Args>
table create_with(Args&&... args) {
return create_with(base_t::lua_state(), std::forward<Args>(args)...);
}
template <typename Name, typename... Args>
table create_named(Name&& name, Args&&... args) {
static const int narr = static_cast<int>(meta::count_2_for_pack<std::is_integral, Args...>::value);
return create(std::forward<Name>(name), narr, (sizeof...(Args) / 2) - narr, std::forward<Args>(args)...);
}
};
} // namespace sol
// end of sol/table_core.hpp
namespace sol {
typedef table_core<false> table;
namespace stack {
template <>
struct getter<metatable_t> {
static table get(lua_State* L, int index = -1) {
if (lua_getmetatable(L, index) == 0) {
return table(L, ref_index(LUA_REFNIL));
}
return table(L, -1);
}
};
} // namespace stack
} // namespace sol
// end of sol/table.hpp
// beginning of sol/environment.hpp
namespace sol {
template <typename base_type>
struct basic_environment : basic_table<base_type> {
private:
typedef basic_table<base_type> base_t;
public:
using base_t::lua_state;
basic_environment() noexcept = default;
basic_environment(const basic_environment&) = default;
basic_environment(basic_environment&&) = default;
basic_environment& operator=(const basic_environment&) = default;
basic_environment& operator=(basic_environment&&) = default;
basic_environment(const stack_reference& r)
: basic_environment(r.lua_state(), r.stack_index()) {
}
basic_environment(stack_reference&& r)
: basic_environment(r.lua_state(), r.stack_index()) {
}
basic_environment(lua_State* L, new_table nt)
: base_t(L, std::move(nt)) {
}
template <bool b>
basic_environment(lua_State* L, new_table t, const basic_reference<b>& fallback)
: basic_environment(L, std::move(t)) {
stack_table mt(L, new_table(0, 1));
mt.set(meta_function::index, fallback);
this->set(metatable_key, mt);
mt.pop();
}
basic_environment(env_t, const stack_reference& extraction_target)
: base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<env_t>(this->lua_state(), -1, handler);
#endif // Safety
lua_pop(this->lua_state(), 2);
}
template <bool b>
basic_environment(env_t, const basic_reference<b>& extraction_target)
: base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<env_t>(this->lua_state(), -1, handler);
#endif // Safety
lua_pop(this->lua_state(), 2);
}
basic_environment(lua_State* L, int index = -1)
: base_t(detail::no_safety, L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_environment>(L, index, handler);
#endif // Safety
}
basic_environment(lua_State* L, ref_index index)
: base_t(detail::no_safety, L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_environment>(L, -1, handler);
#endif // Safety
}
template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_environment>>, meta::neg<std::is_same<base_type, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_environment(T&& r) noexcept
: base_t(detail::no_safety, std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
if (!is_environment<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_environment>(lua_state(), -1, handler);
}
#endif // Safety
}
basic_environment(lua_nil_t r) noexcept
: base_t(detail::no_safety, r) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_environment(lua_State* L, T&& r) noexcept
: base_t(detail::no_safety, L, std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
if (!is_environment<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_environment>(lua_state(), -1, handler);
}
#endif // Safety
}
template <typename T>
void set_on(const T& target) const {
lua_State* L = target.lua_state();
auto pp = stack::push_pop(target);
#if SOL_LUA_VERSION < 502
// Use lua_setfenv
this->push();
lua_setfenv(L, -2);
#else
// Use upvalues as explained in Lua 5.2 and beyond's manual
this->push();
const char* name = lua_setupvalue(L, -2, 1);
if (name == nullptr) {
this->pop();
}
#endif
}
};
template <typename T, typename E>
void set_environment(const basic_environment<E>& env, const T& target) {
env.set_on(target);
}
template <typename E = reference, typename T>
basic_environment<E> get_environment(const T& target) {
lua_State* L = target.lua_state();
auto pp = stack::pop_n(L, stack::push_environment_of(target));
return basic_environment<E>(L, -1);
}
struct this_environment {
optional<environment> env;
this_environment()
: env(nullopt) {
}
this_environment(environment e)
: env(std::move(e)) {
}
this_environment(const this_environment&) = default;
this_environment(this_environment&&) = default;
this_environment& operator=(const this_environment&) = default;
this_environment& operator=(this_environment&&) = default;
explicit operator bool() const {
return static_cast<bool>(env);
}
operator optional<environment>&() {
return env;
}
operator const optional<environment>&() const {
return env;
}
operator environment&() {
return env.value();
}
operator const environment&() const {
return env.value();
}
};
namespace stack {
template <>
struct getter<env_t> {
static environment get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return get_environment(stack_reference(L, raw_index(index)));
}
};
template <>
struct getter<this_environment> {
static this_environment get(lua_State* L, int, record& tracking) {
tracking.use(0);
lua_Debug info;
// Level 0 means current function (this C function, which may or may not be useful for us?)
// Level 1 means next call frame up the stack. (Can be nothing if function called directly from C++ with lua_p/call)
int pre_stack_size = lua_gettop(L);
if (lua_getstack(L, 1, &info) != 1) {
if (lua_getstack(L, 0, &info) != 1) {
lua_settop(L, pre_stack_size);
return this_environment();
}
}
if (lua_getinfo(L, "f", &info) == 0) {
lua_settop(L, pre_stack_size);
return this_environment();
}
stack_reference f(L, -1);
environment env(env_key, f);
if (!env.valid()) {
lua_settop(L, pre_stack_size);
return this_environment();
}
return this_environment(std::move(env));
}
};
} // namespace stack
} // namespace sol
// end of sol/environment.hpp
// beginning of sol/load_result.hpp
namespace sol {
struct load_result : public proxy_base<load_result> {
private:
lua_State* L;
int index;
int returncount;
int popcount;
load_status err;
template <typename T>
decltype(auto) tagged_get(types<optional<T>>) const {
if (!valid()) {
return optional<T>(nullopt);
}
return stack::get<optional<T>>(L, index);
}
template <typename T>
decltype(auto) tagged_get(types<T>) const {
#if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES != 0
if (!valid()) {
type_panic_c_str(L, index, type_of(L, index), type::none);
}
#endif // Check Argument Safety
return stack::get<T>(L, index);
}
optional<error> tagged_get(types<optional<error>>) const {
if (valid()) {
return nullopt;
}
return error(detail::direct_error, stack::get<std::string>(L, index));
}
error tagged_get(types<error>) const {
#if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES != 0
if (valid()) {
type_panic_c_str(L, index, type_of(L, index), type::none, "expecting an error type (a string, from Lua)");
}
#endif // Check Argument Safety
return error(detail::direct_error, stack::get<std::string>(L, index));
}
public:
load_result() = default;
load_result(lua_State* Ls, int stackindex = -1, int retnum = 0, int popnum = 0, load_status lerr = load_status::ok) noexcept
: L(Ls), index(stackindex), returncount(retnum), popcount(popnum), err(lerr) {
}
load_result(const load_result&) = default;
load_result& operator=(const load_result&) = default;
load_result(load_result&& o) noexcept
: L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.L = nullptr;
o.index = 0;
o.returncount = 0;
o.popcount = 0;
o.err = load_status::syntax;
}
load_result& operator=(load_result&& o) noexcept {
L = o.L;
index = o.index;
returncount = o.returncount;
popcount = o.popcount;
err = o.err;
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.L = nullptr;
o.index = 0;
o.returncount = 0;
o.popcount = 0;
o.err = load_status::syntax;
return *this;
}
load_status status() const noexcept {
return err;
}
bool valid() const noexcept {
return status() == load_status::ok;
}
template <typename T>
T get() const {
return tagged_get(types<meta::unqualified_t<T>>());
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) {
#if defined(_MSC_FULL_VER) && _MSC_FULL_VER <= 191326131 && _MSC_FULL_VER >= 191200000
// MSVC is ass sometimes
return get<protected_function>().call<Ret...>(std::forward<Args>(args)...);
#else
return get<protected_function>().template call<Ret...>(std::forward<Args>(args)...);
#endif
}
template <typename... Args>
decltype(auto) operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
lua_State* lua_state() const noexcept {
return L;
};
int stack_index() const noexcept {
return index;
};
~load_result() {
stack::remove(L, index, popcount);
}
};
} // namespace sol
// end of sol/load_result.hpp
// beginning of sol/state_handling.hpp
#ifdef SOL_PRINT_ERRORS
#endif
namespace sol {
inline void register_main_thread(lua_State* L) {
#if SOL_LUA_VERSION < 502
if (L == nullptr) {
lua_pushnil(L);
lua_setglobal(L, detail::default_main_thread_name());
return;
}
lua_pushthread(L);
lua_setglobal(L, detail::default_main_thread_name());
#else
(void)L;
#endif
}
inline int default_at_panic(lua_State* L) {
#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS
(void)L;
return -1;
#else
size_t messagesize;
const char* message = lua_tolstring(L, -1, &messagesize);
if (message) {
std::string err(message, messagesize);
lua_settop(L, 0);
#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS
std::cerr << "[sol2] An error occurred and panic has been invoked: ";
std::cerr << err;
std::cerr << std::endl;
#endif
throw error(err);
}
lua_settop(L, 0);
throw error(std::string("An unexpected error occurred and panic has been invoked"));
#endif // Printing Errors
}
inline int default_traceback_error_handler(lua_State* L) {
std::string msg = "An unknown error has triggered the default error handler";
optional<string_view> maybetopmsg = stack::check_get<string_view>(L, 1);
if (maybetopmsg) {
const string_view& topmsg = maybetopmsg.value();
msg.assign(topmsg.data(), topmsg.size());
}
luaL_traceback(L, L, msg.c_str(), 1);
optional<string_view> maybetraceback = stack::check_get<string_view>(L, -1);
if (maybetraceback) {
const string_view& traceback = maybetraceback.value();
msg.assign(traceback.data(), traceback.size());
}
#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS
//std::cerr << "[sol2] An error occurred and was caught in traceback: ";
//std::cerr << msg;
//std::cerr << std::endl;
#endif // Printing
return stack::push(L, msg);
}
inline void set_default_state(lua_State* L, lua_CFunction panic_function = &default_at_panic, lua_CFunction traceback_function = c_call<decltype(&default_traceback_error_handler), &default_traceback_error_handler>, exception_handler_function exf = detail::default_exception_handler) {
lua_atpanic(L, panic_function);
protected_function::set_default_handler(object(L, in_place, traceback_function));
set_default_exception_handler(L, exf);
register_main_thread(L);
stack::luajit_exception_handler(L);
}
inline std::size_t total_memory_used(lua_State* L) {
std::size_t kb = lua_gc(L, LUA_GCCOUNT, 0);
kb *= 1024;
kb += lua_gc(L, LUA_GCCOUNTB, 0);
return kb;
}
inline protected_function_result script_pass_on_error(lua_State*, protected_function_result result) {
return result;
}
inline protected_function_result script_throw_on_error(lua_State*L, protected_function_result result) {
type t = type_of(L, result.stack_index());
std::string err = "sol: ";
err += to_string(result.status());
err += " error";
#if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS)
std::exception_ptr eptr = std::current_exception();
if (eptr) {
err += " with a ";
try {
std::rethrow_exception(eptr);
}
catch (const std::exception& ex) {
err += "std::exception -- ";
err.append(ex.what());
}
catch (const std::string& message) {
err += "thrown message -- ";
err.append(message);
}
catch (const char* message) {
err += "thrown message -- ";
err.append(message);
}
catch (...) {
err.append("thrown but unknown type, cannot serialize into error message");
}
}
#endif // serialize exception information if possible
if (t == type::string) {
err += ": ";
string_view serr = stack::get<string_view>(L, result.stack_index());
err.append(serr.data(), serr.size());
}
#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS
std::cerr << "[sol2] An error occurred and has been passed to an error handler: ";
std::cerr << err;
std::cerr << std::endl;
#endif
// replacing information of stack error into pfr
int target = result.stack_index();
if (result.pop_count() > 0) {
stack::remove(L, target, result.pop_count());
}
stack::push(L, err);
int top = lua_gettop(L);
int towards = top - target;
if (towards != 0) {
lua_rotate(L, top, towards);
}
#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS
return result;
#else
// just throw our error
throw error(detail::direct_error, err);
#endif // If exceptions are allowed
}
inline protected_function_result script_default_on_error(lua_State* L, protected_function_result pfr) {
#if defined(SOL_DEFAULT_PASS_ON_ERROR) && SOL_DEFAULT_PASS_ON_ERROR
return script_pass_on_error(L, std::move(pfr));
#else
return script_throw_on_error(L, std::move(pfr));
#endif
}
} // namespace sol
// end of sol/state_handling.hpp
namespace sol {
class state_view {
private:
lua_State* L;
table reg;
global_table global;
optional<object> is_loaded_package(const std::string& key) {
auto loaded = reg.traverse_get<optional<object>>("_LOADED", key);
bool is53mod = loaded && !(loaded->is<bool>() && !loaded->as<bool>());
if (is53mod)
return loaded;
#if SOL_LUA_VERSION <= 501
auto loaded51 = global.traverse_get<optional<object>>("package", "loaded", key);
bool is51mod = loaded51 && !(loaded51->is<bool>() && !loaded51->as<bool>());
if (is51mod)
return loaded51;
#endif
return nullopt;
}
template <typename T>
void ensure_package(const std::string& key, T&& sr) {
#if SOL_LUA_VERSION <= 501
auto pkg = global["package"];
if (!pkg.valid()) {
pkg = create_table_with("loaded", create_table_with(key, sr));
}
else {
auto ld = pkg["loaded"];
if (!ld.valid()) {
ld = create_table_with(key, sr);
}
else {
ld[key] = sr;
}
}
#endif
auto loaded = reg["_LOADED"];
if (!loaded.valid()) {
loaded = create_table_with(key, sr);
}
else {
loaded[key] = sr;
}
}
template <typename Fx>
object require_core(const std::string& key, Fx&& action, bool create_global = true) {
optional<object> loaded = is_loaded_package(key);
if (loaded && loaded->valid())
return std::move(*loaded);
action();
stack_reference sr(L, -1);
if (create_global)
set(key, sr);
ensure_package(key, sr);
return stack::pop<object>(L);
}
public:
typedef global_table::iterator iterator;
typedef global_table::const_iterator const_iterator;
state_view(lua_State* Ls)
: L(Ls), reg(Ls, LUA_REGISTRYINDEX), global(Ls, detail::global_) {
}
state_view(this_state Ls)
: state_view(Ls.L) {
}
lua_State* lua_state() const {
return L;
}
template <typename... Args>
void open_libraries(Args&&... args) {
static_assert(meta::all_same<lib, Args...>::value, "all types must be libraries");
if (sizeof...(args) == 0) {
luaL_openlibs(L);
return;
}
lib libraries[1 + sizeof...(args)] = {lib::count, std::forward<Args>(args)...};
for (auto&& library : libraries) {
switch (library) {
#if SOL_LUA_VERSION <= 501 && defined(SOL_LUAJIT)
case lib::coroutine:
#endif // luajit opens coroutine base stuff
case lib::base:
luaL_requiref(L, "base", luaopen_base, 1);
lua_pop(L, 1);
break;
case lib::package:
luaL_requiref(L, "package", luaopen_package, 1);
lua_pop(L, 1);
break;
#if !defined(SOL_LUAJIT)
case lib::coroutine:
#if SOL_LUA_VERSION > 501
luaL_requiref(L, "coroutine", luaopen_coroutine, 1);
lua_pop(L, 1);
#endif // Lua 5.2+ only
break;
#endif // Not LuaJIT - comes builtin
case lib::string:
luaL_requiref(L, "string", luaopen_string, 1);
lua_pop(L, 1);
break;
case lib::table:
luaL_requiref(L, "table", luaopen_table, 1);
lua_pop(L, 1);
break;
case lib::math:
luaL_requiref(L, "math", luaopen_math, 1);
lua_pop(L, 1);
break;
case lib::bit32:
#ifdef SOL_LUAJIT
luaL_requiref(L, "bit32", luaopen_bit, 1);
lua_pop(L, 1);
#elif (SOL_LUA_VERSION == 502) || defined(LUA_COMPAT_BITLIB) || defined(LUA_COMPAT_5_2)
luaL_requiref(L, "bit32", luaopen_bit32, 1);
lua_pop(L, 1);
#else
#endif // Lua 5.2 only (deprecated in 5.3 (503)) (Can be turned on with Compat flags)
break;
case lib::io:
luaL_requiref(L, "io", luaopen_io, 1);
lua_pop(L, 1);
break;
case lib::os:
luaL_requiref(L, "os", luaopen_os, 1);
lua_pop(L, 1);
break;
case lib::debug:
luaL_requiref(L, "debug", luaopen_debug, 1);
lua_pop(L, 1);
break;
case lib::utf8:
#if SOL_LUA_VERSION > 502 && !defined(SOL_LUAJIT)
luaL_requiref(L, "utf8", luaopen_utf8, 1);
lua_pop(L, 1);
#endif // Lua 5.3+ only
break;
case lib::ffi:
#ifdef SOL_LUAJIT
luaL_requiref(L, "ffi", luaopen_ffi, 1);
lua_pop(L, 1);
#endif // LuaJIT only
break;
case lib::jit:
#ifdef SOL_LUAJIT
luaL_requiref(L, "jit", luaopen_jit, 0);
lua_pop(L, 1);
#endif // LuaJIT Only
break;
case lib::count:
default:
break;
}
}
}
object require(const std::string& key, lua_CFunction open_function, bool create_global = true) {
luaL_requiref(L, key.c_str(), open_function, create_global ? 1 : 0);
return stack::pop<object>(L);
}
object require_script(const std::string& key, const string_view& code, bool create_global = true, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
auto action = [this, &code, &chunkname, &mode]() {
stack::script(L, code, chunkname, mode);
};
return require_core(key, action, create_global);
}
object require_file(const std::string& key, const std::string& filename, bool create_global = true, load_mode mode = load_mode::any) {
auto action = [this, &filename, &mode]() {
stack::script_file(L, filename, mode);
};
return require_core(key, action, create_global);
}
template <typename E>
protected_function_result do_string(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
if (x != load_status::ok) {
return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
}
stack_aligned_protected_function pf(L, -1);
set_environment(env, pf);
return pf();
}
template <typename E>
protected_function_result do_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) {
load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
if (x != load_status::ok) {
return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
}
stack_aligned_protected_function pf(L, -1);
set_environment(env, pf);
return pf();
}
protected_function_result do_string(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
if (x != load_status::ok) {
return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
}
stack_aligned_protected_function pf(L, -1);
return pf();
}
protected_function_result do_file(const std::string& filename, load_mode mode = load_mode::any) {
load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
if (x != load_status::ok) {
return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
}
stack_aligned_protected_function pf(L, -1);
return pf();
}
template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
protected_function_result safe_script(const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
protected_function_result pfr = do_string(code, chunkname, mode);
if (!pfr.valid()) {
return on_error(L, std::move(pfr));
}
return pfr;
}
template <typename Fx, typename E>
protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
protected_function_result pfr = do_string(code, env, chunkname, mode);
if (!pfr.valid()) {
return on_error(L, std::move(pfr));
}
return pfr;
}
template <typename E>
protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(code, env, script_default_on_error, chunkname, mode);
}
protected_function_result safe_script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(code, script_default_on_error, chunkname, mode);
}
template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
protected_function_result safe_script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) {
protected_function_result pfr = do_file(filename, mode);
if (!pfr.valid()) {
return on_error(L, std::move(pfr));
}
return pfr;
}
template <typename Fx, typename E>
protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) {
protected_function_result pfr = do_file(filename, env, mode);
if (!pfr.valid()) {
return on_error(L, std::move(pfr));
}
return pfr;
}
template <typename E>
protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) {
return safe_script_file(filename, env, script_default_on_error, mode);
}
protected_function_result safe_script_file(const std::string& filename, load_mode mode = load_mode::any) {
return safe_script_file(filename, script_default_on_error, mode);
}
template <typename E>
unsafe_function_result unsafe_script(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
int index = lua_gettop(L);
if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())) {
lua_error(L);
}
set_environment(env, stack_reference(L, raw_index(index + 1)));
if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
int postindex = lua_gettop(L);
int returns = postindex - index;
return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
}
unsafe_function_result unsafe_script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
int index = lua_gettop(L);
stack::script(L, code, chunkname, mode);
int postindex = lua_gettop(L);
int returns = postindex - index;
return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
}
template <typename E>
unsafe_function_result unsafe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) {
int index = lua_gettop(L);
if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())) {
lua_error(L);
}
set_environment(env, stack_reference(L, raw_index(index + 1)));
if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
int postindex = lua_gettop(L);
int returns = postindex - index;
return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
}
unsafe_function_result unsafe_script_file(const std::string& filename, load_mode mode = load_mode::any) {
int index = lua_gettop(L);
stack::script_file(L, filename, mode);
int postindex = lua_gettop(L);
int returns = postindex - index;
return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
}
template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
protected_function_result script(const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(code, std::forward<Fx>(on_error), chunkname, mode);
}
template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
protected_function_result script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) {
return safe_script_file(filename, std::forward<Fx>(on_error), mode);
}
template <typename Fx, typename E>
protected_function_result script(const string_view& code, const basic_environment<E>& env, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(code, env, std::forward<Fx>(on_error), chunkname, mode);
}
template <typename Fx, typename E>
protected_function_result script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) {
return safe_script_file(filename, env, std::forward<Fx>(on_error), mode);
}
protected_function_result script(const string_view& code, const environment& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(code, env, script_default_on_error, chunkname, mode);
}
protected_function_result script_file(const std::string& filename, const environment& env, load_mode mode = load_mode::any) {
return safe_script_file(filename, env, script_default_on_error, mode);
}
#if defined(SOL_SAFE_FUNCTION) && SOL_SAFE_FUNCTION
protected_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return safe_script(code, chunkname, mode);
}
protected_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) {
return safe_script_file(filename, mode);
}
#else
unsafe_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return unsafe_script(code, chunkname, mode);
}
unsafe_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) {
return unsafe_script_file(filename, mode);
}
#endif
load_result load(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
return load_result(L, absolute_index(L, -1), 1, 1, x);
}
load_result load_buffer(const char* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
return load(string_view(buff, size), chunkname, mode);
}
load_result load_file(const std::string& filename, load_mode mode = load_mode::any) {
load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
return load_result(L, absolute_index(L, -1), 1, 1, x);
}
load_result load(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()));
return load_result(L, absolute_index(L, -1), 1, 1, x);
}
iterator begin() const {
return global.begin();
}
iterator end() const {
return global.end();
}
const_iterator cbegin() const {
return global.cbegin();
}
const_iterator cend() const {
return global.cend();
}
global_table globals() const {
return global;
}
table registry() const {
return reg;
}
std::size_t memory_used() const {
return total_memory_used(lua_state());
}
int stack_top() const {
return stack::top(L);
}
int stack_clear() {
int s = stack_top();
lua_pop(L, s);
return s;
}
void collect_garbage() {
lua_gc(lua_state(), LUA_GCCOLLECT, 0);
}
operator lua_State*() const {
return lua_state();
}
void set_panic(lua_CFunction panic) {
lua_atpanic(lua_state(), panic);
}
void set_exception_handler(exception_handler_function handler) {
set_default_exception_handler(lua_state(), handler);
}
template <typename... Args, typename... Keys>
decltype(auto) get(Keys&&... keys) const {
return global.get<Args...>(std::forward<Keys>(keys)...);
}
template <typename T, typename Key>
decltype(auto) get_or(Key&& key, T&& otherwise) const {
return global.get_or(std::forward<Key>(key), std::forward<T>(otherwise));
}
template <typename T, typename Key, typename D>
decltype(auto) get_or(Key&& key, D&& otherwise) const {
return global.get_or<T>(std::forward<Key>(key), std::forward<D>(otherwise));
}
template <typename... Args>
state_view& set(Args&&... args) {
global.set(std::forward<Args>(args)...);
return *this;
}
template <typename T, typename... Keys>
decltype(auto) traverse_get(Keys&&... keys) const {
return global.traverse_get<T>(std::forward<Keys>(keys)...);
}
template <typename... Args>
state_view& traverse_set(Args&&... args) {
global.traverse_set(std::forward<Args>(args)...);
return *this;
}
template <typename T>
state_view& set_usertype(usertype<T>& user) {
return set_usertype(usertype_traits<T>::name(), user);
}
template <typename Key, typename T>
state_view& set_usertype(Key&& key, usertype<T>& user) {
global.set_usertype(std::forward<Key>(key), user);
return *this;
}
template <typename Class, typename... Args>
state_view& new_usertype(const std::string& name, Args&&... args) {
global.new_usertype<Class>(name, std::forward<Args>(args)...);
return *this;
}
template <typename Class, typename CTor0, typename... CTor, typename... Args>
state_view& new_usertype(const std::string& name, Args&&... args) {
global.new_usertype<Class, CTor0, CTor...>(name, std::forward<Args>(args)...);
return *this;
}
template <typename Class, typename... CArgs, typename... Args>
state_view& new_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
global.new_usertype<Class>(name, ctor, std::forward<Args>(args)...);
return *this;
}
template <typename Class, typename... Args>
state_view& new_simple_usertype(const std::string& name, Args&&... args) {
global.new_simple_usertype<Class>(name, std::forward<Args>(args)...);
return *this;
}
template <typename Class, typename CTor0, typename... CTor, typename... Args>
state_view& new_simple_usertype(const std::string& name, Args&&... args) {
global.new_simple_usertype<Class, CTor0, CTor...>(name, std::forward<Args>(args)...);
return *this;
}
template <typename Class, typename... CArgs, typename... Args>
state_view& new_simple_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
global.new_simple_usertype<Class>(name, ctor, std::forward<Args>(args)...);
return *this;
}
template <typename Class, typename... Args>
simple_usertype<Class> create_simple_usertype(Args&&... args) {
return global.create_simple_usertype<Class>(std::forward<Args>(args)...);
}
template <typename Class, typename CTor0, typename... CTor, typename... Args>
simple_usertype<Class> create_simple_usertype(Args&&... args) {
return global.create_simple_usertype<Class, CTor0, CTor...>(std::forward<Args>(args)...);
}
template <typename Class, typename... CArgs, typename... Args>
simple_usertype<Class> create_simple_usertype(constructors<CArgs...> ctor, Args&&... args) {
return global.create_simple_usertype<Class>(ctor, std::forward<Args>(args)...);
}
template <bool read_only = true, typename... Args>
state_view& new_enum(const string_view& name, Args&&... args) {
global.new_enum<read_only>(name, std::forward<Args>(args)...);
return *this;
}
template <typename T, bool read_only = true>
state_view& new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) {
global.new_enum<T, read_only>(name, std::move(items));
return *this;
}
template <typename Fx>
void for_each(Fx&& fx) {
global.for_each(std::forward<Fx>(fx));
}
template <typename T>
proxy<global_table&, T> operator[](T&& key) {
return global[std::forward<T>(key)];
}
template <typename T>
proxy<const global_table&, T> operator[](T&& key) const {
return global[std::forward<T>(key)];
}
template <typename Sig, typename... Args, typename Key>
state_view& set_function(Key&& key, Args&&... args) {
global.set_function<Sig>(std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template <typename... Args, typename Key>
state_view& set_function(Key&& key, Args&&... args) {
global.set_function(std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template <typename Name>
table create_table(Name&& name, int narr = 0, int nrec = 0) {
return global.create(std::forward<Name>(name), narr, nrec);
}
template <typename Name, typename Key, typename Value, typename... Args>
table create_table(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return global.create(std::forward<Name>(name), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename Name, typename... Args>
table create_named_table(Name&& name, Args&&... args) {
table x = global.create_with(std::forward<Args>(args)...);
global.set(std::forward<Name>(name), x);
return x;
}
table create_table(int narr = 0, int nrec = 0) {
return create_table(lua_state(), narr, nrec);
}
template <typename Key, typename Value, typename... Args>
table create_table(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return create_table(lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename... Args>
table create_table_with(Args&&... args) {
return create_table_with(lua_state(), std::forward<Args>(args)...);
}
static inline table create_table(lua_State* L, int narr = 0, int nrec = 0) {
return global_table::create(L, narr, nrec);
}
template <typename Key, typename Value, typename... Args>
static inline table create_table(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return global_table::create(L, narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename... Args>
static inline table create_table_with(lua_State* L, Args&&... args) {
return global_table::create_with(L, std::forward<Args>(args)...);
}
};
} // namespace sol
// end of sol/state_view.hpp
// beginning of sol/thread.hpp
namespace sol {
struct lua_thread_state {
lua_State* L;
lua_thread_state(lua_State* Ls)
: L(Ls) {
}
lua_State* lua_state() const noexcept {
return L;
}
operator lua_State*() const noexcept {
return lua_state();
}
lua_State* operator->() const noexcept {
return lua_state();
}
};
namespace stack {
template <>
struct pusher<lua_thread_state> {
int push(lua_State*, lua_thread_state lts) {
lua_pushthread(lts.L);
return 1;
}
};
template <>
struct getter<lua_thread_state> {
lua_thread_state get(lua_State* L, int index, record& tracking) {
tracking.use(1);
lua_thread_state lts( lua_tothread(L, index) );
return lts;
}
};
template <>
struct check_getter<lua_thread_state> {
template <typename Handler>
optional<lua_thread_state> get(lua_State* L, int index, Handler&& handler, record& tracking) {
lua_thread_state lts( lua_tothread(L, index) );
if (lts.lua_state() == nullptr) {
handler(L, index, type::thread, type_of(L, index), "value is not a valid thread type");
return nullopt;
}
tracking.use(1);
return lts;
}
};
} // namespace stack
template <typename base_t>
class basic_thread : public base_t {
public:
using base_t::lua_state;
basic_thread() noexcept = default;
basic_thread(const basic_thread&) = default;
basic_thread(basic_thread&&) = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_thread>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_thread(T&& r)
: base_t(std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_thread>(lua_state(), -1, handler);
#endif // Safety
}
basic_thread(const stack_reference& r)
: basic_thread(r.lua_state(), r.stack_index()){};
basic_thread(stack_reference&& r)
: basic_thread(r.lua_state(), r.stack_index()){};
basic_thread& operator=(const basic_thread&) = default;
basic_thread& operator=(basic_thread&&) = default;
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_thread(lua_State* L, T&& r)
: base_t(L, std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_thread>(lua_state(), -1, handler);
#endif // Safety
}
basic_thread(lua_State* L, int index = -1)
: base_t(L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_thread>(L, index, handler);
#endif // Safety
}
basic_thread(lua_State* L, ref_index index)
: base_t(L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_thread>(lua_state(), -1, handler);
#endif // Safety
}
basic_thread(lua_State* L, lua_State* actualthread)
: basic_thread(L, lua_thread_state{ actualthread }) {
}
basic_thread(lua_State* L, this_state actualthread)
: basic_thread(L, lua_thread_state{ actualthread.L }) {
}
basic_thread(lua_State* L, lua_thread_state actualthread)
: base_t(L, -stack::push(L, actualthread)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_thread>(lua_state(), -1, handler);
#endif // Safety
if (!is_stack_based<base_t>::value) {
lua_pop(lua_state(), 1);
}
}
state_view state() const {
return state_view(this->thread_state());
}
bool is_main_thread() const {
return stack::is_main_thread(this->thread_state());
}
lua_State* thread_state() const {
auto pp = stack::push_pop(*this);
lua_State* lthread = lua_tothread(lua_state(), -1);
return lthread;
}
thread_status status() const {
lua_State* lthread = thread_state();
auto lstat = static_cast<thread_status>(lua_status(lthread));
if (lstat == thread_status::ok) {
lua_Debug ar;
if (lua_getstack(lthread, 0, &ar) > 0)
return thread_status::ok;
else if (lua_gettop(lthread) == 0)
return thread_status::dead;
else
return thread_status::yielded;
}
return lstat;
}
basic_thread create() {
return create(lua_state());
}
static basic_thread create(lua_State* L) {
lua_newthread(L);
basic_thread result(L);
if (!is_stack_based<base_t>::value) {
lua_pop(L, 1);
}
return result;
}
};
typedef basic_thread<reference> thread;
typedef basic_thread<stack_reference> stack_thread;
} // namespace sol
// end of sol/thread.hpp
namespace sol {
class state : private std::unique_ptr<lua_State, detail::state_deleter>, public state_view {
private:
typedef std::unique_ptr<lua_State, detail::state_deleter> unique_base;
public:
state(lua_CFunction panic = default_at_panic)
: unique_base(luaL_newstate()), state_view(unique_base::get()) {
set_default_state(unique_base::get(), panic);
}
state(lua_CFunction panic, lua_Alloc alfunc, void* alpointer = nullptr)
: unique_base(lua_newstate(alfunc, alpointer)), state_view(unique_base::get()) {
set_default_state(unique_base::get(), panic);
}
state(const state&) = delete;
state(state&&) = default;
state& operator=(const state&) = delete;
state& operator=(state&& that) {
state_view::operator=(std::move(that));
unique_base::operator=(std::move(that));
return *this;
}
using state_view::get;
~state() {
}
};
} // namespace sol
// end of sol/state.hpp
// beginning of sol/coroutine.hpp
namespace sol {
template <typename base_t>
class basic_coroutine : public base_t {
public:
typedef reference handler_t;
handler_t error_handler;
private:
call_status stats = call_status::yielded;
void luacall(std::ptrdiff_t argcount, std::ptrdiff_t) {
stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount)));
}
template <std::size_t... I, typename... Ret>
auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) {
luacall(n, sizeof...(Ret));
return stack::pop<std::tuple<Ret...>>(lua_state());
}
template <std::size_t I, typename Ret>
Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) {
luacall(n, 1);
return stack::pop<Ret>(lua_state());
}
template <std::size_t I>
void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) {
luacall(n, 0);
}
protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) {
int firstreturn = 1;
luacall(n, LUA_MULTRET);
int poststacksize = lua_gettop(this->lua_state());
int returncount = poststacksize - (firstreturn - 1);
if (error()) {
if (error_handler.valid()) {
string_view err = stack::get<string_view>(this->lua_state(), poststacksize);
error_handler.push();
stack::push(this->lua_state(), err);
lua_call(lua_state(), 1, 1);
}
return protected_function_result(this->lua_state(), lua_absindex(this->lua_state(), -1), 1, returncount, status());
}
return protected_function_result(this->lua_state(), firstreturn, returncount, returncount, status());
}
public:
using base_t::lua_state;
basic_coroutine() = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_coroutine>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_coroutine(T&& r) noexcept
: base_t(std::forward<T>(r)), error_handler(detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
if (!is_function<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_coroutine>(lua_state(), -1, handler);
}
#endif // Safety
}
basic_coroutine(const basic_coroutine&) = default;
basic_coroutine& operator=(const basic_coroutine&) = default;
basic_coroutine(basic_coroutine&&) = default;
basic_coroutine& operator=(basic_coroutine&&) = default;
basic_coroutine(const basic_function<base_t>& b)
: basic_coroutine(b, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) {
}
basic_coroutine(basic_function<base_t>&& b)
: basic_coroutine(std::move(b), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) {
}
basic_coroutine(const basic_function<base_t>& b, handler_t eh)
: base_t(b), error_handler(std::move(eh)) {
}
basic_coroutine(basic_function<base_t>&& b, handler_t eh)
: base_t(std::move(b)), error_handler(std::move(eh)) {
}
basic_coroutine(const stack_reference& r)
: basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) {
}
basic_coroutine(stack_reference&& r)
: basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) {
}
basic_coroutine(const stack_reference& r, handler_t eh)
: basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) {
}
basic_coroutine(stack_reference&& r, handler_t eh)
: basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) {
}
template <typename Super>
basic_coroutine(const proxy_base<Super>& p)
: basic_coroutine(p, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) {
}
template <typename Super>
basic_coroutine(proxy_base<Super>&& p)
: basic_coroutine(std::move(p), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) {
}
template <typename Proxy, typename Handler, meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler>
basic_coroutine(Proxy&& p, Handler&& eh)
: basic_coroutine(detail::force_cast<base_t>(p), std::forward<Handler>(eh)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_coroutine(lua_State* L, T&& r)
: basic_coroutine(L, std::forward<T>(r), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_coroutine(lua_State* L, T&& r, handler_t eh)
: base_t(L, std::forward<T>(r)), error_handler(std::move(eh)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_coroutine>(lua_state(), -1, handler);
#endif // Safety
}
basic_coroutine(lua_nil_t n)
: base_t(n), error_handler(n) {
}
basic_coroutine(lua_State* L, int index = -1)
: basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
}
basic_coroutine(lua_State* L, int index, handler_t eh)
: base_t(L, index), error_handler(std::move(eh)) {
#ifdef SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_coroutine>(L, index, handler);
#endif // Safety
}
basic_coroutine(lua_State* L, absolute_index index)
: basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
}
basic_coroutine(lua_State* L, absolute_index index, handler_t eh)
: base_t(L, index), error_handler(std::move(eh)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_coroutine>(L, index, handler);
#endif // Safety
}
basic_coroutine(lua_State* L, raw_index index)
: basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
}
basic_coroutine(lua_State* L, raw_index index, handler_t eh)
: base_t(L, index), error_handler(std::move(eh)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_coroutine>(L, index, handler);
#endif // Safety
}
basic_coroutine(lua_State* L, ref_index index)
: basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
}
basic_coroutine(lua_State* L, ref_index index, handler_t eh)
: base_t(L, index), error_handler(std::move(eh)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_coroutine>(lua_state(), -1, handler);
#endif // Safety
}
call_status status() const noexcept {
return stats;
}
bool error() const noexcept {
call_status cs = status();
return cs != call_status::ok && cs != call_status::yielded;
}
bool runnable() const noexcept {
return base_t::valid()
&& (status() == call_status::yielded);
}
explicit operator bool() const noexcept {
return runnable();
}
template <typename... Args>
protected_function_result operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
template <typename... Ret, typename... Args>
decltype(auto) operator()(types<Ret...>, Args&&... args) {
return call<Ret...>(std::forward<Args>(args)...);
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) {
// some users screw up coroutine.create
// and try to use it with sol::coroutine without ever calling the first resume in Lua
// this makes the stack incompatible with other kinds of stacks: protect against this
// make sure coroutines don't screw us over
base_t::push();
int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount);
}
};
} // namespace sol
// end of sol/coroutine.hpp
// beginning of sol/variadic_results.hpp
// beginning of sol/as_returns.hpp
namespace sol {
template <typename T>
struct as_returns_t {
T src;
};
template <typename Source>
auto as_returns(Source&& source) {
return as_returns_t<std::decay_t<Source>>{ std::forward<Source>(source) };
}
namespace stack {
template <typename T>
struct pusher<as_returns_t<T>> {
int push(lua_State* L, const as_returns_t<T>& e) {
auto& src = detail::unwrap(e.src);
int p = 0;
for (const auto& i : src) {
p += stack::push(L, i);
}
return p;
}
};
} // namespace stack
} // namespace sol
// end of sol/as_returns.hpp
namespace sol {
struct variadic_results : public std::vector<object> {
using std::vector<object>::vector;
};
namespace stack {
template <>
struct pusher<variadic_results> {
int push(lua_State* L, const variadic_results& e) {
int p = 0;
for (const auto& i : e) {
p += stack::push(L, i);
}
return p;
}
};
} // namespace stack
} // namespace sol
// end of sol/variadic_results.hpp
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#elif defined _MSC_VER
#pragma warning( push )
#endif // g++
#if defined(SOL_INSIDE_UNREAL) && SOL_INSIDE_UNREAL
#if defined(SOL_INSIDE_UNREAL_REMOVED_CHECK) && SOL_INSIDE_UNREAL_REMOVED_CHECK
#if DO_CHECK
#define check(expr) { if(UNLIKELY(!(expr))) { FDebug::LogAssertFailedMessage( #expr, __FILE__, __LINE__ ); _DebugBreakAndPromptForRemote(); FDebug::AssertFailed( #expr, __FILE__, __LINE__ ); CA_ASSUME(false); } }
#else
#define check(expr) { CA_ASSUME(expr); }
#endif
#endif
#endif // Unreal Engine 4 Bullshit
#endif // SOL_HPP
// end of sol.hpp
#endif // SOL_SINGLE_INCLUDE_HPP