blob: b560918ec5bd8308e6980835133863953cc33e88 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from PyCGraph import GPipeline
from hugegraph_llm.config import huge_settings, index_settings
from hugegraph_llm.flows.common import BaseFlow
from hugegraph_llm.models.embeddings.init_embedding import Embeddings
from hugegraph_llm.state.ai_state import WkFlowInput, WkFlowState
from hugegraph_llm.nodes.hugegraph_node.fetch_graph_data import FetchGraphDataNode
# pylint: disable=arguments-differ,keyword-arg-before-vararg
class GetGraphIndexInfoFlow(BaseFlow):
def __init__(self):
pass
def prepare(self, prepared_input: WkFlowInput, **kwargs):
return
def build_flow(self, **kwargs):
pipeline = GPipeline()
prepared_input = WkFlowInput()
self.prepare(prepared_input, **kwargs)
pipeline.createGParam(prepared_input, "wkflow_input")
pipeline.createGParam(WkFlowState(), "wkflow_state")
fetch_node = FetchGraphDataNode()
pipeline.registerGElement(fetch_node, set(), "fetch_node")
return pipeline
def post_deal(self, pipeline=None):
# Lazy import to avoid circular dependency
from hugegraph_llm.utils.vector_index_utils import get_vector_index_class # pylint: disable=import-outside-toplevel
graph_summary_info = pipeline.getGParamWithNoEmpty("wkflow_state").to_json()
try:
vector_index_class = get_vector_index_class(index_settings.cur_vector_index)
embedding = Embeddings().get_embedding()
vector_index = vector_index_class.from_name(
embedding.get_embedding_dim(), huge_settings.graph_name, "graph_vids"
)
graph_summary_info["vid_index"] = vector_index.get_vector_index_info()
except Exception: # pylint: disable=broad-except
# If vector index doesn't exist or fails to load, just return graph summary
pass
return json.dumps(graph_summary_info, ensure_ascii=False, indent=2)