blob: 4aeb0549cb03f7185f72463fc8dc5704818ca85e [file] [log] [blame]
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
#ifndef ROCKSDB_LITE
#ifndef GFLAGS
#include <cstdio>
int main() { fprintf(stderr, "Please install gflags to run tools\n"); }
#else
#include <gflags/gflags.h>
#include <atomic>
#include <functional>
#include <memory>
#include <sstream>
#include <unordered_map>
#include "rocksdb/env.h"
#include "utilities/persistent_cache/block_cache_tier.h"
#include "utilities/persistent_cache/persistent_cache_tier.h"
#include "utilities/persistent_cache/volatile_tier_impl.h"
#include "monitoring/histogram.h"
#include "port/port.h"
#include "table/block_builder.h"
#include "util/mutexlock.h"
#include "util/stop_watch.h"
DEFINE_int32(nsec, 10, "nsec");
DEFINE_int32(nthread_write, 1, "Insert threads");
DEFINE_int32(nthread_read, 1, "Lookup threads");
DEFINE_string(path, "/tmp/microbench/blkcache", "Path for cachefile");
DEFINE_string(log_path, "/tmp/log", "Path for the log file");
DEFINE_uint64(cache_size, std::numeric_limits<uint64_t>::max(), "Cache size");
DEFINE_int32(iosize, 4 * 1024, "Read IO size");
DEFINE_int32(writer_iosize, 4 * 1024, "File writer IO size");
DEFINE_int32(writer_qdepth, 1, "File writer qdepth");
DEFINE_bool(enable_pipelined_writes, false, "Enable async writes");
DEFINE_string(cache_type, "block_cache",
"Cache type. (block_cache, volatile, tiered)");
DEFINE_bool(benchmark, false, "Benchmark mode");
DEFINE_int32(volatile_cache_pct, 10, "Percentage of cache in memory tier.");
namespace rocksdb {
std::unique_ptr<PersistentCacheTier> NewVolatileCache() {
assert(FLAGS_cache_size != std::numeric_limits<uint64_t>::max());
std::unique_ptr<PersistentCacheTier> pcache(
new VolatileCacheTier(FLAGS_cache_size));
return pcache;
}
std::unique_ptr<PersistentCacheTier> NewBlockCache() {
std::shared_ptr<Logger> log;
if (!Env::Default()->NewLogger(FLAGS_log_path, &log).ok()) {
fprintf(stderr, "Error creating log %s \n", FLAGS_log_path.c_str());
return nullptr;
}
PersistentCacheConfig opt(Env::Default(), FLAGS_path, FLAGS_cache_size, log);
opt.writer_dispatch_size = FLAGS_writer_iosize;
opt.writer_qdepth = FLAGS_writer_qdepth;
opt.pipeline_writes = FLAGS_enable_pipelined_writes;
opt.max_write_pipeline_backlog_size = std::numeric_limits<uint64_t>::max();
std::unique_ptr<PersistentCacheTier> cache(new BlockCacheTier(opt));
Status status = cache->Open();
return cache;
}
// create a new cache tier
// construct a tiered RAM+Block cache
std::unique_ptr<PersistentTieredCache> NewTieredCache(
const size_t mem_size, const PersistentCacheConfig& opt) {
std::unique_ptr<PersistentTieredCache> tcache(new PersistentTieredCache());
// create primary tier
assert(mem_size);
auto pcache =
std::shared_ptr<PersistentCacheTier>(new VolatileCacheTier(mem_size));
tcache->AddTier(pcache);
// create secondary tier
auto scache = std::shared_ptr<PersistentCacheTier>(new BlockCacheTier(opt));
tcache->AddTier(scache);
Status s = tcache->Open();
assert(s.ok());
return tcache;
}
std::unique_ptr<PersistentTieredCache> NewTieredCache() {
std::shared_ptr<Logger> log;
if (!Env::Default()->NewLogger(FLAGS_log_path, &log).ok()) {
fprintf(stderr, "Error creating log %s \n", FLAGS_log_path.c_str());
abort();
}
auto pct = FLAGS_volatile_cache_pct / static_cast<double>(100);
PersistentCacheConfig opt(Env::Default(), FLAGS_path,
(1 - pct) * FLAGS_cache_size, log);
opt.writer_dispatch_size = FLAGS_writer_iosize;
opt.writer_qdepth = FLAGS_writer_qdepth;
opt.pipeline_writes = FLAGS_enable_pipelined_writes;
opt.max_write_pipeline_backlog_size = std::numeric_limits<uint64_t>::max();
return NewTieredCache(FLAGS_cache_size * pct, opt);
}
//
// Benchmark driver
//
class CacheTierBenchmark {
public:
explicit CacheTierBenchmark(std::shared_ptr<PersistentCacheTier>&& cache)
: cache_(cache) {
if (FLAGS_nthread_read) {
fprintf(stdout, "Pre-populating\n");
Prepop();
fprintf(stdout, "Pre-population completed\n");
}
stats_.Clear();
// Start IO threads
std::list<port::Thread> threads;
Spawn(FLAGS_nthread_write, &threads,
std::bind(&CacheTierBenchmark::Write, this));
Spawn(FLAGS_nthread_read, &threads,
std::bind(&CacheTierBenchmark::Read, this));
// Wait till FLAGS_nsec and then signal to quit
StopWatchNano t(Env::Default(), /*auto_start=*/true);
size_t sec = t.ElapsedNanos() / 1000000000ULL;
while (!quit_) {
sec = t.ElapsedNanos() / 1000000000ULL;
quit_ = sec > size_t(FLAGS_nsec);
/* sleep override */ sleep(1);
}
// Wait for threads to exit
Join(&threads);
// Print stats
PrintStats(sec);
// Close the cache
cache_->TEST_Flush();
cache_->Close();
}
private:
void PrintStats(const size_t sec) {
std::ostringstream msg;
msg << "Test stats" << std::endl
<< "* Elapsed: " << sec << " s" << std::endl
<< "* Write Latency:" << std::endl
<< stats_.write_latency_.ToString() << std::endl
<< "* Read Latency:" << std::endl
<< stats_.read_latency_.ToString() << std::endl
<< "* Bytes written:" << std::endl
<< stats_.bytes_written_.ToString() << std::endl
<< "* Bytes read:" << std::endl
<< stats_.bytes_read_.ToString() << std::endl
<< "Cache stats:" << std::endl
<< cache_->PrintStats() << std::endl;
fprintf(stderr, "%s\n", msg.str().c_str());
}
//
// Insert implementation and corresponding helper functions
//
void Prepop() {
for (uint64_t i = 0; i < 1024 * 1024; ++i) {
InsertKey(i);
insert_key_limit_++;
read_key_limit_++;
}
// Wait until data is flushed
cache_->TEST_Flush();
// warmup the cache
for (uint64_t i = 0; i < 1024 * 1024; ReadKey(i++)) {
}
}
void Write() {
while (!quit_) {
InsertKey(insert_key_limit_++);
}
}
void InsertKey(const uint64_t key) {
// construct key
uint64_t k[3];
Slice block_key = FillKey(k, key);
// construct value
auto block = NewBlock(key);
// insert
StopWatchNano timer(Env::Default(), /*auto_start=*/true);
while (true) {
Status status = cache_->Insert(block_key, block.get(), FLAGS_iosize);
if (status.ok()) {
break;
}
// transient error is possible if we run without pipelining
assert(!FLAGS_enable_pipelined_writes);
}
// adjust stats
const size_t elapsed_micro = timer.ElapsedNanos() / 1000;
stats_.write_latency_.Add(elapsed_micro);
stats_.bytes_written_.Add(FLAGS_iosize);
}
//
// Read implementation
//
void Read() {
while (!quit_) {
ReadKey(random() % read_key_limit_);
}
}
void ReadKey(const uint64_t val) {
// construct key
uint64_t k[3];
Slice key = FillKey(k, val);
// Lookup in cache
StopWatchNano timer(Env::Default(), /*auto_start=*/true);
std::unique_ptr<char[]> block;
size_t size;
Status status = cache_->Lookup(key, &block, &size);
if (!status.ok()) {
fprintf(stderr, "%s\n", status.ToString().c_str());
}
assert(status.ok());
assert(size == (size_t) FLAGS_iosize);
// adjust stats
const size_t elapsed_micro = timer.ElapsedNanos() / 1000;
stats_.read_latency_.Add(elapsed_micro);
stats_.bytes_read_.Add(FLAGS_iosize);
// verify content
if (!FLAGS_benchmark) {
auto expected_block = NewBlock(val);
assert(memcmp(block.get(), expected_block.get(), FLAGS_iosize) == 0);
}
}
// create data for a key by filling with a certain pattern
std::unique_ptr<char[]> NewBlock(const uint64_t val) {
unique_ptr<char[]> data(new char[FLAGS_iosize]);
memset(data.get(), val % 255, FLAGS_iosize);
return data;
}
// spawn threads
void Spawn(const size_t n, std::list<port::Thread>* threads,
const std::function<void()>& fn) {
for (size_t i = 0; i < n; ++i) {
threads->emplace_back(fn);
}
}
// join threads
void Join(std::list<port::Thread>* threads) {
for (auto& th : *threads) {
th.join();
}
}
// construct key
Slice FillKey(uint64_t (&k)[3], const uint64_t val) {
k[0] = k[1] = 0;
k[2] = val;
void* p = static_cast<void*>(&k);
return Slice(static_cast<char*>(p), sizeof(k));
}
// benchmark stats
struct Stats {
void Clear() {
bytes_written_.Clear();
bytes_read_.Clear();
read_latency_.Clear();
write_latency_.Clear();
}
HistogramImpl bytes_written_;
HistogramImpl bytes_read_;
HistogramImpl read_latency_;
HistogramImpl write_latency_;
};
std::shared_ptr<PersistentCacheTier> cache_; // cache implementation
std::atomic<uint64_t> insert_key_limit_{0}; // data inserted upto
std::atomic<uint64_t> read_key_limit_{0}; // data can be read safely upto
bool quit_ = false; // Quit thread ?
mutable Stats stats_; // Stats
};
} // namespace rocksdb
//
// main
//
int main(int argc, char** argv) {
GFLAGS::SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) +
" [OPTIONS]...");
GFLAGS::ParseCommandLineFlags(&argc, &argv, false);
std::ostringstream msg;
msg << "Config" << std::endl
<< "======" << std::endl
<< "* nsec=" << FLAGS_nsec << std::endl
<< "* nthread_write=" << FLAGS_nthread_write << std::endl
<< "* path=" << FLAGS_path << std::endl
<< "* cache_size=" << FLAGS_cache_size << std::endl
<< "* iosize=" << FLAGS_iosize << std::endl
<< "* writer_iosize=" << FLAGS_writer_iosize << std::endl
<< "* writer_qdepth=" << FLAGS_writer_qdepth << std::endl
<< "* enable_pipelined_writes=" << FLAGS_enable_pipelined_writes
<< std::endl
<< "* cache_type=" << FLAGS_cache_type << std::endl
<< "* benchmark=" << FLAGS_benchmark << std::endl
<< "* volatile_cache_pct=" << FLAGS_volatile_cache_pct << std::endl;
fprintf(stderr, "%s\n", msg.str().c_str());
std::shared_ptr<rocksdb::PersistentCacheTier> cache;
if (FLAGS_cache_type == "block_cache") {
fprintf(stderr, "Using block cache implementation\n");
cache = rocksdb::NewBlockCache();
} else if (FLAGS_cache_type == "volatile") {
fprintf(stderr, "Using volatile cache implementation\n");
cache = rocksdb::NewVolatileCache();
} else if (FLAGS_cache_type == "tiered") {
fprintf(stderr, "Using tiered cache implementation\n");
cache = rocksdb::NewTieredCache();
} else {
fprintf(stderr, "Unknown option for cache\n");
}
assert(cache);
if (!cache) {
fprintf(stderr, "Error creating cache\n");
abort();
}
std::unique_ptr<rocksdb::CacheTierBenchmark> benchmark(
new rocksdb::CacheTierBenchmark(std::move(cache)));
return 0;
}
#endif // #ifndef GFLAGS
#else
int main(int, char**) { return 0; }
#endif