|  | <!-- | 
|  | Licensed to the Apache Software Foundation (ASF) under one or more | 
|  | contributor license agreements.  See the NOTICE file distributed with | 
|  | this work for additional information regarding copyright ownership. | 
|  | The ASF licenses this file to You under the Apache License, Version 2.0 | 
|  | (the "License"); you may not use this file except in compliance with | 
|  | the License.  You may obtain a copy of the License at | 
|  |  | 
|  | http://www.apache.org/licenses/LICENSE-2.0 | 
|  |  | 
|  | Unless required by applicable law or agreed to in writing, software | 
|  | distributed under the License is distributed on an "AS IS" BASIS, | 
|  | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | See the License for the specific language governing permissions and | 
|  | limitations under the License. | 
|  | --> | 
|  | <script><!--#include virtual="../js/templateData.js" --></script> | 
|  |  | 
|  | <script id="content-template" type="text/x-handlebars-template"> | 
|  | <h1>Tutorial: Write a Kafka Streams Application</h1> | 
|  | <div class="sub-nav-sticky"> | 
|  | <div class="sticky-top"> | 
|  | <div style="height:35px"> | 
|  | <a href="/{{version}}/documentation/streams/">Introduction</a> | 
|  | <a href="/{{version}}/documentation/streams/quickstart">Run Demo App</a> | 
|  | <a class="active-menu-item" href="/{{version}}/documentation/streams/tutorial">Tutorial: Write App</a> | 
|  | <a href="/{{version}}/documentation/streams/core-concepts">Concepts</a> | 
|  | <a href="/{{version}}/documentation/streams/architecture">Architecture</a> | 
|  | <a href="/{{version}}/documentation/streams/developer-guide/">Developer Guide</a> | 
|  | <a href="/{{version}}/documentation/streams/upgrade-guide">Upgrade</a> | 
|  | </div> | 
|  | </div> | 
|  | </div> | 
|  | <p> | 
|  | In this guide we will start from scratch on setting up your own project to write a stream processing application using Kafka Streams. | 
|  | It is highly recommended to read the <a href="/{{version}}/documentation/streams/quickstart">quickstart</a> first on how to run a Streams application written in Kafka Streams if you have not done so. | 
|  | </p> | 
|  |  | 
|  | <h4 class="anchor-heading"><a id="tutorial_maven_setup" class="anchor-link"></a><a href="#tutorial_maven_setup">Setting up a Maven Project</a></h4> | 
|  |  | 
|  | <p> | 
|  | We are going to use a Kafka Streams Maven Archetype for creating a Streams project structure with the following commands: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-bash">        mvn archetype:generate \ | 
|  | -DarchetypeGroupId=org.apache.kafka \ | 
|  | -DarchetypeArtifactId=streams-quickstart-java \ | 
|  | -DarchetypeVersion={{fullDotVersion}} \ | 
|  | -DgroupId=streams.examples \ | 
|  | -DartifactId=streams.examples \ | 
|  | -Dversion=0.1 \ | 
|  | -Dpackage=myapps</code></pre> | 
|  |  | 
|  | <p> | 
|  | You can use a different value for <code>groupId</code>, <code>artifactId</code> and <code>package</code> parameters if you like. | 
|  | Assuming the above parameter values are used, this command will create a project structure that looks like this: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-bash">        > tree streams.examples | 
|  | streams-quickstart | 
|  | |-- pom.xml | 
|  | |-- src | 
|  | |-- main | 
|  | |-- java | 
|  | |   |-- myapps | 
|  | |       |-- LineSplit.java | 
|  | |       |-- Pipe.java | 
|  | |       |-- WordCount.java | 
|  | |-- resources | 
|  | |-- log4j.properties</code></pre> | 
|  |  | 
|  | <p> | 
|  | The <code>pom.xml</code> file included in the project already has the Streams dependency defined. | 
|  | Note, that the generated <code>pom.xml</code> targets Java 8, and does not work with higher Java versions. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | There are already several example programs written with Streams library under <code>src/main/java</code>. | 
|  | Since we are going to start writing such programs from scratch, we can now delete these examples: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-bash">        > cd streams-quickstart | 
|  | > rm src/main/java/myapps/*.java</code></pre> | 
|  |  | 
|  | <h4><a id="tutorial_code_pipe" href="#tutorial_code_pipe">Writing a first Streams application: Pipe</a></h4> | 
|  |  | 
|  | It's coding time now! Feel free to open your favorite IDE and import this Maven project, or simply open a text editor and create a java file under <code>src/main/java/myapps</code>. | 
|  | Let's name it <code>Pipe.java</code>: | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        package myapps; | 
|  |  | 
|  | public class Pipe { | 
|  |  | 
|  | public static void main(String[] args) throws Exception { | 
|  |  | 
|  | } | 
|  | }</code></pre> | 
|  |  | 
|  | <p> | 
|  | We are going to fill in the <code>main</code> function to write this pipe program. Note that we will not list the import statements as we go since IDEs can usually add them automatically. | 
|  | However if you are using a text editor you need to manually add the imports, and at the end of this section we'll show the complete code snippet with import statement for you. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | The first step to write a Streams application is to create a <code>java.util.Properties</code> map to specify different Streams execution configuration values as defined in <code>StreamsConfig</code>. | 
|  | A couple of important configuration values you need to set are: <code>StreamsConfig.BOOTSTRAP_SERVERS_CONFIG</code>, which specifies a list of host/port pairs to use for establishing the initial connection to the Kafka cluster, | 
|  | and <code>StreamsConfig.APPLICATION_ID_CONFIG</code>, which gives the unique identifier of your Streams application to distinguish itself with other applications talking to the same Kafka cluster: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        Properties props = new Properties(); | 
|  | props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-pipe"); | 
|  | props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");    // assuming that the Kafka broker this application is talking to runs on local machine with port 9092</code></pre> | 
|  |  | 
|  | <p> | 
|  | In addition, you can customize other configurations in the same map, for example, default serialization and deserialization libraries for the record key-value pairs: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass()); | 
|  | props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());</code></pre> | 
|  |  | 
|  | <p> | 
|  | For a full list of configurations of Kafka Streams please refer to this <a href="/{{version}}/documentation/#streamsconfigs">table</a>. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | Next we will define the computational logic of our Streams application. | 
|  | In Kafka Streams this computational logic is defined as a <code>topology</code> of connected processor nodes. | 
|  | We can use a topology builder to construct such a topology, | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        final StreamsBuilder builder = new StreamsBuilder();</code></pre> | 
|  |  | 
|  | <p> | 
|  | And then create a source stream from a Kafka topic named <code>streams-plaintext-input</code> using this topology builder: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        KStream<String, String> source = builder.stream("streams-plaintext-input");</code></pre> | 
|  |  | 
|  | <p> | 
|  | Now we get a <code>KStream</code> that is continuously generating records from its source Kafka topic <code>streams-plaintext-input</code>. | 
|  | The records are organized as <code>String</code> typed key-value pairs. | 
|  | The simplest thing we can do with this stream is to write it into another Kafka topic, say it's named <code>streams-pipe-output</code>: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        source.to("streams-pipe-output");</code></pre> | 
|  |  | 
|  | <p> | 
|  | Note that we can also concatenate the above two lines into a single line as: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        builder.stream("streams-plaintext-input").to("streams-pipe-output");</code></pre> | 
|  |  | 
|  | <p> | 
|  | We can inspect what kind of <code>topology</code> is created from this builder by doing the following: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        final Topology topology = builder.build();</code></pre> | 
|  |  | 
|  | <p> | 
|  | And print its description to standard output as: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        System.out.println(topology.describe());</code></pre> | 
|  |  | 
|  | <p> | 
|  | If we just stop here, compile and run the program, it will output the following information: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-bash">        > mvn clean package | 
|  | > mvn exec:java -Dexec.mainClass=myapps.Pipe | 
|  | Sub-topologies: | 
|  | Sub-topology: 0 | 
|  | Source: KSTREAM-SOURCE-0000000000(topics: streams-plaintext-input) --> KSTREAM-SINK-0000000001 | 
|  | Sink: KSTREAM-SINK-0000000001(topic: streams-pipe-output) <-- KSTREAM-SOURCE-0000000000 | 
|  | Global Stores: | 
|  | none</code></pre> | 
|  |  | 
|  | <p> | 
|  | As shown above, it illustrates that the constructed topology has two processor nodes, a source node <code>KSTREAM-SOURCE-0000000000</code> and a sink node <code>KSTREAM-SINK-0000000001</code>. | 
|  | <code>KSTREAM-SOURCE-0000000000</code> continuously read records from Kafka topic <code>streams-plaintext-input</code> and pipe them to its downstream node <code>KSTREAM-SINK-0000000001</code>; | 
|  | <code>KSTREAM-SINK-0000000001</code> will write each of its received record in order to another Kafka topic <code>streams-pipe-output</code> | 
|  | (the <code>--></code> and <code><--</code> arrows dictates the downstream and upstream processor nodes of this node, i.e. "children" and "parents" within the topology graph). | 
|  | It also illustrates that this simple topology has no global state stores associated with it (we will talk about state stores more in the following sections). | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | Note that we can always describe the topology as we did above at any given point while we are building it in the code, so as a user you can interactively "try and taste" your computational logic defined in the topology until you are happy with it. | 
|  | Suppose we are already done with this simple topology that just pipes data from one Kafka topic to another in an endless streaming manner, | 
|  | we can now construct the Streams client with the two components we have just constructed above: the configuration map specified in a <code>java.util.Properties</code> instance and the <code>Topology</code> object. | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        final KafkaStreams streams = new KafkaStreams(topology, props);</code></pre> | 
|  |  | 
|  | <p> | 
|  | By calling its <code>start()</code> function we can trigger the execution of this client. | 
|  | The execution won't stop until <code>close()</code> is called on this client. | 
|  | We can, for example, add a shutdown hook with a countdown latch to capture a user interrupt and close the client upon terminating this program: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        final CountDownLatch latch = new CountDownLatch(1); | 
|  |  | 
|  | // attach shutdown handler to catch control-c | 
|  | Runtime.getRuntime().addShutdownHook(new Thread("streams-shutdown-hook") { | 
|  | @Override | 
|  | public void run() { | 
|  | streams.close(); | 
|  | latch.countDown(); | 
|  | } | 
|  | }); | 
|  |  | 
|  | try { | 
|  | streams.start(); | 
|  | latch.await(); | 
|  | } catch (Throwable e) { | 
|  | System.exit(1); | 
|  | } | 
|  | System.exit(0);</code></pre> | 
|  |  | 
|  | <p> | 
|  | The complete code so far looks like this: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        package myapps; | 
|  |  | 
|  | import org.apache.kafka.common.serialization.Serdes; | 
|  | import org.apache.kafka.streams.KafkaStreams; | 
|  | import org.apache.kafka.streams.StreamsBuilder; | 
|  | import org.apache.kafka.streams.StreamsConfig; | 
|  | import org.apache.kafka.streams.Topology; | 
|  |  | 
|  | import java.util.Properties; | 
|  | import java.util.concurrent.CountDownLatch; | 
|  |  | 
|  | public class Pipe { | 
|  |  | 
|  | public static void main(String[] args) throws Exception { | 
|  | Properties props = new Properties(); | 
|  | props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-pipe"); | 
|  | props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); | 
|  | props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass()); | 
|  | props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass()); | 
|  |  | 
|  | final StreamsBuilder builder = new StreamsBuilder(); | 
|  |  | 
|  | builder.stream("streams-plaintext-input").to("streams-pipe-output"); | 
|  |  | 
|  | final Topology topology = builder.build(); | 
|  |  | 
|  | final KafkaStreams streams = new KafkaStreams(topology, props); | 
|  | final CountDownLatch latch = new CountDownLatch(1); | 
|  |  | 
|  | // attach shutdown handler to catch control-c | 
|  | Runtime.getRuntime().addShutdownHook(new Thread("streams-shutdown-hook") { | 
|  | @Override | 
|  | public void run() { | 
|  | streams.close(); | 
|  | latch.countDown(); | 
|  | } | 
|  | }); | 
|  |  | 
|  | try { | 
|  | streams.start(); | 
|  | latch.await(); | 
|  | } catch (Throwable e) { | 
|  | System.exit(1); | 
|  | } | 
|  | System.exit(0); | 
|  | } | 
|  | }</code></pre> | 
|  |  | 
|  | <p> | 
|  | If you already have the Kafka broker up and running at <code>localhost:9092</code>, | 
|  | and the topics <code>streams-plaintext-input</code> and <code>streams-pipe-output</code> created on that broker, | 
|  | you can run this code in your IDE or on the command line, using Maven: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-brush">        > mvn clean package | 
|  | > mvn exec:java -Dexec.mainClass=myapps.Pipe</code></pre> | 
|  |  | 
|  | <p> | 
|  | For detailed instructions on how to run a Streams application and observe its computing results, | 
|  | please read the <a href="/{{version}}/documentation/streams/quickstart">Play with a Streams Application</a> section. | 
|  | We will not talk about this in the rest of this section. | 
|  | </p> | 
|  |  | 
|  | <h4><a id="tutorial_code_linesplit" href="#tutorial_code_linesplit">Writing a second Streams application: Line Split</a></h4> | 
|  |  | 
|  | <p> | 
|  | We have learned how to construct a Streams client with its two key components: the <code>StreamsConfig</code> and <code>Topology</code>. | 
|  | Now let's move on to add some real processing logic by augmenting the current topology. | 
|  | We can first create another program by first copy the existing <code>Pipe.java</code> class: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-brush">        > cp src/main/java/myapps/Pipe.java src/main/java/myapps/LineSplit.java</code></pre> | 
|  |  | 
|  | <p> | 
|  | And change its class name as well as the application id config to distinguish with the original program: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        public class LineSplit { | 
|  |  | 
|  | public static void main(String[] args) throws Exception { | 
|  | Properties props = new Properties(); | 
|  | props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-linesplit"); | 
|  | // ... | 
|  | } | 
|  | }</code></pre> | 
|  |  | 
|  | <p> | 
|  | Since each of the source stream's record is a <code>String</code> typed key-value pair, | 
|  | let's treat the value string as a text line and split it into words with a <code>FlatMapValues</code> operator: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        KStream<String, String> source = builder.stream("streams-plaintext-input"); | 
|  | KStream<String, String> words = source.flatMapValues(new ValueMapper<String, Iterable<String>>() { | 
|  | @Override | 
|  | public Iterable<String> apply(String value) { | 
|  | return Arrays.asList(value.split("\\W+")); | 
|  | } | 
|  | });</code></pre> | 
|  |  | 
|  | <p> | 
|  | The operator will take the <code>source</code> stream as its input, and generate a new stream named <code>words</code> | 
|  | by processing each record from its source stream in order and breaking its value string into a list of words, and producing | 
|  | each word as a new record to the output <code>words</code> stream. | 
|  | This is a stateless operator that does not need to keep track of any previously received records or processed results. | 
|  | Note if you are using JDK 8 you can use lambda expression and simplify the above code as: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        KStream<String, String> source = builder.stream("streams-plaintext-input"); | 
|  | KStream<String, String> words = source.flatMapValues(value -> Arrays.asList(value.split("\\W+")));</code></pre> | 
|  |  | 
|  | <p> | 
|  | And finally we can write the word stream back into another Kafka topic, say <code>streams-linesplit-output</code>. | 
|  | Again, these two steps can be concatenated as the following (assuming lambda expression is used): | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        KStream<String, String> source = builder.stream("streams-plaintext-input"); | 
|  | source.flatMapValues(value -> Arrays.asList(value.split("\\W+"))) | 
|  | .to("streams-linesplit-output");</code></pre> | 
|  |  | 
|  | <p> | 
|  | If we now describe this augmented topology as <code>System.out.println(topology.describe())</code>, we will get the following: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-bash">        > mvn clean package | 
|  | > mvn exec:java -Dexec.mainClass=myapps.LineSplit | 
|  | Sub-topologies: | 
|  | Sub-topology: 0 | 
|  | Source: KSTREAM-SOURCE-0000000000(topics: streams-plaintext-input) --> KSTREAM-FLATMAPVALUES-0000000001 | 
|  | Processor: KSTREAM-FLATMAPVALUES-0000000001(stores: []) --> KSTREAM-SINK-0000000002 <-- KSTREAM-SOURCE-0000000000 | 
|  | Sink: KSTREAM-SINK-0000000002(topic: streams-linesplit-output) <-- KSTREAM-FLATMAPVALUES-0000000001 | 
|  | Global Stores: | 
|  | none</code></pre> | 
|  |  | 
|  | <p> | 
|  | As we can see above, a new processor node <code>KSTREAM-FLATMAPVALUES-0000000001</code> is injected into the topology between the original source and sink nodes. | 
|  | It takes the source node as its parent and the sink node as its child. | 
|  | In other words, each record fetched by the source node will first traverse to the newly added <code>KSTREAM-FLATMAPVALUES-0000000001</code> node to be processed, | 
|  | and one or more new records will be generated as a result. They will continue traverse down to the sink node to be written back to Kafka. | 
|  | Note this processor node is "stateless" as it is not associated with any stores (i.e. <code>(stores: [])</code>). | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | The complete code looks like this (assuming lambda expression is used): | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        package myapps; | 
|  |  | 
|  | import org.apache.kafka.common.serialization.Serdes; | 
|  | import org.apache.kafka.streams.KafkaStreams; | 
|  | import org.apache.kafka.streams.StreamsBuilder; | 
|  | import org.apache.kafka.streams.StreamsConfig; | 
|  | import org.apache.kafka.streams.Topology; | 
|  | import org.apache.kafka.streams.kstream.KStream; | 
|  |  | 
|  | import java.util.Arrays; | 
|  | import java.util.Properties; | 
|  | import java.util.concurrent.CountDownLatch; | 
|  |  | 
|  | public class LineSplit { | 
|  |  | 
|  | public static void main(String[] args) throws Exception { | 
|  | Properties props = new Properties(); | 
|  | props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-linesplit"); | 
|  | props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); | 
|  | props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass()); | 
|  | props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass()); | 
|  |  | 
|  | final StreamsBuilder builder = new StreamsBuilder(); | 
|  |  | 
|  | KStream<String, String> source = builder.stream("streams-plaintext-input"); | 
|  | source.flatMapValues(value -> Arrays.asList(value.split("\\W+"))) | 
|  | .to("streams-linesplit-output"); | 
|  |  | 
|  | final Topology topology = builder.build(); | 
|  | final KafkaStreams streams = new KafkaStreams(topology, props); | 
|  | final CountDownLatch latch = new CountDownLatch(1); | 
|  |  | 
|  | // ... same as Pipe.java above | 
|  | } | 
|  | }</code></pre> | 
|  |  | 
|  | <h4><a id="tutorial_code_wordcount" href="#tutorial_code_wordcount">Writing a third Streams application: Wordcount</a></h4> | 
|  |  | 
|  | <p> | 
|  | Let's now take a step further to add some "stateful" computations to the topology by counting the occurrence of the words split from the source text stream. | 
|  | Following similar steps let's create another program based on the <code>LineSplit.java</code> class: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        public class WordCount { | 
|  |  | 
|  | public static void main(String[] args) throws Exception { | 
|  | Properties props = new Properties(); | 
|  | props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-wordcount"); | 
|  | // ... | 
|  | } | 
|  | }</code></pre> | 
|  |  | 
|  | <p> | 
|  | In order to count the words we can first modify the <code>flatMapValues</code> operator to treat all of them as lower case (assuming lambda expression is used): | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        source.flatMapValues(new ValueMapper<String, Iterable<String>>() { | 
|  | @Override | 
|  | public Iterable<String> apply(String value) { | 
|  | return Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+")); | 
|  | } | 
|  | });</code></pre> | 
|  |  | 
|  | <p> | 
|  | In order to do the counting aggregation we have to first specify that we want to key the stream on the value string, i.e. the lower cased word, with a <code>groupBy</code> operator. | 
|  | This operator generate a new grouped stream, which can then be aggregated by a <code>count</code> operator, which generates a running count on each of the grouped keys: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        KTable<String, Long> counts = | 
|  | source.flatMapValues(new ValueMapper<String, Iterable<String>>() { | 
|  | @Override | 
|  | public Iterable<String> apply(String value) { | 
|  | return Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+")); | 
|  | } | 
|  | }) | 
|  | .groupBy(new KeyValueMapper<String, String, String>() { | 
|  | @Override | 
|  | public String apply(String key, String value) { | 
|  | return value; | 
|  | } | 
|  | }) | 
|  | // Materialize the result into a KeyValueStore named "counts-store". | 
|  | // The Materialized store is always of type <Bytes, byte[]> as this is the format of the inner most store. | 
|  | .count(Materialized.<String, Long, KeyValueStore<Bytes, byte[]>> as("counts-store"));</code></pre> | 
|  |  | 
|  | <p> | 
|  | Note that the <code>count</code> operator has a <code>Materialized</code> parameter that specifies that the | 
|  | running count should be stored in a state store named <code>counts-store</code>. | 
|  | This <code>Counts</code> store can be queried in real-time, with details described in the <a href="/{{version}}/documentation/streams/developer-guide#streams_interactive_queries">Developer Manual</a>. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | We can also write the <code>counts</code> KTable's changelog stream back into another Kafka topic, say <code>streams-wordcount-output</code>. | 
|  | Because the result is a changelog stream, the output topic <code>streams-wordcount-output</code> should be configured with log compaction enabled. | 
|  | Note that this time the value type is no longer <code>String</code> but <code>Long</code>, so the default serialization classes are not viable for writing it to Kafka anymore. | 
|  | We need to provide overridden serialization methods for <code>Long</code> types, otherwise a runtime exception will be thrown: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        counts.toStream().to("streams-wordcount-output", Produced.with(Serdes.String(), Serdes.Long()));</code></pre> | 
|  |  | 
|  | <p> | 
|  | Note that in order to read the changelog stream from topic <code>streams-wordcount-output</code>, | 
|  | one needs to set the value deserialization as <code>org.apache.kafka.common.serialization.LongDeserializer</code>. | 
|  | Details of this can be found in the <a href="/{{version}}/documentation/streams/quickstart">Play with a Streams Application</a> section. | 
|  | Assuming lambda expression from JDK 8 can be used, the above code can be simplified as: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        KStream<String, String> source = builder.stream("streams-plaintext-input"); | 
|  | source.flatMapValues(value -> Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+"))) | 
|  | .groupBy((key, value) -> value) | 
|  | .count(Materialized.<String, Long, KeyValueStore<Bytes, byte[]>>as("counts-store")) | 
|  | .toStream() | 
|  | .to("streams-wordcount-output", Produced.with(Serdes.String(), Serdes.Long()));</code></pre> | 
|  |  | 
|  | <p> | 
|  | If we again describe this augmented topology as <code>System.out.println(topology.describe())</code>, we will get the following: | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-bash">        > mvn clean package | 
|  | > mvn exec:java -Dexec.mainClass=myapps.WordCount | 
|  | Sub-topologies: | 
|  | Sub-topology: 0 | 
|  | Source: KSTREAM-SOURCE-0000000000(topics: streams-plaintext-input) --> KSTREAM-FLATMAPVALUES-0000000001 | 
|  | Processor: KSTREAM-FLATMAPVALUES-0000000001(stores: []) --> KSTREAM-KEY-SELECT-0000000002 <-- KSTREAM-SOURCE-0000000000 | 
|  | Processor: KSTREAM-KEY-SELECT-0000000002(stores: []) --> KSTREAM-FILTER-0000000005 <-- KSTREAM-FLATMAPVALUES-0000000001 | 
|  | Processor: KSTREAM-FILTER-0000000005(stores: []) --> KSTREAM-SINK-0000000004 <-- KSTREAM-KEY-SELECT-0000000002 | 
|  | Sink: KSTREAM-SINK-0000000004(topic: Counts-repartition) <-- KSTREAM-FILTER-0000000005 | 
|  | Sub-topology: 1 | 
|  | Source: KSTREAM-SOURCE-0000000006(topics: Counts-repartition) --> KSTREAM-AGGREGATE-0000000003 | 
|  | Processor: KSTREAM-AGGREGATE-0000000003(stores: [Counts]) --> KTABLE-TOSTREAM-0000000007 <-- KSTREAM-SOURCE-0000000006 | 
|  | Processor: KTABLE-TOSTREAM-0000000007(stores: []) --> KSTREAM-SINK-0000000008 <-- KSTREAM-AGGREGATE-0000000003 | 
|  | Sink: KSTREAM-SINK-0000000008(topic: streams-wordcount-output) <-- KTABLE-TOSTREAM-0000000007 | 
|  | Global Stores: | 
|  | none</code></pre> | 
|  |  | 
|  | <p> | 
|  | As we can see above, the topology now contains two disconnected sub-topologies. | 
|  | The first sub-topology's sink node <code>KSTREAM-SINK-0000000004</code> will write to a repartition topic <code>Counts-repartition</code>, | 
|  | which will be read by the second sub-topology's source node <code>KSTREAM-SOURCE-0000000006</code>. | 
|  | The repartition topic is used to "shuffle" the source stream by its aggregation key, which is in this case the value string. | 
|  | In addition, inside the first sub-topology a stateless <code>KSTREAM-FILTER-0000000005</code> node is injected between the grouping <code>KSTREAM-KEY-SELECT-0000000002</code> node and the sink node to filter out any intermediate record whose aggregate key is empty. | 
|  | </p> | 
|  | <p> | 
|  | In the second sub-topology, the aggregation node <code>KSTREAM-AGGREGATE-0000000003</code> is associated with a state store named <code>Counts</code> (the name is specified by the user in the <code>count</code> operator). | 
|  | Upon receiving each record from its upcoming stream source node, the aggregation processor will first query its associated <code>Counts</code> store to get the current count for that key, augment by one, and then write the new count back to the store. | 
|  | Each updated count for the key will also be piped downstream to the <code>KTABLE-TOSTREAM-0000000007</code> node, which interpret this update stream as a record stream before further piping to the sink node <code>KSTREAM-SINK-0000000008</code> for writing back to Kafka. | 
|  | </p> | 
|  |  | 
|  | <p> | 
|  | The complete code looks like this (assuming lambda expression is used): | 
|  | </p> | 
|  |  | 
|  | <pre class="line-numbers"><code class="language-java">        package myapps; | 
|  |  | 
|  | import org.apache.kafka.common.serialization.Serdes; | 
|  | import org.apache.kafka.common.utils.Bytes; | 
|  | import org.apache.kafka.streams.KafkaStreams; | 
|  | import org.apache.kafka.streams.StreamsBuilder; | 
|  | import org.apache.kafka.streams.StreamsConfig; | 
|  | import org.apache.kafka.streams.Topology; | 
|  | import org.apache.kafka.streams.kstream.KStream; | 
|  | import org.apache.kafka.streams.kstream.Materialized; | 
|  | import org.apache.kafka.streams.kstream.Produced; | 
|  | import org.apache.kafka.streams.state.KeyValueStore; | 
|  |  | 
|  | import java.util.Arrays; | 
|  | import java.util.Locale; | 
|  | import java.util.Properties; | 
|  | import java.util.concurrent.CountDownLatch; | 
|  |  | 
|  | public class WordCount { | 
|  |  | 
|  | public static void main(String[] args) throws Exception { | 
|  | Properties props = new Properties(); | 
|  | props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-wordcount"); | 
|  | props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); | 
|  | props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass()); | 
|  | props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass()); | 
|  |  | 
|  | final StreamsBuilder builder = new StreamsBuilder(); | 
|  |  | 
|  | KStream<String, String> source = builder.stream("streams-plaintext-input"); | 
|  | source.flatMapValues(value -> Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+"))) | 
|  | .groupBy((key, value) -> value) | 
|  | .count(Materialized.<String, Long, KeyValueStore<Bytes, byte[]>>as("counts-store")) | 
|  | .toStream() | 
|  | .to("streams-wordcount-output", Produced.with(Serdes.String(), Serdes.Long())); | 
|  |  | 
|  | final Topology topology = builder.build(); | 
|  | final KafkaStreams streams = new KafkaStreams(topology, props); | 
|  | final CountDownLatch latch = new CountDownLatch(1); | 
|  |  | 
|  | // ... same as Pipe.java above | 
|  | } | 
|  | }</code></pre> | 
|  |  | 
|  | <div class="pagination"> | 
|  | <a href="/{{version}}/documentation/streams/quickstart" class="pagination__btn pagination__btn__prev">Previous</a> | 
|  | <a href="/{{version}}/documentation/streams/core-concepts" class="pagination__btn pagination__btn__next">Next</a> | 
|  | </div> | 
|  | </script> | 
|  |  | 
|  | <div class="p-quickstart-streams"></div> | 
|  |  | 
|  | <!--#include virtual="../../includes/_header.htm" --> | 
|  | <!--#include virtual="../../includes/_top.htm" --> | 
|  | <div class="content documentation"> | 
|  | <!--#include virtual="../../includes/_nav.htm" --> | 
|  | <div class="right"> | 
|  | <!--#include virtual="../../includes/_docs_banner.htm" --> | 
|  | <ul class="breadcrumbs"> | 
|  | <li><a href="/documentation">Documentation</a></li> | 
|  | <li><a href="/documentation/streams">Kafka Streams</a></li> | 
|  | </ul> | 
|  | <div class="p-content"></div> | 
|  | </div> | 
|  | </div> | 
|  | <!--#include virtual="../../includes/_footer.htm" --> | 
|  | <script> | 
|  | $(function() { | 
|  | // Show selected style on nav item | 
|  | $('.b-nav__streams').addClass('selected'); | 
|  |  | 
|  | //sticky secondary nav | 
|  | var $navbar = $(".sub-nav-sticky"), | 
|  | y_pos = $navbar.offset().top, | 
|  | height = $navbar.height(); | 
|  |  | 
|  | $(window).scroll(function() { | 
|  | var scrollTop = $(window).scrollTop(); | 
|  |  | 
|  | if (scrollTop > y_pos - height) { | 
|  | $navbar.addClass("navbar-fixed") | 
|  | } else if (scrollTop <= y_pos) { | 
|  | $navbar.removeClass("navbar-fixed") | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Display docs subnav items | 
|  | $('.b-nav__docs').parent().toggleClass('nav__item__with__subs--expanded'); | 
|  | }); | 
|  | </script> |