blob: 9588f5c8df854808078cb6173f8134b8c5a70f89 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# Functional tests running the TPCH and TPCDS workload twice to test tuple cache.
from __future__ import absolute_import, division, print_function
import pytest
from tests.common.environ import IS_TUPLE_CACHE_CORRECT_CHECK
from tests.common.impala_test_suite import ImpalaTestSuite
from tests.common.skip import SkipIf
from tests.common.test_dimensions import create_single_exec_option_dimension
from tests.util.test_file_parser import load_tpc_queries_name_sorted
MT_DOP_VALUES = [0, 4]
def run_tuple_cache_test(self, vector, query, mtdop):
vector.get_value('exec_option')['enable_tuple_cache'] = True
# Use a long runtime filter wait time (1 minute) to ensure filters arrive before
# generating the tuple cache for correctness check.
if IS_TUPLE_CACHE_CORRECT_CHECK:
vector.get_value('exec_option')['runtime_filter_wait_time_ms'] = 600000
vector.get_value('exec_option')['enable_tuple_cache_verification'] = True
vector.get_value('exec_option')['tuple_cache_placement_policy'] = 'all_eligible'
vector.get_value('exec_option')['mt_dop'] = mtdop
# Run twice to test write and read the tuple cache.
self.run_test_case(query, vector)
self.run_test_case(query, vector)
@SkipIf.not_tuple_cache
class TestTupleCacheTpchQuery(ImpalaTestSuite):
@classmethod
def get_workload(self):
return 'tpch'
@classmethod
def add_test_dimensions(cls):
super(TestTupleCacheTpchQuery, cls).add_test_dimensions()
if cls.exploration_strategy() != 'exhaustive':
cls.ImpalaTestMatrix.add_dimension(create_single_exec_option_dimension())
cls.ImpalaTestMatrix.add_constraint(lambda v:
v.get_value('table_format').file_format == 'parquet'
and v.get_value('table_format').compression_codec == 'none')
@pytest.mark.parametrize("query", load_tpc_queries_name_sorted('tpch'))
@pytest.mark.parametrize("mtdop", MT_DOP_VALUES)
def test_tpch(self, vector, query, mtdop):
run_tuple_cache_test(self, vector, query, mtdop)
@SkipIf.not_tuple_cache
class TestTupleCacheTpcdsQuery(ImpalaTestSuite):
@classmethod
def get_workload(self):
return 'tpcds'
@classmethod
def add_test_dimensions(cls):
super(TestTupleCacheTpcdsQuery, cls).add_test_dimensions()
if cls.exploration_strategy() != 'exhaustive':
cls.ImpalaTestMatrix.add_dimension(create_single_exec_option_dimension())
cls.ImpalaTestMatrix.add_constraint(lambda v:
v.get_value('table_format').file_format == 'parquet'
and v.get_value('table_format').compression_codec == 'none')
@pytest.mark.parametrize("query", load_tpc_queries_name_sorted('tpcds'))
@pytest.mark.parametrize("mtdop", MT_DOP_VALUES)
def test_tpcds(self, vector, query, mtdop):
run_tuple_cache_test(self, vector, query, mtdop)