| { |
| "cells": [ |
| { |
| "cell_type": "markdown", |
| "metadata": {}, |
| "source": [ |
| "# Matrix Factorization (MF) Example\n", |
| "Demonstrates matrix factorization with MXNet on the [MovieLens 100k](http://grouplens.org/datasets/movielens/100k/) dataset. \n", |
| "\n", |
| "You need to have python package pandas and bokeh installed (pip install pandas bokeh)." |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": false |
| }, |
| "outputs": [], |
| "source": [ |
| "import mxnet as mx\n", |
| "from movielens_data import get_data_iter, max_id\n", |
| "from matrix_fact import train" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [ |
| "# If MXNet is not compiled with GPU support (e.g. on OSX), set to [mx.cpu(0)]\n", |
| "# Can be changed to [mx.gpu(0), mx.gpu(1), ..., mx.gpu(N-1)] if there are N GPUs\n", |
| "ctx = [mx.gpu(0)]" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": false |
| }, |
| "outputs": [], |
| "source": [ |
| "train_test_data = get_data_iter(batch_size=50)\n", |
| "max_user, max_item = max_id('./ml-100k/u.data')\n", |
| "(max_user, max_item)" |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": {}, |
| "source": [ |
| "## Linear MF" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": false |
| }, |
| "outputs": [], |
| "source": [ |
| "def plain_net(k):\n", |
| " # input\n", |
| " user = mx.symbol.Variable('user')\n", |
| " item = mx.symbol.Variable('item')\n", |
| " score = mx.symbol.Variable('score')\n", |
| " # user feature lookup\n", |
| " user = mx.symbol.Embedding(data = user, input_dim = max_user, output_dim = k) \n", |
| " # item feature lookup\n", |
| " item = mx.symbol.Embedding(data = item, input_dim = max_item, output_dim = k)\n", |
| " # predict by the inner product, which is elementwise product and then sum\n", |
| " pred = user * item\n", |
| " pred = mx.symbol.sum(data = pred, axis = 1)\n", |
| " pred = mx.symbol.Flatten(data = pred)\n", |
| " # loss layer\n", |
| " pred = mx.symbol.LinearRegressionOutput(data = pred, label = score)\n", |
| " return pred\n", |
| "\n", |
| "net1 = plain_net(64)\n", |
| "mx.viz.plot_network(net1)" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": false, |
| "scrolled": false |
| }, |
| "outputs": [], |
| "source": [ |
| "results1 = train(net1, train_test_data, num_epoch=15, learning_rate=0.02, ctx=ctx)" |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": {}, |
| "source": [ |
| "## Neural Network (non-linear) MF" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": false, |
| "scrolled": false |
| }, |
| "outputs": [], |
| "source": [ |
| "def get_one_layer_mlp(hidden, k):\n", |
| " # input\n", |
| " user = mx.symbol.Variable('user')\n", |
| " item = mx.symbol.Variable('item')\n", |
| " score = mx.symbol.Variable('score')\n", |
| " # user latent features\n", |
| " user = mx.symbol.Embedding(data = user, input_dim = max_user, output_dim = k)\n", |
| " user = mx.symbol.Activation(data = user, act_type='relu')\n", |
| " user = mx.symbol.FullyConnected(data = user, num_hidden = hidden)\n", |
| " # item latent features\n", |
| " item = mx.symbol.Embedding(data = item, input_dim = max_item, output_dim = k)\n", |
| " item = mx.symbol.Activation(data = item, act_type='relu')\n", |
| " item = mx.symbol.FullyConnected(data = item, num_hidden = hidden)\n", |
| " # predict by the inner product\n", |
| " pred = user * item\n", |
| " pred = mx.symbol.sum(data = pred, axis = 1)\n", |
| " pred = mx.symbol.Flatten(data = pred)\n", |
| " # loss layer\n", |
| " pred = mx.symbol.LinearRegressionOutput(data = pred, label = score)\n", |
| " return pred\n", |
| "\n", |
| "net2 = get_one_layer_mlp(64, 64)\n", |
| "mx.viz.plot_network(net2)" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": false, |
| "scrolled": false |
| }, |
| "outputs": [], |
| "source": [ |
| "results2 = train(net2, train_test_data, num_epoch=15, learning_rate=0.02, ctx=ctx)" |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": {}, |
| "source": [ |
| "## Visualizing results\n", |
| "Now let's draw a single chart that compares the learning curves of the three different models.\n", |
| "We'll use the bokeh library since it gives nice interactive charting." |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": false |
| }, |
| "outputs": [], |
| "source": [ |
| "import bokeh\n", |
| "import bokeh.io\n", |
| "import bokeh.plotting\n", |
| "bokeh.io.output_notebook()\n", |
| "import pandas as pd\n", |
| "\n", |
| "def viz_lines(fig, results, legend, color):\n", |
| " df = pd.DataFrame(results._data['eval'])\n", |
| " fig.line(df.elapsed,df.RMSE, color=color, legend=legend, line_width=2)\n", |
| " df = pd.DataFrame(results._data['train'])\n", |
| " fig.line(df.elapsed,df.RMSE, color=color, line_dash='dotted', alpha=0.1)\n", |
| "\n", |
| "fig = bokeh.plotting.Figure(x_axis_type='datetime', x_axis_label='Training time', y_axis_label='RMSE')\n", |
| "viz_lines(fig, results1, \"Linear MF\", \"orange\")\n", |
| "viz_lines(fig, results2, \"MLP\", \"blue\")\n", |
| "\n", |
| "bokeh.io.show(fig)" |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": { |
| "collapsed": true |
| }, |
| "source": [ |
| "## Acknowledgement\n", |
| "\n", |
| "This tutorial is based on examples from [xlvector/github](https://github.com/xlvector/)." |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": 10, |
| "metadata": { |
| "collapsed": false |
| }, |
| "outputs": [], |
| "source": [ |
| "# What if we let the linear model train for a longer time?\n", |
| "results1 = train(net1, train_test_data, num_epoch=30, learning_rate=0.02, ctx=ctx)" |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": {}, |
| "source": [ |
| "## Next steps\n", |
| "See [this notebook](demo1-MF2-fancy.ipynb) to try using fancier network structures and optimizers on this same problem." |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "execution_count": null, |
| "metadata": { |
| "collapsed": true |
| }, |
| "outputs": [], |
| "source": [] |
| } |
| ], |
| "metadata": { |
| "anaconda-cloud": {}, |
| "kernelspec": { |
| "display_name": "Python [Root]", |
| "language": "python", |
| "name": "Python [Root]" |
| }, |
| "language_info": { |
| "codemirror_mode": { |
| "name": "ipython", |
| "version": 2 |
| }, |
| "file_extension": ".py", |
| "mimetype": "text/x-python", |
| "name": "python", |
| "nbconvert_exporter": "python", |
| "pygments_lexer": "ipython2", |
| "version": "2.7.12" |
| } |
| }, |
| "nbformat": 4, |
| "nbformat_minor": 1 |
| } |