tree: be22ebf016943e2896567d9b37f0bcaaaf04f907 [path history] [tgz]
  1. .gitignore
  2. crossentropy.py
  3. demo-MF.R
  4. demo1-MF.ipynb
  5. demo1-MF2-fancy.ipynb
  6. demo2-binary.ipynb
  7. demo3-dssm.ipynb
  8. matrix_fact.py
  9. movielens_data.py
  10. negativesample.py
  11. randomproj.py
  12. README.md
  13. recotools.py
  14. symbol_alexnet.py
example/recommenders/README.md

Recommender Systems with Sparse Data

This directory has a set of examples of how to build various kinds of recommender systems using MXNet. It also includes a set of tools for using sparse data.

Examples

The examples are driven by notebook files.

Prerequisite

The plotting functionality in the above examples requires 0.12.2 version of Bokeh package. The plotting functionality throws following error when a different Bokeh version is loaded.

ValueError: PATCH-DOC message requires at least one event

Re-usable code

These examples use and demonstrate a number of layers and other tools that can be used outside of these examples. They are all available from the recotools package.

Negative Sampling

  • NegativeSamplingDataIter

Loss Layers

  • CosineLoss
  • CrossEntropyLoss

Sparse Data Projection layers

  • SparseRandomProjection
  • SparseBagOfWordProjection

Acknowledgements

Thanks to xlvector for the first Matrix Factorization example that provided the basis for these examples.

MovieLens data from GroupLens.