blob: 8f0cbbc005486f4f941332edaaf0f2f60a03e8af [file] [log] [blame]
////////////////////////////////////////////////////////////////////////////
//
// This file is part of RTIMULib
//
// Copyright (c) 2014-2015, richards-tech, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
// Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef _RTFUSION_H
#define _RTFUSION_H
#include "RTIMULibDefs.h"
class RTIMUSettings;
class RTFusion
{
public:
RTFusion();
virtual ~RTFusion();
// fusionType returns the type code of the fusion algorithm
virtual int fusionType() { return RTFUSION_TYPE_NULL; }
// the following function can be called to set the SLERP power
void setSlerpPower(RTFLOAT power) { m_slerpPower = power; }
// reset() resets the fusion state but keeps any setting changes (such as enables)
virtual void reset() {}
// newIMUData() should be called for subsequent updates
// the fusion fields are updated with the results
virtual void newIMUData(RTIMU_DATA& /* data */, const RTIMUSettings * /* settings */) {}
// This static function returns performs the type to name mapping
static const char *fusionName(int fusionType) { return m_fusionNameMap[fusionType]; }
// the following three functions control the influence of the gyro, accel and compass sensors
void setGyroEnable(bool enable) { m_enableGyro = enable;}
void setAccelEnable(bool enable) { m_enableAccel = enable; }
void setCompassEnable(bool enable) { m_enableCompass = enable;}
inline const RTVector3& getMeasuredPose() {return m_measuredPose;}
inline const RTQuaternion& getMeasuredQPose() {return m_measuredQPose;}
// getAccelResiduals() gets the residual after subtracting gravity
RTVector3 getAccelResiduals();
void setDebugEnable(bool enable) { m_debug = enable; }
protected:
void calculatePose(const RTVector3& accel, const RTVector3& mag, float magDeclination); // generates pose from accels and mag
RTVector3 m_gyro; // current gyro sample
RTVector3 m_accel; // current accel sample
RTVector3 m_compass; // current compass sample
RTQuaternion m_measuredQPose; // quaternion form of pose from measurement
RTVector3 m_measuredPose; // vector form of pose from measurement
RTQuaternion m_fusionQPose; // quaternion form of pose from fusion
RTVector3 m_fusionPose; // vector form of pose from fusion
RTQuaternion m_gravity; // the gravity vector as a quaternion
RTFLOAT m_slerpPower; // a value 0 to 1 that controls measured state influence
RTQuaternion m_rotationDelta; // amount by which measured state differs from predicted
RTQuaternion m_rotationPower; // delta raised to the appopriate power
RTVector3 m_rotationUnitVector; // the vector part of the rotation delta
bool m_debug;
bool m_enableGyro; // enables gyro as input
bool m_enableAccel; // enables accel as input
bool m_enableCompass; // enables compass a input
bool m_compassValid; // true if compass data valid
bool m_firstTime; // if first time after reset
uint64_t m_lastFusionTime; // for delta time calculation
static const char *m_fusionNameMap[]; // the fusion name array
};
#endif // _RTFUSION_H