blob: 3a71c230bebe63440f132249273187a8a2c30754 [file] [log] [blame]
/*
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.regionserver;
import java.io.IOException;
import java.io.InterruptedIOException;
import java.net.InetSocketAddress;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.NavigableSet;
import java.util.Optional;
import java.util.OptionalDouble;
import java.util.OptionalInt;
import java.util.OptionalLong;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.CompletionService;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorCompletionService;
import java.util.concurrent.Future;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.LongAdder;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import java.util.function.Predicate;
import java.util.function.ToLongFunction;
import java.util.stream.Collectors;
import java.util.stream.LongStream;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.permission.FsAction;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellComparator;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.CompoundConfiguration;
import org.apache.hadoop.hbase.HConstants;
import org.apache.hadoop.hbase.MemoryCompactionPolicy;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.backup.FailedArchiveException;
import org.apache.hadoop.hbase.client.ColumnFamilyDescriptor;
import org.apache.hadoop.hbase.client.RegionInfo;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.conf.ConfigurationManager;
import org.apache.hadoop.hbase.conf.PropagatingConfigurationObserver;
import org.apache.hadoop.hbase.io.HeapSize;
import org.apache.hadoop.hbase.io.compress.Compression;
import org.apache.hadoop.hbase.io.crypto.Encryption;
import org.apache.hadoop.hbase.io.hfile.CacheConfig;
import org.apache.hadoop.hbase.io.hfile.HFile;
import org.apache.hadoop.hbase.io.hfile.HFileContext;
import org.apache.hadoop.hbase.io.hfile.HFileContextBuilder;
import org.apache.hadoop.hbase.io.hfile.HFileDataBlockEncoder;
import org.apache.hadoop.hbase.io.hfile.HFileDataBlockEncoderImpl;
import org.apache.hadoop.hbase.io.hfile.HFileScanner;
import org.apache.hadoop.hbase.io.hfile.InvalidHFileException;
import org.apache.hadoop.hbase.log.HBaseMarkers;
import org.apache.hadoop.hbase.monitoring.MonitoredTask;
import org.apache.hadoop.hbase.quotas.RegionSizeStore;
import org.apache.hadoop.hbase.regionserver.compactions.CompactionContext;
import org.apache.hadoop.hbase.regionserver.compactions.CompactionLifeCycleTracker;
import org.apache.hadoop.hbase.regionserver.compactions.CompactionProgress;
import org.apache.hadoop.hbase.regionserver.compactions.CompactionRequestImpl;
import org.apache.hadoop.hbase.regionserver.compactions.DefaultCompactor;
import org.apache.hadoop.hbase.regionserver.compactions.OffPeakHours;
import org.apache.hadoop.hbase.regionserver.querymatcher.ScanQueryMatcher;
import org.apache.hadoop.hbase.regionserver.throttle.ThroughputController;
import org.apache.hadoop.hbase.regionserver.wal.WALUtil;
import org.apache.hadoop.hbase.security.EncryptionUtil;
import org.apache.hadoop.hbase.security.User;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.hbase.util.ChecksumType;
import org.apache.hadoop.hbase.util.ClassSize;
import org.apache.hadoop.hbase.util.CommonFSUtils;
import org.apache.hadoop.hbase.util.EnvironmentEdgeManager;
import org.apache.hadoop.hbase.util.Pair;
import org.apache.hadoop.hbase.util.ReflectionUtils;
import org.apache.hadoop.util.StringUtils;
import org.apache.hadoop.util.StringUtils.TraditionalBinaryPrefix;
import org.apache.yetus.audience.InterfaceAudience;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.hbase.thirdparty.com.google.common.base.Preconditions;
import org.apache.hbase.thirdparty.com.google.common.collect.ImmutableCollection;
import org.apache.hbase.thirdparty.com.google.common.collect.ImmutableList;
import org.apache.hbase.thirdparty.com.google.common.collect.Lists;
import org.apache.hbase.thirdparty.com.google.common.collect.Maps;
import org.apache.hbase.thirdparty.com.google.common.collect.Sets;
import org.apache.hbase.thirdparty.org.apache.commons.collections4.CollectionUtils;
import org.apache.hbase.thirdparty.org.apache.commons.collections4.IterableUtils;
import org.apache.hadoop.hbase.shaded.protobuf.ProtobufUtil;
import org.apache.hadoop.hbase.shaded.protobuf.generated.WALProtos.CompactionDescriptor;
/**
* A Store holds a column family in a Region. Its a memstore and a set of zero
* or more StoreFiles, which stretch backwards over time.
*
* <p>There's no reason to consider append-logging at this level; all logging
* and locking is handled at the HRegion level. Store just provides
* services to manage sets of StoreFiles. One of the most important of those
* services is compaction services where files are aggregated once they pass
* a configurable threshold.
*
* <p>Locking and transactions are handled at a higher level. This API should
* not be called directly but by an HRegion manager.
*/
@InterfaceAudience.Private
public class HStore implements Store, HeapSize, StoreConfigInformation,
PropagatingConfigurationObserver {
public static final String MEMSTORE_CLASS_NAME = "hbase.regionserver.memstore.class";
public static final String COMPACTCHECKER_INTERVAL_MULTIPLIER_KEY =
"hbase.server.compactchecker.interval.multiplier";
public static final String BLOCKING_STOREFILES_KEY = "hbase.hstore.blockingStoreFiles";
public static final String BLOCK_STORAGE_POLICY_KEY = "hbase.hstore.block.storage.policy";
// keep in accordance with HDFS default storage policy
public static final String DEFAULT_BLOCK_STORAGE_POLICY = "HOT";
public static final int DEFAULT_COMPACTCHECKER_INTERVAL_MULTIPLIER = 1000;
public static final int DEFAULT_BLOCKING_STOREFILE_COUNT = 16;
// HBASE-24428 : Update compaction priority for recently split daughter regions
// so as to prioritize their compaction.
// Any compaction candidate with higher priority than compaction of newly split daugher regions
// should have priority value < (Integer.MIN_VALUE + 1000)
private static final int SPLIT_REGION_COMPACTION_PRIORITY = Integer.MIN_VALUE + 1000;
private static final Logger LOG = LoggerFactory.getLogger(HStore.class);
protected final MemStore memstore;
// This stores directory in the filesystem.
protected final HRegion region;
private final ColumnFamilyDescriptor family;
private final HRegionFileSystem fs;
protected Configuration conf;
protected CacheConfig cacheConf;
private long lastCompactSize = 0;
volatile boolean forceMajor = false;
private AtomicLong storeSize = new AtomicLong();
private AtomicLong totalUncompressedBytes = new AtomicLong();
private LongAdder memstoreOnlyRowReadsCount = new LongAdder();
// rows that has cells from both memstore and files (or only files)
private LongAdder mixedRowReadsCount = new LongAdder();
private boolean cacheOnWriteLogged;
/**
* RWLock for store operations.
* Locked in shared mode when the list of component stores is looked at:
* - all reads/writes to table data
* - checking for split
* Locked in exclusive mode when the list of component stores is modified:
* - closing
* - completing a compaction
*/
final ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
/**
* Lock specific to archiving compacted store files. This avoids races around
* the combination of retrieving the list of compacted files and moving them to
* the archive directory. Since this is usually a background process (other than
* on close), we don't want to handle this with the store write lock, which would
* block readers and degrade performance.
*
* Locked by:
* - CompactedHFilesDispatchHandler via closeAndArchiveCompactedFiles()
* - close()
*/
final ReentrantLock archiveLock = new ReentrantLock();
private final boolean verifyBulkLoads;
/**
* Use this counter to track concurrent puts. If TRACE-log is enabled, if we are over the
* threshold set by hbase.region.store.parallel.put.print.threshold (Default is 50) we will
* log a message that identifies the Store experience this high-level of concurrency.
*/
private final AtomicInteger currentParallelPutCount = new AtomicInteger(0);
private final int parallelPutCountPrintThreshold;
private ScanInfo scanInfo;
// All access must be synchronized.
// TODO: ideally, this should be part of storeFileManager, as we keep passing this to it.
private final List<HStoreFile> filesCompacting = Lists.newArrayList();
// All access must be synchronized.
private final Set<ChangedReadersObserver> changedReaderObservers =
Collections.newSetFromMap(new ConcurrentHashMap<ChangedReadersObserver, Boolean>());
protected final int blocksize;
private HFileDataBlockEncoder dataBlockEncoder;
/** Checksum configuration */
protected ChecksumType checksumType;
protected int bytesPerChecksum;
// Comparing KeyValues
protected final CellComparator comparator;
final StoreEngine<?, ?, ?, ?> storeEngine;
private static final AtomicBoolean offPeakCompactionTracker = new AtomicBoolean();
private volatile OffPeakHours offPeakHours;
private static final int DEFAULT_FLUSH_RETRIES_NUMBER = 10;
private int flushRetriesNumber;
private int pauseTime;
private long blockingFileCount;
private int compactionCheckMultiplier;
protected Encryption.Context cryptoContext = Encryption.Context.NONE;
private AtomicLong flushedCellsCount = new AtomicLong();
private AtomicLong compactedCellsCount = new AtomicLong();
private AtomicLong majorCompactedCellsCount = new AtomicLong();
private AtomicLong flushedCellsSize = new AtomicLong();
private AtomicLong flushedOutputFileSize = new AtomicLong();
private AtomicLong compactedCellsSize = new AtomicLong();
private AtomicLong majorCompactedCellsSize = new AtomicLong();
/**
* Constructor
* @param family HColumnDescriptor for this column
* @param confParam configuration object failed. Can be null.
*/
protected HStore(final HRegion region, final ColumnFamilyDescriptor family,
final Configuration confParam, boolean warmup) throws IOException {
this.fs = region.getRegionFileSystem();
// Assemble the store's home directory and Ensure it exists.
fs.createStoreDir(family.getNameAsString());
this.region = region;
this.family = family;
// 'conf' renamed to 'confParam' b/c we use this.conf in the constructor
// CompoundConfiguration will look for keys in reverse order of addition, so we'd
// add global config first, then table and cf overrides, then cf metadata.
this.conf = new CompoundConfiguration()
.add(confParam)
.addBytesMap(region.getTableDescriptor().getValues())
.addStringMap(family.getConfiguration())
.addBytesMap(family.getValues());
this.blocksize = family.getBlocksize();
// set block storage policy for store directory
String policyName = family.getStoragePolicy();
if (null == policyName) {
policyName = this.conf.get(BLOCK_STORAGE_POLICY_KEY, DEFAULT_BLOCK_STORAGE_POLICY);
}
this.fs.setStoragePolicy(family.getNameAsString(), policyName.trim());
this.dataBlockEncoder = new HFileDataBlockEncoderImpl(family.getDataBlockEncoding());
this.comparator = region.getCellComparator();
// used by ScanQueryMatcher
long timeToPurgeDeletes =
Math.max(conf.getLong("hbase.hstore.time.to.purge.deletes", 0), 0);
LOG.trace("Time to purge deletes set to {}ms in {}", timeToPurgeDeletes, this);
// Get TTL
long ttl = determineTTLFromFamily(family);
// Why not just pass a HColumnDescriptor in here altogether? Even if have
// to clone it?
scanInfo = new ScanInfo(conf, family, ttl, timeToPurgeDeletes, this.comparator);
this.memstore = getMemstore();
this.offPeakHours = OffPeakHours.getInstance(conf);
// Setting up cache configuration for this family
createCacheConf(family);
this.verifyBulkLoads = conf.getBoolean("hbase.hstore.bulkload.verify", false);
this.blockingFileCount =
conf.getInt(BLOCKING_STOREFILES_KEY, DEFAULT_BLOCKING_STOREFILE_COUNT);
this.compactionCheckMultiplier = conf.getInt(
COMPACTCHECKER_INTERVAL_MULTIPLIER_KEY, DEFAULT_COMPACTCHECKER_INTERVAL_MULTIPLIER);
if (this.compactionCheckMultiplier <= 0) {
LOG.error("Compaction check period multiplier must be positive, setting default: {}",
DEFAULT_COMPACTCHECKER_INTERVAL_MULTIPLIER);
this.compactionCheckMultiplier = DEFAULT_COMPACTCHECKER_INTERVAL_MULTIPLIER;
}
this.storeEngine = createStoreEngine(this, this.conf, this.comparator);
List<HStoreFile> hStoreFiles = loadStoreFiles(warmup);
// Move the storeSize calculation out of loadStoreFiles() method, because the secondary read
// replica's refreshStoreFiles() will also use loadStoreFiles() to refresh its store files and
// update the storeSize in the completeCompaction(..) finally (just like compaction) , so
// no need calculate the storeSize twice.
this.storeSize.addAndGet(getStorefilesSize(hStoreFiles, sf -> true));
this.totalUncompressedBytes.addAndGet(getTotalUncompressedBytes(hStoreFiles));
this.storeEngine.getStoreFileManager().loadFiles(hStoreFiles);
// Initialize checksum type from name. The names are CRC32, CRC32C, etc.
this.checksumType = getChecksumType(conf);
// Initialize bytes per checksum
this.bytesPerChecksum = getBytesPerChecksum(conf);
flushRetriesNumber = conf.getInt(
"hbase.hstore.flush.retries.number", DEFAULT_FLUSH_RETRIES_NUMBER);
pauseTime = conf.getInt(HConstants.HBASE_SERVER_PAUSE, HConstants.DEFAULT_HBASE_SERVER_PAUSE);
if (flushRetriesNumber <= 0) {
throw new IllegalArgumentException(
"hbase.hstore.flush.retries.number must be > 0, not "
+ flushRetriesNumber);
}
cryptoContext = EncryptionUtil.createEncryptionContext(conf, family);
int confPrintThreshold =
this.conf.getInt("hbase.region.store.parallel.put.print.threshold", 50);
if (confPrintThreshold < 10) {
confPrintThreshold = 10;
}
this.parallelPutCountPrintThreshold = confPrintThreshold;
LOG.info("Store={}, memstore type={}, storagePolicy={}, verifyBulkLoads={}, "
+ "parallelPutCountPrintThreshold={}, encoding={}, compression={}",
this, memstore.getClass().getSimpleName(), policyName, verifyBulkLoads,
parallelPutCountPrintThreshold, family.getDataBlockEncoding(),
family.getCompressionType());
cacheOnWriteLogged = false;
}
/**
* @return MemStore Instance to use in this store.
*/
private MemStore getMemstore() {
MemStore ms = null;
// Check if in-memory-compaction configured. Note MemoryCompactionPolicy is an enum!
MemoryCompactionPolicy inMemoryCompaction = null;
if (this.getTableName().isSystemTable()) {
inMemoryCompaction = MemoryCompactionPolicy.valueOf(
conf.get("hbase.systemtables.compacting.memstore.type", "NONE"));
} else {
inMemoryCompaction = family.getInMemoryCompaction();
}
if (inMemoryCompaction == null) {
inMemoryCompaction =
MemoryCompactionPolicy.valueOf(conf.get(CompactingMemStore.COMPACTING_MEMSTORE_TYPE_KEY,
CompactingMemStore.COMPACTING_MEMSTORE_TYPE_DEFAULT).toUpperCase());
}
switch (inMemoryCompaction) {
case NONE:
ms = ReflectionUtils.newInstance(DefaultMemStore.class,
new Object[] { conf, this.comparator,
this.getHRegion().getRegionServicesForStores()});
break;
default:
Class<? extends CompactingMemStore> clz = conf.getClass(MEMSTORE_CLASS_NAME,
CompactingMemStore.class, CompactingMemStore.class);
ms = ReflectionUtils.newInstance(clz, new Object[]{conf, this.comparator, this,
this.getHRegion().getRegionServicesForStores(), inMemoryCompaction});
}
return ms;
}
/**
* Creates the cache config.
* @param family The current column family.
*/
protected void createCacheConf(final ColumnFamilyDescriptor family) {
this.cacheConf = new CacheConfig(conf, family, region.getBlockCache(),
region.getRegionServicesForStores().getByteBuffAllocator());
LOG.info("Created cacheConfig: " + this.getCacheConfig() + " for " + this);
}
/**
* Creates the store engine configured for the given Store.
* @param store The store. An unfortunate dependency needed due to it
* being passed to coprocessors via the compactor.
* @param conf Store configuration.
* @param kvComparator KVComparator for storeFileManager.
* @return StoreEngine to use.
*/
protected StoreEngine<?, ?, ?, ?> createStoreEngine(HStore store, Configuration conf,
CellComparator kvComparator) throws IOException {
return StoreEngine.create(store, conf, comparator);
}
/**
* @return TTL in seconds of the specified family
*/
public static long determineTTLFromFamily(final ColumnFamilyDescriptor family) {
// HCD.getTimeToLive returns ttl in seconds. Convert to milliseconds.
long ttl = family.getTimeToLive();
if (ttl == HConstants.FOREVER) {
// Default is unlimited ttl.
ttl = Long.MAX_VALUE;
} else if (ttl == -1) {
ttl = Long.MAX_VALUE;
} else {
// Second -> ms adjust for user data
ttl *= 1000;
}
return ttl;
}
@Override
public String getColumnFamilyName() {
return this.family.getNameAsString();
}
@Override
public TableName getTableName() {
return this.getRegionInfo().getTable();
}
@Override
public FileSystem getFileSystem() {
return this.fs.getFileSystem();
}
public HRegionFileSystem getRegionFileSystem() {
return this.fs;
}
/* Implementation of StoreConfigInformation */
@Override
public long getStoreFileTtl() {
// TTL only applies if there's no MIN_VERSIONs setting on the column.
return (this.scanInfo.getMinVersions() == 0) ? this.scanInfo.getTtl() : Long.MAX_VALUE;
}
@Override
public long getMemStoreFlushSize() {
// TODO: Why is this in here? The flushsize of the region rather than the store? St.Ack
return this.region.memstoreFlushSize;
}
@Override
public MemStoreSize getFlushableSize() {
return this.memstore.getFlushableSize();
}
@Override
public MemStoreSize getSnapshotSize() {
return this.memstore.getSnapshotSize();
}
@Override
public long getCompactionCheckMultiplier() {
return this.compactionCheckMultiplier;
}
@Override
public long getBlockingFileCount() {
return blockingFileCount;
}
/* End implementation of StoreConfigInformation */
/**
* Returns the configured bytesPerChecksum value.
* @param conf The configuration
* @return The bytesPerChecksum that is set in the configuration
*/
public static int getBytesPerChecksum(Configuration conf) {
return conf.getInt(HConstants.BYTES_PER_CHECKSUM,
HFile.DEFAULT_BYTES_PER_CHECKSUM);
}
/**
* Returns the configured checksum algorithm.
* @param conf The configuration
* @return The checksum algorithm that is set in the configuration
*/
public static ChecksumType getChecksumType(Configuration conf) {
String checksumName = conf.get(HConstants.CHECKSUM_TYPE_NAME);
if (checksumName == null) {
return ChecksumType.getDefaultChecksumType();
} else {
return ChecksumType.nameToType(checksumName);
}
}
@Override
public ColumnFamilyDescriptor getColumnFamilyDescriptor() {
return this.family;
}
@Override
public OptionalLong getMaxSequenceId() {
return StoreUtils.getMaxSequenceIdInList(this.getStorefiles());
}
@Override
public OptionalLong getMaxMemStoreTS() {
return StoreUtils.getMaxMemStoreTSInList(this.getStorefiles());
}
/**
* @param tabledir {@link Path} to where the table is being stored
* @param hri {@link RegionInfo} for the region.
* @param family {@link ColumnFamilyDescriptor} describing the column family
* @return Path to family/Store home directory.
* @deprecated Since 05/05/2013, HBase-7808, hbase-1.0.0
*/
@Deprecated
public static Path getStoreHomedir(final Path tabledir,
final RegionInfo hri, final byte[] family) {
return getStoreHomedir(tabledir, hri.getEncodedName(), family);
}
/**
* @param tabledir {@link Path} to where the table is being stored
* @param encodedName Encoded region name.
* @param family {@link ColumnFamilyDescriptor} describing the column family
* @return Path to family/Store home directory.
* @deprecated Since 05/05/2013, HBase-7808, hbase-1.0.0
*/
@Deprecated
public static Path getStoreHomedir(final Path tabledir,
final String encodedName, final byte[] family) {
return new Path(tabledir, new Path(encodedName, Bytes.toString(family)));
}
/**
* @return the data block encoder
*/
public HFileDataBlockEncoder getDataBlockEncoder() {
return dataBlockEncoder;
}
/**
* Should be used only in tests.
* @param blockEncoder the block delta encoder to use
*/
void setDataBlockEncoderInTest(HFileDataBlockEncoder blockEncoder) {
this.dataBlockEncoder = blockEncoder;
}
/**
* Creates an unsorted list of StoreFile loaded in parallel
* from the given directory.
*/
private List<HStoreFile> loadStoreFiles(boolean warmup) throws IOException {
Collection<StoreFileInfo> files = fs.getStoreFiles(getColumnFamilyName());
return openStoreFiles(files, warmup);
}
private List<HStoreFile> openStoreFiles(Collection<StoreFileInfo> files, boolean warmup)
throws IOException {
if (CollectionUtils.isEmpty(files)) {
return Collections.emptyList();
}
// initialize the thread pool for opening store files in parallel..
ThreadPoolExecutor storeFileOpenerThreadPool =
this.region.getStoreFileOpenAndCloseThreadPool("StoreFileOpener-"
+ this.region.getRegionInfo().getEncodedName() + "-" + this.getColumnFamilyName());
CompletionService<HStoreFile> completionService =
new ExecutorCompletionService<>(storeFileOpenerThreadPool);
int totalValidStoreFile = 0;
for (StoreFileInfo storeFileInfo : files) {
// open each store file in parallel
completionService.submit(() -> this.createStoreFileAndReader(storeFileInfo));
totalValidStoreFile++;
}
Set<String> compactedStoreFiles = new HashSet<>();
ArrayList<HStoreFile> results = new ArrayList<>(files.size());
IOException ioe = null;
try {
for (int i = 0; i < totalValidStoreFile; i++) {
try {
HStoreFile storeFile = completionService.take().get();
if (storeFile != null) {
LOG.debug("loaded {}", storeFile);
results.add(storeFile);
compactedStoreFiles.addAll(storeFile.getCompactedStoreFiles());
}
} catch (InterruptedException e) {
if (ioe == null) {
ioe = new InterruptedIOException(e.getMessage());
}
} catch (ExecutionException e) {
if (ioe == null) {
ioe = new IOException(e.getCause());
}
}
}
} finally {
storeFileOpenerThreadPool.shutdownNow();
}
if (ioe != null) {
// close StoreFile readers
boolean evictOnClose =
cacheConf != null? cacheConf.shouldEvictOnClose(): true;
for (HStoreFile file : results) {
try {
if (file != null) {
file.closeStoreFile(evictOnClose);
}
} catch (IOException e) {
LOG.warn("Could not close store file {}", file, e);
}
}
throw ioe;
}
// Should not archive the compacted store files when region warmup. See HBASE-22163.
if (!warmup) {
// Remove the compacted files from result
List<HStoreFile> filesToRemove = new ArrayList<>(compactedStoreFiles.size());
for (HStoreFile storeFile : results) {
if (compactedStoreFiles.contains(storeFile.getPath().getName())) {
LOG.warn("Clearing the compacted storefile {} from {}", storeFile, this);
storeFile.getReader().close(storeFile.getCacheConf() != null ?
storeFile.getCacheConf().shouldEvictOnClose() : true);
filesToRemove.add(storeFile);
}
}
results.removeAll(filesToRemove);
if (!filesToRemove.isEmpty() && this.isPrimaryReplicaStore()) {
LOG.debug("Moving the files {} to archive", filesToRemove);
this.fs.removeStoreFiles(this.getColumnFamilyDescriptor().getNameAsString(), filesToRemove);
}
}
return results;
}
@Override
public void refreshStoreFiles() throws IOException {
Collection<StoreFileInfo> newFiles = fs.getStoreFiles(getColumnFamilyName());
refreshStoreFilesInternal(newFiles);
}
/**
* Replaces the store files that the store has with the given files. Mainly used by secondary
* region replicas to keep up to date with the primary region files.
*/
public void refreshStoreFiles(Collection<String> newFiles) throws IOException {
List<StoreFileInfo> storeFiles = new ArrayList<>(newFiles.size());
for (String file : newFiles) {
storeFiles.add(fs.getStoreFileInfo(getColumnFamilyName(), file));
}
refreshStoreFilesInternal(storeFiles);
}
/**
* Checks the underlying store files, and opens the files that have not
* been opened, and removes the store file readers for store files no longer
* available. Mainly used by secondary region replicas to keep up to date with
* the primary region files.
*/
private void refreshStoreFilesInternal(Collection<StoreFileInfo> newFiles) throws IOException {
StoreFileManager sfm = storeEngine.getStoreFileManager();
Collection<HStoreFile> currentFiles = sfm.getStorefiles();
Collection<HStoreFile> compactedFiles = sfm.getCompactedfiles();
if (currentFiles == null) {
currentFiles = Collections.emptySet();
}
if (newFiles == null) {
newFiles = Collections.emptySet();
}
if (compactedFiles == null) {
compactedFiles = Collections.emptySet();
}
HashMap<StoreFileInfo, HStoreFile> currentFilesSet = new HashMap<>(currentFiles.size());
for (HStoreFile sf : currentFiles) {
currentFilesSet.put(sf.getFileInfo(), sf);
}
HashMap<StoreFileInfo, HStoreFile> compactedFilesSet = new HashMap<>(compactedFiles.size());
for (HStoreFile sf : compactedFiles) {
compactedFilesSet.put(sf.getFileInfo(), sf);
}
Set<StoreFileInfo> newFilesSet = new HashSet<StoreFileInfo>(newFiles);
// Exclude the files that have already been compacted
newFilesSet = Sets.difference(newFilesSet, compactedFilesSet.keySet());
Set<StoreFileInfo> toBeAddedFiles = Sets.difference(newFilesSet, currentFilesSet.keySet());
Set<StoreFileInfo> toBeRemovedFiles = Sets.difference(currentFilesSet.keySet(), newFilesSet);
if (toBeAddedFiles.isEmpty() && toBeRemovedFiles.isEmpty()) {
return;
}
LOG.info("Refreshing store files for " + this + " files to add: "
+ toBeAddedFiles + " files to remove: " + toBeRemovedFiles);
Set<HStoreFile> toBeRemovedStoreFiles = new HashSet<>(toBeRemovedFiles.size());
for (StoreFileInfo sfi : toBeRemovedFiles) {
toBeRemovedStoreFiles.add(currentFilesSet.get(sfi));
}
// try to open the files
List<HStoreFile> openedFiles = openStoreFiles(toBeAddedFiles, false);
// propogate the file changes to the underlying store file manager
replaceStoreFiles(toBeRemovedStoreFiles, openedFiles); //won't throw an exception
// Advance the memstore read point to be at least the new store files seqIds so that
// readers might pick it up. This assumes that the store is not getting any writes (otherwise
// in-flight transactions might be made visible)
if (!toBeAddedFiles.isEmpty()) {
// we must have the max sequence id here as we do have several store files
region.getMVCC().advanceTo(this.getMaxSequenceId().getAsLong());
}
completeCompaction(toBeRemovedStoreFiles);
}
protected HStoreFile createStoreFileAndReader(final Path p) throws IOException {
StoreFileInfo info = new StoreFileInfo(conf, this.getFileSystem(),
p, isPrimaryReplicaStore());
return createStoreFileAndReader(info);
}
private HStoreFile createStoreFileAndReader(StoreFileInfo info) throws IOException {
info.setRegionCoprocessorHost(this.region.getCoprocessorHost());
HStoreFile storeFile = new HStoreFile(info, this.family.getBloomFilterType(), this.cacheConf);
storeFile.initReader();
return storeFile;
}
/**
* This message intends to inform the MemStore that next coming updates
* are going to be part of the replaying edits from WAL
*/
public void startReplayingFromWAL(){
this.memstore.startReplayingFromWAL();
}
/**
* This message intends to inform the MemStore that the replaying edits from WAL
* are done
*/
public void stopReplayingFromWAL(){
this.memstore.stopReplayingFromWAL();
}
/**
* Adds a value to the memstore
*/
public void add(final Cell cell, MemStoreSizing memstoreSizing) {
lock.readLock().lock();
try {
if (this.currentParallelPutCount.getAndIncrement() > this.parallelPutCountPrintThreshold) {
LOG.trace("tableName={}, encodedName={}, columnFamilyName={} is too busy!",
this.getTableName(), this.getRegionInfo().getEncodedName(), this.getColumnFamilyName());
}
this.memstore.add(cell, memstoreSizing);
} finally {
lock.readLock().unlock();
currentParallelPutCount.decrementAndGet();
}
}
/**
* Adds the specified value to the memstore
*/
public void add(final Iterable<Cell> cells, MemStoreSizing memstoreSizing) {
lock.readLock().lock();
try {
if (this.currentParallelPutCount.getAndIncrement() > this.parallelPutCountPrintThreshold) {
LOG.trace("tableName={}, encodedName={}, columnFamilyName={} is too busy!",
this.getTableName(), this.getRegionInfo().getEncodedName(), this.getColumnFamilyName());
}
memstore.add(cells, memstoreSizing);
} finally {
lock.readLock().unlock();
currentParallelPutCount.decrementAndGet();
}
}
@Override
public long timeOfOldestEdit() {
return memstore.timeOfOldestEdit();
}
/**
* @return All store files.
*/
@Override
public Collection<HStoreFile> getStorefiles() {
return this.storeEngine.getStoreFileManager().getStorefiles();
}
@Override
public Collection<HStoreFile> getCompactedFiles() {
return this.storeEngine.getStoreFileManager().getCompactedfiles();
}
/**
* This throws a WrongRegionException if the HFile does not fit in this region, or an
* InvalidHFileException if the HFile is not valid.
*/
public void assertBulkLoadHFileOk(Path srcPath) throws IOException {
HFile.Reader reader = null;
try {
LOG.info("Validating hfile at " + srcPath + " for inclusion in " + this);
FileSystem srcFs = srcPath.getFileSystem(conf);
srcFs.access(srcPath, FsAction.READ_WRITE);
reader = HFile.createReader(srcFs, srcPath, cacheConf, isPrimaryReplicaStore(), conf);
Optional<byte[]> firstKey = reader.getFirstRowKey();
Preconditions.checkState(firstKey.isPresent(), "First key can not be null");
Optional<Cell> lk = reader.getLastKey();
Preconditions.checkState(lk.isPresent(), "Last key can not be null");
byte[] lastKey = CellUtil.cloneRow(lk.get());
if (LOG.isDebugEnabled()) {
LOG.debug("HFile bounds: first=" + Bytes.toStringBinary(firstKey.get()) +
" last=" + Bytes.toStringBinary(lastKey));
LOG.debug("Region bounds: first=" +
Bytes.toStringBinary(getRegionInfo().getStartKey()) +
" last=" + Bytes.toStringBinary(getRegionInfo().getEndKey()));
}
if (!this.getRegionInfo().containsRange(firstKey.get(), lastKey)) {
throw new WrongRegionException(
"Bulk load file " + srcPath.toString() + " does not fit inside region "
+ this.getRegionInfo().getRegionNameAsString());
}
if(reader.length() > conf.getLong(HConstants.HREGION_MAX_FILESIZE,
HConstants.DEFAULT_MAX_FILE_SIZE)) {
LOG.warn("Trying to bulk load hfile " + srcPath + " with size: " +
reader.length() + " bytes can be problematic as it may lead to oversplitting.");
}
if (verifyBulkLoads) {
long verificationStartTime = EnvironmentEdgeManager.currentTime();
LOG.info("Full verification started for bulk load hfile: {}", srcPath);
Cell prevCell = null;
HFileScanner scanner = reader.getScanner(false, false, false);
scanner.seekTo();
do {
Cell cell = scanner.getCell();
if (prevCell != null) {
if (comparator.compareRows(prevCell, cell) > 0) {
throw new InvalidHFileException("Previous row is greater than"
+ " current row: path=" + srcPath + " previous="
+ CellUtil.getCellKeyAsString(prevCell) + " current="
+ CellUtil.getCellKeyAsString(cell));
}
if (CellComparator.getInstance().compareFamilies(prevCell, cell) != 0) {
throw new InvalidHFileException("Previous key had different"
+ " family compared to current key: path=" + srcPath
+ " previous="
+ Bytes.toStringBinary(prevCell.getFamilyArray(), prevCell.getFamilyOffset(),
prevCell.getFamilyLength())
+ " current="
+ Bytes.toStringBinary(cell.getFamilyArray(), cell.getFamilyOffset(),
cell.getFamilyLength()));
}
}
prevCell = cell;
} while (scanner.next());
LOG.info("Full verification complete for bulk load hfile: " + srcPath.toString() +
" took " + (EnvironmentEdgeManager.currentTime() - verificationStartTime) + " ms");
}
} finally {
if (reader != null) {
reader.close();
}
}
}
/**
* This method should only be called from Region. It is assumed that the ranges of values in the
* HFile fit within the stores assigned region. (assertBulkLoadHFileOk checks this)
*
* @param seqNum sequence Id associated with the HFile
*/
public Pair<Path, Path> preBulkLoadHFile(String srcPathStr, long seqNum) throws IOException {
Path srcPath = new Path(srcPathStr);
return fs.bulkLoadStoreFile(getColumnFamilyName(), srcPath, seqNum);
}
public Path bulkLoadHFile(byte[] family, String srcPathStr, Path dstPath) throws IOException {
Path srcPath = new Path(srcPathStr);
try {
fs.commitStoreFile(srcPath, dstPath);
} finally {
if (this.getCoprocessorHost() != null) {
this.getCoprocessorHost().postCommitStoreFile(family, srcPath, dstPath);
}
}
LOG.info("Loaded HFile " + srcPath + " into " + this + " as "
+ dstPath + " - updating store file list.");
HStoreFile sf = createStoreFileAndReader(dstPath);
bulkLoadHFile(sf);
LOG.info("Successfully loaded {} into {} (new location: {})",
srcPath, this, dstPath);
return dstPath;
}
public void bulkLoadHFile(StoreFileInfo fileInfo) throws IOException {
HStoreFile sf = createStoreFileAndReader(fileInfo);
bulkLoadHFile(sf);
}
private void bulkLoadHFile(HStoreFile sf) throws IOException {
StoreFileReader r = sf.getReader();
this.storeSize.addAndGet(r.length());
this.totalUncompressedBytes.addAndGet(r.getTotalUncompressedBytes());
// Append the new storefile into the list
this.lock.writeLock().lock();
try {
this.storeEngine.getStoreFileManager().insertNewFiles(Lists.newArrayList(sf));
} finally {
// We need the lock, as long as we are updating the storeFiles
// or changing the memstore. Let us release it before calling
// notifyChangeReadersObservers. See HBASE-4485 for a possible
// deadlock scenario that could have happened if continue to hold
// the lock.
this.lock.writeLock().unlock();
}
LOG.info("Loaded HFile " + sf.getFileInfo() + " into " + this);
if (LOG.isTraceEnabled()) {
String traceMessage = "BULK LOAD time,size,store size,store files ["
+ EnvironmentEdgeManager.currentTime() + "," + r.length() + "," + storeSize
+ "," + storeEngine.getStoreFileManager().getStorefileCount() + "]";
LOG.trace(traceMessage);
}
}
/**
* Close all the readers We don't need to worry about subsequent requests because the Region holds
* a write lock that will prevent any more reads or writes.
* @return the {@link StoreFile StoreFiles} that were previously being used.
* @throws IOException on failure
*/
public ImmutableCollection<HStoreFile> close() throws IOException {
this.archiveLock.lock();
this.lock.writeLock().lock();
try {
// Clear so metrics doesn't find them.
ImmutableCollection<HStoreFile> result = storeEngine.getStoreFileManager().clearFiles();
Collection<HStoreFile> compactedfiles =
storeEngine.getStoreFileManager().clearCompactedFiles();
// clear the compacted files
if (CollectionUtils.isNotEmpty(compactedfiles)) {
removeCompactedfiles(compactedfiles, cacheConf != null ?
cacheConf.shouldEvictOnClose() : true);
}
if (!result.isEmpty()) {
// initialize the thread pool for closing store files in parallel.
ThreadPoolExecutor storeFileCloserThreadPool = this.region
.getStoreFileOpenAndCloseThreadPool("StoreFileCloser-"
+ this.region.getRegionInfo().getEncodedName() + "-" + this.getColumnFamilyName());
// close each store file in parallel
CompletionService<Void> completionService =
new ExecutorCompletionService<>(storeFileCloserThreadPool);
for (HStoreFile f : result) {
completionService.submit(new Callable<Void>() {
@Override
public Void call() throws IOException {
boolean evictOnClose =
cacheConf != null? cacheConf.shouldEvictOnClose(): true;
f.closeStoreFile(evictOnClose);
return null;
}
});
}
IOException ioe = null;
try {
for (int i = 0; i < result.size(); i++) {
try {
Future<Void> future = completionService.take();
future.get();
} catch (InterruptedException e) {
if (ioe == null) {
ioe = new InterruptedIOException();
ioe.initCause(e);
}
} catch (ExecutionException e) {
if (ioe == null) {
ioe = new IOException(e.getCause());
}
}
}
} finally {
storeFileCloserThreadPool.shutdownNow();
}
if (ioe != null) {
throw ioe;
}
}
LOG.trace("Closed {}", this);
return result;
} finally {
this.lock.writeLock().unlock();
this.archiveLock.unlock();
}
}
/**
* Snapshot this stores memstore. Call before running
* {@link #flushCache(long, MemStoreSnapshot, MonitoredTask, ThroughputController,
* FlushLifeCycleTracker)}
* so it has some work to do.
*/
void snapshot() {
this.lock.writeLock().lock();
try {
this.memstore.snapshot();
} finally {
this.lock.writeLock().unlock();
}
}
/**
* Write out current snapshot. Presumes {@link #snapshot()} has been called previously.
* @param logCacheFlushId flush sequence number
* @return The path name of the tmp file to which the store was flushed
* @throws IOException if exception occurs during process
*/
protected List<Path> flushCache(final long logCacheFlushId, MemStoreSnapshot snapshot,
MonitoredTask status, ThroughputController throughputController,
FlushLifeCycleTracker tracker) throws IOException {
// If an exception happens flushing, we let it out without clearing
// the memstore snapshot. The old snapshot will be returned when we say
// 'snapshot', the next time flush comes around.
// Retry after catching exception when flushing, otherwise server will abort
// itself
StoreFlusher flusher = storeEngine.getStoreFlusher();
IOException lastException = null;
for (int i = 0; i < flushRetriesNumber; i++) {
try {
List<Path> pathNames =
flusher.flushSnapshot(snapshot, logCacheFlushId, status, throughputController, tracker);
Path lastPathName = null;
try {
for (Path pathName : pathNames) {
lastPathName = pathName;
validateStoreFile(pathName);
}
return pathNames;
} catch (Exception e) {
LOG.warn("Failed validating store file {}, retrying num={}", lastPathName, i, e);
if (e instanceof IOException) {
lastException = (IOException) e;
} else {
lastException = new IOException(e);
}
}
} catch (IOException e) {
LOG.warn("Failed flushing store file for {}, retrying num={}", this, i, e);
lastException = e;
}
if (lastException != null && i < (flushRetriesNumber - 1)) {
try {
Thread.sleep(pauseTime);
} catch (InterruptedException e) {
IOException iie = new InterruptedIOException();
iie.initCause(e);
throw iie;
}
}
}
throw lastException;
}
public HStoreFile tryCommitRecoveredHFile(Path path) throws IOException {
LOG.info("Validating recovered hfile at {} for inclusion in store {}", path, this);
FileSystem srcFs = path.getFileSystem(conf);
srcFs.access(path, FsAction.READ_WRITE);
try (HFile.Reader reader =
HFile.createReader(srcFs, path, cacheConf, isPrimaryReplicaStore(), conf)) {
Optional<byte[]> firstKey = reader.getFirstRowKey();
Preconditions.checkState(firstKey.isPresent(), "First key can not be null");
Optional<Cell> lk = reader.getLastKey();
Preconditions.checkState(lk.isPresent(), "Last key can not be null");
byte[] lastKey = CellUtil.cloneRow(lk.get());
if (!this.getRegionInfo().containsRange(firstKey.get(), lastKey)) {
throw new WrongRegionException("Recovered hfile " + path.toString() +
" does not fit inside region " + this.getRegionInfo().getRegionNameAsString());
}
}
Path dstPath = fs.commitStoreFile(getColumnFamilyName(), path);
HStoreFile sf = createStoreFileAndReader(dstPath);
StoreFileReader r = sf.getReader();
this.storeSize.addAndGet(r.length());
this.totalUncompressedBytes.addAndGet(r.getTotalUncompressedBytes());
this.lock.writeLock().lock();
try {
this.storeEngine.getStoreFileManager().insertNewFiles(Lists.newArrayList(sf));
} finally {
this.lock.writeLock().unlock();
}
LOG.info("Loaded recovered hfile to {}, entries={}, sequenceid={}, filesize={}", sf,
r.getEntries(), r.getSequenceID(), TraditionalBinaryPrefix.long2String(r.length(), "B", 1));
return sf;
}
/**
* @param path The pathname of the tmp file into which the store was flushed
* @return store file created.
*/
private HStoreFile commitFile(Path path, long logCacheFlushId, MonitoredTask status)
throws IOException {
// Write-out finished successfully, move into the right spot
Path dstPath = fs.commitStoreFile(getColumnFamilyName(), path);
status.setStatus("Flushing " + this + ": reopening flushed file");
HStoreFile sf = createStoreFileAndReader(dstPath);
StoreFileReader r = sf.getReader();
this.storeSize.addAndGet(r.length());
this.totalUncompressedBytes.addAndGet(r.getTotalUncompressedBytes());
if (LOG.isInfoEnabled()) {
LOG.info("Added " + sf + ", entries=" + r.getEntries() +
", sequenceid=" + logCacheFlushId +
", filesize=" + TraditionalBinaryPrefix.long2String(r.length(), "", 1));
}
return sf;
}
public StoreFileWriter createWriterInTmp(long maxKeyCount, Compression.Algorithm compression,
boolean isCompaction, boolean includeMVCCReadpoint, boolean includesTag,
boolean shouldDropBehind) throws IOException {
return createWriterInTmp(maxKeyCount, compression, isCompaction, includeMVCCReadpoint,
includesTag, shouldDropBehind, -1, HConstants.EMPTY_STRING);
}
/**
* @param compression Compression algorithm to use
* @param isCompaction whether we are creating a new file in a compaction
* @param includeMVCCReadpoint - whether to include MVCC or not
* @param includesTag - includesTag or not
* @return Writer for a new StoreFile in the tmp dir.
*/
// TODO : allow the Writer factory to create Writers of ShipperListener type only in case of
// compaction
public StoreFileWriter createWriterInTmp(long maxKeyCount, Compression.Algorithm compression,
boolean isCompaction, boolean includeMVCCReadpoint, boolean includesTag,
boolean shouldDropBehind, long totalCompactedFilesSize, String fileStoragePolicy)
throws IOException {
// creating new cache config for each new writer
final CacheConfig writerCacheConf = new CacheConfig(cacheConf);
if (isCompaction) {
// Don't cache data on write on compactions, unless specifically configured to do so
// Cache only when total file size remains lower than configured threshold
final boolean cacheCompactedBlocksOnWrite =
cacheConf.shouldCacheCompactedBlocksOnWrite();
// if data blocks are to be cached on write
// during compaction, we should forcefully
// cache index and bloom blocks as well
if (cacheCompactedBlocksOnWrite && totalCompactedFilesSize <= cacheConf
.getCacheCompactedBlocksOnWriteThreshold()) {
writerCacheConf.enableCacheOnWrite();
if (!cacheOnWriteLogged) {
LOG.info("For {} , cacheCompactedBlocksOnWrite is true, hence enabled " +
"cacheOnWrite for Data blocks, Index blocks and Bloom filter blocks", this);
cacheOnWriteLogged = true;
}
} else {
writerCacheConf.setCacheDataOnWrite(false);
if (totalCompactedFilesSize > cacheConf.getCacheCompactedBlocksOnWriteThreshold()) {
// checking condition once again for logging
LOG.debug(
"For {}, setting cacheCompactedBlocksOnWrite as false as total size of compacted "
+ "files - {}, is greater than cacheCompactedBlocksOnWriteThreshold - {}",
this, totalCompactedFilesSize,
cacheConf.getCacheCompactedBlocksOnWriteThreshold());
}
}
} else {
final boolean shouldCacheDataOnWrite = cacheConf.shouldCacheDataOnWrite();
if (shouldCacheDataOnWrite) {
writerCacheConf.enableCacheOnWrite();
if (!cacheOnWriteLogged) {
LOG.info("For {} , cacheDataOnWrite is true, hence enabled cacheOnWrite for " +
"Index blocks and Bloom filter blocks", this);
cacheOnWriteLogged = true;
}
}
}
InetSocketAddress[] favoredNodes = null;
if (region.getRegionServerServices() != null) {
favoredNodes = region.getRegionServerServices().getFavoredNodesForRegion(
region.getRegionInfo().getEncodedName());
}
HFileContext hFileContext = createFileContext(compression, includeMVCCReadpoint, includesTag,
cryptoContext);
Path familyTempDir = new Path(fs.getTempDir(), family.getNameAsString());
StoreFileWriter.Builder builder = new StoreFileWriter.Builder(conf, writerCacheConf,
this.getFileSystem())
.withOutputDir(familyTempDir)
.withBloomType(family.getBloomFilterType())
.withMaxKeyCount(maxKeyCount)
.withFavoredNodes(favoredNodes)
.withFileContext(hFileContext)
.withShouldDropCacheBehind(shouldDropBehind)
.withCompactedFilesSupplier(this::getCompactedFiles)
.withFileStoragePolicy(fileStoragePolicy);
return builder.build();
}
private HFileContext createFileContext(Compression.Algorithm compression,
boolean includeMVCCReadpoint, boolean includesTag, Encryption.Context cryptoContext) {
if (compression == null) {
compression = HFile.DEFAULT_COMPRESSION_ALGORITHM;
}
HFileContext hFileContext = new HFileContextBuilder()
.withIncludesMvcc(includeMVCCReadpoint)
.withIncludesTags(includesTag)
.withCompression(compression)
.withCompressTags(family.isCompressTags())
.withChecksumType(checksumType)
.withBytesPerCheckSum(bytesPerChecksum)
.withBlockSize(blocksize)
.withHBaseCheckSum(true)
.withDataBlockEncoding(family.getDataBlockEncoding())
.withEncryptionContext(cryptoContext)
.withCreateTime(EnvironmentEdgeManager.currentTime())
.withColumnFamily(family.getName())
.withTableName(region.getTableDescriptor()
.getTableName().getName())
.withCellComparator(this.comparator)
.build();
return hFileContext;
}
private long getTotalSize(Collection<HStoreFile> sfs) {
return sfs.stream().mapToLong(sf -> sf.getReader().length()).sum();
}
/**
* Change storeFiles adding into place the Reader produced by this new flush.
* @param sfs Store files
* @return Whether compaction is required.
*/
private boolean updateStorefiles(List<HStoreFile> sfs, long snapshotId) throws IOException {
this.lock.writeLock().lock();
try {
this.storeEngine.getStoreFileManager().insertNewFiles(sfs);
if (snapshotId > 0) {
this.memstore.clearSnapshot(snapshotId);
}
} finally {
// We need the lock, as long as we are updating the storeFiles
// or changing the memstore. Let us release it before calling
// notifyChangeReadersObservers. See HBASE-4485 for a possible
// deadlock scenario that could have happened if continue to hold
// the lock.
this.lock.writeLock().unlock();
}
// notify to be called here - only in case of flushes
notifyChangedReadersObservers(sfs);
if (LOG.isTraceEnabled()) {
long totalSize = getTotalSize(sfs);
String traceMessage = "FLUSH time,count,size,store size,store files ["
+ EnvironmentEdgeManager.currentTime() + "," + sfs.size() + "," + totalSize
+ "," + storeSize + "," + storeEngine.getStoreFileManager().getStorefileCount() + "]";
LOG.trace(traceMessage);
}
return needsCompaction();
}
/**
* Notify all observers that set of Readers has changed.
*/
private void notifyChangedReadersObservers(List<HStoreFile> sfs) throws IOException {
for (ChangedReadersObserver o : this.changedReaderObservers) {
List<KeyValueScanner> memStoreScanners;
this.lock.readLock().lock();
try {
memStoreScanners = this.memstore.getScanners(o.getReadPoint());
} finally {
this.lock.readLock().unlock();
}
o.updateReaders(sfs, memStoreScanners);
}
}
/**
* Get all scanners with no filtering based on TTL (that happens further down the line).
* @param cacheBlocks cache the blocks or not
* @param usePread true to use pread, false if not
* @param isCompaction true if the scanner is created for compaction
* @param matcher the scan query matcher
* @param startRow the start row
* @param stopRow the stop row
* @param readPt the read point of the current scan
* @return all scanners for this store
*/
public List<KeyValueScanner> getScanners(boolean cacheBlocks, boolean isGet, boolean usePread,
boolean isCompaction, ScanQueryMatcher matcher, byte[] startRow, byte[] stopRow, long readPt)
throws IOException {
return getScanners(cacheBlocks, usePread, isCompaction, matcher, startRow, true, stopRow, false,
readPt);
}
/**
* Get all scanners with no filtering based on TTL (that happens further down the line).
* @param cacheBlocks cache the blocks or not
* @param usePread true to use pread, false if not
* @param isCompaction true if the scanner is created for compaction
* @param matcher the scan query matcher
* @param startRow the start row
* @param includeStartRow true to include start row, false if not
* @param stopRow the stop row
* @param includeStopRow true to include stop row, false if not
* @param readPt the read point of the current scan
* @return all scanners for this store
*/
public List<KeyValueScanner> getScanners(boolean cacheBlocks, boolean usePread,
boolean isCompaction, ScanQueryMatcher matcher, byte[] startRow, boolean includeStartRow,
byte[] stopRow, boolean includeStopRow, long readPt) throws IOException {
Collection<HStoreFile> storeFilesToScan;
List<KeyValueScanner> memStoreScanners;
this.lock.readLock().lock();
try {
storeFilesToScan = this.storeEngine.getStoreFileManager().getFilesForScan(startRow,
includeStartRow, stopRow, includeStopRow);
memStoreScanners = this.memstore.getScanners(readPt);
} finally {
this.lock.readLock().unlock();
}
try {
// First the store file scanners
// TODO this used to get the store files in descending order,
// but now we get them in ascending order, which I think is
// actually more correct, since memstore get put at the end.
List<StoreFileScanner> sfScanners = StoreFileScanner
.getScannersForStoreFiles(storeFilesToScan, cacheBlocks, usePread, isCompaction, false,
matcher, readPt);
List<KeyValueScanner> scanners = new ArrayList<>(sfScanners.size() + 1);
scanners.addAll(sfScanners);
// Then the memstore scanners
scanners.addAll(memStoreScanners);
return scanners;
} catch (Throwable t) {
clearAndClose(memStoreScanners);
throw t instanceof IOException ? (IOException) t : new IOException(t);
}
}
private static void clearAndClose(List<KeyValueScanner> scanners) {
if (scanners == null) {
return;
}
for (KeyValueScanner s : scanners) {
s.close();
}
scanners.clear();
}
/**
* Create scanners on the given files and if needed on the memstore with no filtering based on TTL
* (that happens further down the line).
* @param files the list of files on which the scanners has to be created
* @param cacheBlocks cache the blocks or not
* @param usePread true to use pread, false if not
* @param isCompaction true if the scanner is created for compaction
* @param matcher the scan query matcher
* @param startRow the start row
* @param stopRow the stop row
* @param readPt the read point of the current scan
* @param includeMemstoreScanner true if memstore has to be included
* @return scanners on the given files and on the memstore if specified
*/
public List<KeyValueScanner> getScanners(List<HStoreFile> files, boolean cacheBlocks,
boolean isGet, boolean usePread, boolean isCompaction, ScanQueryMatcher matcher,
byte[] startRow, byte[] stopRow, long readPt, boolean includeMemstoreScanner)
throws IOException {
return getScanners(files, cacheBlocks, usePread, isCompaction, matcher, startRow, true, stopRow,
false, readPt, includeMemstoreScanner);
}
/**
* Create scanners on the given files and if needed on the memstore with no filtering based on TTL
* (that happens further down the line).
* @param files the list of files on which the scanners has to be created
* @param cacheBlocks ache the blocks or not
* @param usePread true to use pread, false if not
* @param isCompaction true if the scanner is created for compaction
* @param matcher the scan query matcher
* @param startRow the start row
* @param includeStartRow true to include start row, false if not
* @param stopRow the stop row
* @param includeStopRow true to include stop row, false if not
* @param readPt the read point of the current scan
* @param includeMemstoreScanner true if memstore has to be included
* @return scanners on the given files and on the memstore if specified
*/
public List<KeyValueScanner> getScanners(List<HStoreFile> files, boolean cacheBlocks,
boolean usePread, boolean isCompaction, ScanQueryMatcher matcher, byte[] startRow,
boolean includeStartRow, byte[] stopRow, boolean includeStopRow, long readPt,
boolean includeMemstoreScanner) throws IOException {
List<KeyValueScanner> memStoreScanners = null;
if (includeMemstoreScanner) {
this.lock.readLock().lock();
try {
memStoreScanners = this.memstore.getScanners(readPt);
} finally {
this.lock.readLock().unlock();
}
}
try {
List<StoreFileScanner> sfScanners = StoreFileScanner
.getScannersForStoreFiles(files, cacheBlocks, usePread, isCompaction, false, matcher,
readPt);
List<KeyValueScanner> scanners = new ArrayList<>(sfScanners.size() + 1);
scanners.addAll(sfScanners);
// Then the memstore scanners
if (memStoreScanners != null) {
scanners.addAll(memStoreScanners);
}
return scanners;
} catch (Throwable t) {
clearAndClose(memStoreScanners);
throw t instanceof IOException ? (IOException) t : new IOException(t);
}
}
/**
* @param o Observer who wants to know about changes in set of Readers
*/
public void addChangedReaderObserver(ChangedReadersObserver o) {
this.changedReaderObservers.add(o);
}
/**
* @param o Observer no longer interested in changes in set of Readers.
*/
public void deleteChangedReaderObserver(ChangedReadersObserver o) {
// We don't check if observer present; it may not be (legitimately)
this.changedReaderObservers.remove(o);
}
//////////////////////////////////////////////////////////////////////////////
// Compaction
//////////////////////////////////////////////////////////////////////////////
/**
* Compact the StoreFiles. This method may take some time, so the calling
* thread must be able to block for long periods.
*
* <p>During this time, the Store can work as usual, getting values from
* StoreFiles and writing new StoreFiles from the memstore.
*
* Existing StoreFiles are not destroyed until the new compacted StoreFile is
* completely written-out to disk.
*
* <p>The compactLock prevents multiple simultaneous compactions.
* The structureLock prevents us from interfering with other write operations.
*
* <p>We don't want to hold the structureLock for the whole time, as a compact()
* can be lengthy and we want to allow cache-flushes during this period.
*
* <p> Compaction event should be idempotent, since there is no IO Fencing for
* the region directory in hdfs. A region server might still try to complete the
* compaction after it lost the region. That is why the following events are carefully
* ordered for a compaction:
* 1. Compaction writes new files under region/.tmp directory (compaction output)
* 2. Compaction atomically moves the temporary file under region directory
* 3. Compaction appends a WAL edit containing the compaction input and output files.
* Forces sync on WAL.
* 4. Compaction deletes the input files from the region directory.
*
* Failure conditions are handled like this:
* - If RS fails before 2, compaction wont complete. Even if RS lives on and finishes
* the compaction later, it will only write the new data file to the region directory.
* Since we already have this data, this will be idempotent but we will have a redundant
* copy of the data.
* - If RS fails between 2 and 3, the region will have a redundant copy of the data. The
* RS that failed won't be able to finish sync() for WAL because of lease recovery in WAL.
* - If RS fails after 3, the region region server who opens the region will pick up the
* the compaction marker from the WAL and replay it by removing the compaction input files.
* Failed RS can also attempt to delete those files, but the operation will be idempotent
*
* See HBASE-2231 for details.
*
* @param compaction compaction details obtained from requestCompaction()
* @return Storefile we compacted into or null if we failed or opted out early.
*/
public List<HStoreFile> compact(CompactionContext compaction,
ThroughputController throughputController, User user) throws IOException {
assert compaction != null;
CompactionRequestImpl cr = compaction.getRequest();
try {
// Do all sanity checking in here if we have a valid CompactionRequestImpl
// because we need to clean up after it on the way out in a finally
// block below
long compactionStartTime = EnvironmentEdgeManager.currentTime();
assert compaction.hasSelection();
Collection<HStoreFile> filesToCompact = cr.getFiles();
assert !filesToCompact.isEmpty();
synchronized (filesCompacting) {
// sanity check: we're compacting files that this store knows about
// TODO: change this to LOG.error() after more debugging
Preconditions.checkArgument(filesCompacting.containsAll(filesToCompact));
}
// Ready to go. Have list of files to compact.
LOG.info("Starting compaction of " + filesToCompact +
" into tmpdir=" + fs.getTempDir() + ", totalSize=" +
TraditionalBinaryPrefix.long2String(cr.getSize(), "", 1));
return doCompaction(cr, filesToCompact, user, compactionStartTime,
compaction.compact(throughputController, user));
} finally {
finishCompactionRequest(cr);
}
}
protected List<HStoreFile> doCompaction(CompactionRequestImpl cr,
Collection<HStoreFile> filesToCompact, User user, long compactionStartTime,
List<Path> newFiles) throws IOException {
// Do the steps necessary to complete the compaction.
setStoragePolicyFromFileName(newFiles);
List<HStoreFile> sfs = moveCompactedFilesIntoPlace(cr, newFiles, user);
writeCompactionWalRecord(filesToCompact, sfs);
replaceStoreFiles(filesToCompact, sfs);
if (cr.isMajor()) {
majorCompactedCellsCount.addAndGet(getCompactionProgress().getTotalCompactingKVs());
majorCompactedCellsSize.addAndGet(getCompactionProgress().totalCompactedSize);
} else {
compactedCellsCount.addAndGet(getCompactionProgress().getTotalCompactingKVs());
compactedCellsSize.addAndGet(getCompactionProgress().totalCompactedSize);
}
long outputBytes = getTotalSize(sfs);
// At this point the store will use new files for all new scanners.
completeCompaction(filesToCompact); // update store size.
long now = EnvironmentEdgeManager.currentTime();
if (region.getRegionServerServices() != null
&& region.getRegionServerServices().getMetrics() != null) {
region.getRegionServerServices().getMetrics().updateCompaction(
region.getTableDescriptor().getTableName().getNameAsString(),
cr.isMajor(), now - compactionStartTime, cr.getFiles().size(),
newFiles.size(), cr.getSize(), outputBytes);
}
logCompactionEndMessage(cr, sfs, now, compactionStartTime);
return sfs;
}
// Set correct storage policy from the file name of DTCP.
// Rename file will not change the storage policy.
private void setStoragePolicyFromFileName(List<Path> newFiles) throws IOException {
String prefix = HConstants.STORAGE_POLICY_PREFIX;
for (Path newFile : newFiles) {
if (newFile.getParent().getName().startsWith(prefix)) {
CommonFSUtils.setStoragePolicy(fs.getFileSystem(), newFile,
newFile.getParent().getName().substring(prefix.length()));
}
}
}
private List<HStoreFile> moveCompactedFilesIntoPlace(CompactionRequestImpl cr,
List<Path> newFiles, User user) throws IOException {
List<HStoreFile> sfs = new ArrayList<>(newFiles.size());
for (Path newFile : newFiles) {
assert newFile != null;
HStoreFile sf = moveFileIntoPlace(newFile);
if (this.getCoprocessorHost() != null) {
getCoprocessorHost().postCompact(this, sf, cr.getTracker(), cr, user);
}
assert sf != null;
sfs.add(sf);
}
return sfs;
}
// Package-visible for tests
HStoreFile moveFileIntoPlace(Path newFile) throws IOException {
validateStoreFile(newFile);
// Move the file into the right spot
Path destPath = fs.commitStoreFile(getColumnFamilyName(), newFile);
return createStoreFileAndReader(destPath);
}
/**
* Writes the compaction WAL record.
* @param filesCompacted Files compacted (input).
* @param newFiles Files from compaction.
*/
private void writeCompactionWalRecord(Collection<HStoreFile> filesCompacted,
Collection<HStoreFile> newFiles) throws IOException {
if (region.getWAL() == null) {
return;
}
List<Path> inputPaths =
filesCompacted.stream().map(HStoreFile::getPath).collect(Collectors.toList());
List<Path> outputPaths =
newFiles.stream().map(HStoreFile::getPath).collect(Collectors.toList());
RegionInfo info = this.region.getRegionInfo();
CompactionDescriptor compactionDescriptor = ProtobufUtil.toCompactionDescriptor(info,
family.getName(), inputPaths, outputPaths,
fs.getStoreDir(getColumnFamilyDescriptor().getNameAsString()));
// Fix reaching into Region to get the maxWaitForSeqId.
// Does this method belong in Region altogether given it is making so many references up there?
// Could be Region#writeCompactionMarker(compactionDescriptor);
WALUtil.writeCompactionMarker(this.region.getWAL(), this.region.getReplicationScope(),
this.region.getRegionInfo(), compactionDescriptor, this.region.getMVCC());
}
void replaceStoreFiles(Collection<HStoreFile> compactedFiles, Collection<HStoreFile> result)
throws IOException {
this.lock.writeLock().lock();
try {
this.storeEngine.getStoreFileManager().addCompactionResults(compactedFiles, result);
synchronized (filesCompacting) {
filesCompacting.removeAll(compactedFiles);
}
// These may be null when the RS is shutting down. The space quota Chores will fix the Region
// sizes later so it's not super-critical if we miss these.
RegionServerServices rsServices = region.getRegionServerServices();
if (rsServices != null && rsServices.getRegionServerSpaceQuotaManager() != null) {
updateSpaceQuotaAfterFileReplacement(
rsServices.getRegionServerSpaceQuotaManager().getRegionSizeStore(), getRegionInfo(),
compactedFiles, result);
}
} finally {
this.lock.writeLock().unlock();
}
}
/**
* Updates the space quota usage for this region, removing the size for files compacted away
* and adding in the size for new files.
*
* @param sizeStore The object tracking changes in region size for space quotas.
* @param regionInfo The identifier for the region whose size is being updated.
* @param oldFiles Files removed from this store's region.
* @param newFiles Files added to this store's region.
*/
void updateSpaceQuotaAfterFileReplacement(
RegionSizeStore sizeStore, RegionInfo regionInfo, Collection<HStoreFile> oldFiles,
Collection<HStoreFile> newFiles) {
long delta = 0;
if (oldFiles != null) {
for (HStoreFile compactedFile : oldFiles) {
if (compactedFile.isHFile()) {
delta -= compactedFile.getReader().length();
}
}
}
if (newFiles != null) {
for (HStoreFile newFile : newFiles) {
if (newFile.isHFile()) {
delta += newFile.getReader().length();
}
}
}
sizeStore.incrementRegionSize(regionInfo, delta);
}
/**
* Log a very elaborate compaction completion message.
* @param cr Request.
* @param sfs Resulting files.
* @param compactionStartTime Start time.
*/
private void logCompactionEndMessage(
CompactionRequestImpl cr, List<HStoreFile> sfs, long now, long compactionStartTime) {
StringBuilder message = new StringBuilder(
"Completed" + (cr.isMajor() ? " major" : "") + " compaction of "
+ cr.getFiles().size() + (cr.isAllFiles() ? " (all)" : "") + " file(s) in "
+ this + " of " + this.getRegionInfo().getShortNameToLog() + " into ");
if (sfs.isEmpty()) {
message.append("none, ");
} else {
for (HStoreFile sf: sfs) {
message.append(sf.getPath().getName());
message.append("(size=");
message.append(TraditionalBinaryPrefix.long2String(sf.getReader().length(), "", 1));
message.append("), ");
}
}
message.append("total size for store is ")
.append(StringUtils.TraditionalBinaryPrefix.long2String(storeSize.get(), "", 1))
.append(". This selection was in queue for ")
.append(StringUtils.formatTimeDiff(compactionStartTime, cr.getSelectionTime()))
.append(", and took ").append(StringUtils.formatTimeDiff(now, compactionStartTime))
.append(" to execute.");
LOG.info(message.toString());
if (LOG.isTraceEnabled()) {
int fileCount = storeEngine.getStoreFileManager().getStorefileCount();
long resultSize = getTotalSize(sfs);
String traceMessage = "COMPACTION start,end,size out,files in,files out,store size,"
+ "store files [" + compactionStartTime + "," + now + "," + resultSize + ","
+ cr.getFiles().size() + "," + sfs.size() + "," + storeSize + "," + fileCount + "]";
LOG.trace(traceMessage);
}
}
/**
* Call to complete a compaction. Its for the case where we find in the WAL a compaction
* that was not finished. We could find one recovering a WAL after a regionserver crash.
* See HBASE-2231.
*/
public void replayCompactionMarker(CompactionDescriptor compaction, boolean pickCompactionFiles,
boolean removeFiles) throws IOException {
LOG.debug("Completing compaction from the WAL marker");
List<String> compactionInputs = compaction.getCompactionInputList();
List<String> compactionOutputs = Lists.newArrayList(compaction.getCompactionOutputList());
// The Compaction Marker is written after the compaction is completed,
// and the files moved into the region/family folder.
//
// If we crash after the entry is written, we may not have removed the
// input files, but the output file is present.
// (The unremoved input files will be removed by this function)
//
// If we scan the directory and the file is not present, it can mean that:
// - The file was manually removed by the user
// - The file was removed as consequence of subsequent compaction
// so, we can't do anything with the "compaction output list" because those
// files have already been loaded when opening the region (by virtue of
// being in the store's folder) or they may be missing due to a compaction.
String familyName = this.getColumnFamilyName();
Set<String> inputFiles = new HashSet<>();
for (String compactionInput : compactionInputs) {
Path inputPath = fs.getStoreFilePath(familyName, compactionInput);
inputFiles.add(inputPath.getName());
}
//some of the input files might already be deleted
List<HStoreFile> inputStoreFiles = new ArrayList<>(compactionInputs.size());
for (HStoreFile sf : this.getStorefiles()) {
if (inputFiles.contains(sf.getPath().getName())) {
inputStoreFiles.add(sf);
}
}
// check whether we need to pick up the new files
List<HStoreFile> outputStoreFiles = new ArrayList<>(compactionOutputs.size());
if (pickCompactionFiles) {
for (HStoreFile sf : this.getStorefiles()) {
compactionOutputs.remove(sf.getPath().getName());
}
for (String compactionOutput : compactionOutputs) {
StoreFileInfo storeFileInfo = fs.getStoreFileInfo(getColumnFamilyName(), compactionOutput);
HStoreFile storeFile = createStoreFileAndReader(storeFileInfo);
outputStoreFiles.add(storeFile);
}
}
if (!inputStoreFiles.isEmpty() || !outputStoreFiles.isEmpty()) {
LOG.info("Replaying compaction marker, replacing input files: " +
inputStoreFiles + " with output files : " + outputStoreFiles);
this.replaceStoreFiles(inputStoreFiles, outputStoreFiles);
this.completeCompaction(inputStoreFiles);
}
}
/**
* This method tries to compact N recent files for testing.
* Note that because compacting "recent" files only makes sense for some policies,
* e.g. the default one, it assumes default policy is used. It doesn't use policy,
* but instead makes a compaction candidate list by itself.
* @param N Number of files.
*/
public void compactRecentForTestingAssumingDefaultPolicy(int N) throws IOException {
List<HStoreFile> filesToCompact;
boolean isMajor;
this.lock.readLock().lock();
try {
synchronized (filesCompacting) {
filesToCompact = Lists.newArrayList(storeEngine.getStoreFileManager().getStorefiles());
if (!filesCompacting.isEmpty()) {
// exclude all files older than the newest file we're currently
// compacting. this allows us to preserve contiguity (HBASE-2856)
HStoreFile last = filesCompacting.get(filesCompacting.size() - 1);
int idx = filesToCompact.indexOf(last);
Preconditions.checkArgument(idx != -1);
filesToCompact.subList(0, idx + 1).clear();
}
int count = filesToCompact.size();
if (N > count) {
throw new RuntimeException("Not enough files");
}
filesToCompact = filesToCompact.subList(count - N, count);
isMajor = (filesToCompact.size() == storeEngine.getStoreFileManager().getStorefileCount());
filesCompacting.addAll(filesToCompact);
Collections.sort(filesCompacting, storeEngine.getStoreFileManager()
.getStoreFileComparator());
}
} finally {
this.lock.readLock().unlock();
}
try {
// Ready to go. Have list of files to compact.
List<Path> newFiles = ((DefaultCompactor)this.storeEngine.getCompactor())
.compactForTesting(filesToCompact, isMajor);
for (Path newFile: newFiles) {
// Move the compaction into place.
HStoreFile sf = moveFileIntoPlace(newFile);
if (this.getCoprocessorHost() != null) {
this.getCoprocessorHost().postCompact(this, sf, null, null, null);
}
replaceStoreFiles(filesToCompact, Collections.singletonList(sf));
completeCompaction(filesToCompact);
}
} finally {
synchronized (filesCompacting) {
filesCompacting.removeAll(filesToCompact);
}
}
}
@Override
public boolean hasReferences() {
// Grab the read lock here, because we need to ensure that: only when the atomic
// replaceStoreFiles(..) finished, we can get all the complete store file list.
this.lock.readLock().lock();
try {
// Merge the current store files with compacted files here due to HBASE-20940.
Collection<HStoreFile> allStoreFiles = new ArrayList<>(getStorefiles());
allStoreFiles.addAll(getCompactedFiles());
return StoreUtils.hasReferences(allStoreFiles);
} finally {
this.lock.readLock().unlock();
}
}
/**
* getter for CompactionProgress object
* @return CompactionProgress object; can be null
*/
public CompactionProgress getCompactionProgress() {
return this.storeEngine.getCompactor().getProgress();
}
@Override
public boolean shouldPerformMajorCompaction() throws IOException {
for (HStoreFile sf : this.storeEngine.getStoreFileManager().getStorefiles()) {
// TODO: what are these reader checks all over the place?
if (sf.getReader() == null) {
LOG.debug("StoreFile {} has null Reader", sf);
return false;
}
}
return storeEngine.getCompactionPolicy().shouldPerformMajorCompaction(
this.storeEngine.getStoreFileManager().getStorefiles());
}
public Optional<CompactionContext> requestCompaction() throws IOException {
return requestCompaction(NO_PRIORITY, CompactionLifeCycleTracker.DUMMY, null);
}
public Optional<CompactionContext> requestCompaction(int priority,
CompactionLifeCycleTracker tracker, User user) throws IOException {
// don't even select for compaction if writes are disabled
if (!this.areWritesEnabled()) {
return Optional.empty();
}
// Before we do compaction, try to get rid of unneeded files to simplify things.
removeUnneededFiles();
final CompactionContext compaction = storeEngine.createCompaction();
CompactionRequestImpl request = null;
this.lock.readLock().lock();
try {
synchronized (filesCompacting) {
// First, see if coprocessor would want to override selection.
if (this.getCoprocessorHost() != null) {
final List<HStoreFile> candidatesForCoproc = compaction.preSelect(this.filesCompacting);
boolean override = getCoprocessorHost().preCompactSelection(this,
candidatesForCoproc, tracker, user);
if (override) {
// Coprocessor is overriding normal file selection.
compaction.forceSelect(new CompactionRequestImpl(candidatesForCoproc));
}
}
// Normal case - coprocessor is not overriding file selection.
if (!compaction.hasSelection()) {
boolean isUserCompaction = priority == Store.PRIORITY_USER;
boolean mayUseOffPeak = offPeakHours.isOffPeakHour() &&
offPeakCompactionTracker.compareAndSet(false, true);
try {
compaction.select(this.filesCompacting, isUserCompaction,
mayUseOffPeak, forceMajor && filesCompacting.isEmpty());
} catch (IOException e) {
if (mayUseOffPeak) {
offPeakCompactionTracker.set(false);
}
throw e;
}
assert compaction.hasSelection();
if (mayUseOffPeak && !compaction.getRequest().isOffPeak()) {
// Compaction policy doesn't want to take advantage of off-peak.
offPeakCompactionTracker.set(false);
}
}
if (this.getCoprocessorHost() != null) {
this.getCoprocessorHost().postCompactSelection(
this, ImmutableList.copyOf(compaction.getRequest().getFiles()), tracker,
compaction.getRequest(), user);
}
// Finally, we have the resulting files list. Check if we have any files at all.
request = compaction.getRequest();
Collection<HStoreFile> selectedFiles = request.getFiles();
if (selectedFiles.isEmpty()) {
return Optional.empty();
}
addToCompactingFiles(selectedFiles);
// If we're enqueuing a major, clear the force flag.
this.forceMajor = this.forceMajor && !request.isMajor();
// Set common request properties.
// Set priority, either override value supplied by caller or from store.
final int compactionPriority =
(priority != Store.NO_PRIORITY) ? priority : getCompactPriority();
request.setPriority(compactionPriority);
if (request.isAfterSplit()) {
// If the store belongs to recently splitted daughter regions, better we consider
// them with the higher priority in the compaction queue.
// Override priority if it is lower (higher int value) than
// SPLIT_REGION_COMPACTION_PRIORITY
final int splitHousekeepingPriority =
Math.min(compactionPriority, SPLIT_REGION_COMPACTION_PRIORITY);
request.setPriority(splitHousekeepingPriority);
LOG.info("Keeping/Overriding Compaction request priority to {} for CF {} since it"
+ " belongs to recently split daughter region {}", splitHousekeepingPriority,
this.getColumnFamilyName(), getRegionInfo().getRegionNameAsString());
}
request.setDescription(getRegionInfo().getRegionNameAsString(), getColumnFamilyName());
request.setTracker(tracker);
}
} finally {
this.lock.readLock().unlock();
}
if (LOG.isDebugEnabled()) {
LOG.debug(this + " is initiating " + (request.isMajor() ? "major" : "minor") + " compaction"
+ (request.isAllFiles() ? " (all files)" : ""));
}
this.region.reportCompactionRequestStart(request.isMajor());
return Optional.of(compaction);
}
/** Adds the files to compacting files. filesCompacting must be locked. */
private void addToCompactingFiles(Collection<HStoreFile> filesToAdd) {
if (CollectionUtils.isEmpty(filesToAdd)) {
return;
}
// Check that we do not try to compact the same StoreFile twice.
if (!Collections.disjoint(filesCompacting, filesToAdd)) {
Preconditions.checkArgument(false, "%s overlaps with %s", filesToAdd, filesCompacting);
}
filesCompacting.addAll(filesToAdd);
Collections.sort(filesCompacting, storeEngine.getStoreFileManager().getStoreFileComparator());
}
private void removeUnneededFiles() throws IOException {
if (!conf.getBoolean("hbase.store.delete.expired.storefile", true)) {
return;
}
if (getColumnFamilyDescriptor().getMinVersions() > 0) {
LOG.debug("Skipping expired store file removal due to min version of {} being {}",
this, getColumnFamilyDescriptor().getMinVersions());
return;
}
this.lock.readLock().lock();
Collection<HStoreFile> delSfs = null;
try {
synchronized (filesCompacting) {
long cfTtl = getStoreFileTtl();
if (cfTtl != Long.MAX_VALUE) {
delSfs = storeEngine.getStoreFileManager().getUnneededFiles(
EnvironmentEdgeManager.currentTime() - cfTtl, filesCompacting);
addToCompactingFiles(delSfs);
}
}
} finally {
this.lock.readLock().unlock();
}
if (CollectionUtils.isEmpty(delSfs)) {
return;
}
Collection<HStoreFile> newFiles = Collections.emptyList(); // No new files.
writeCompactionWalRecord(delSfs, newFiles);
replaceStoreFiles(delSfs, newFiles);
completeCompaction(delSfs);
LOG.info("Completed removal of " + delSfs.size() + " unnecessary (expired) file(s) in "
+ this + "; total size is "
+ TraditionalBinaryPrefix.long2String(storeSize.get(), "", 1));
}
public void cancelRequestedCompaction(CompactionContext compaction) {
finishCompactionRequest(compaction.getRequest());
}
protected void finishCompactionRequest(CompactionRequestImpl cr) {
this.region.reportCompactionRequestEnd(cr.isMajor(), cr.getFiles().size(), cr.getSize());
if (cr.isOffPeak()) {
offPeakCompactionTracker.set(false);
cr.setOffPeak(false);
}
synchronized (filesCompacting) {
filesCompacting.removeAll(cr.getFiles());
}
}
/**
* Validates a store file by opening and closing it. In HFileV2 this should not be an expensive
* operation.
* @param path the path to the store file
*/
private void validateStoreFile(Path path) throws IOException {
HStoreFile storeFile = null;
try {
storeFile = createStoreFileAndReader(path);
} catch (IOException e) {
LOG.error("Failed to open store file : {}, keeping it in tmp location", path, e);
throw e;
} finally {
if (storeFile != null) {
storeFile.closeStoreFile(false);
}
}
}
/**
* Update counts.
* @param compactedFiles list of files that were compacted
*/
protected void completeCompaction(Collection<HStoreFile> compactedFiles)
// Rename this method! TODO.
throws IOException {
this.storeSize.set(0L);
this.totalUncompressedBytes.set(0L);
for (HStoreFile hsf : this.storeEngine.getStoreFileManager().getStorefiles()) {
StoreFileReader r = hsf.getReader();
if (r == null) {
LOG.warn("StoreFile {} has a null Reader", hsf);
continue;
}
this.storeSize.addAndGet(r.length());
this.totalUncompressedBytes.addAndGet(r.getTotalUncompressedBytes());
}
}
/*
* @param wantedVersions How many versions were asked for.
* @return wantedVersions or this families' {@link HConstants#VERSIONS}.
*/
int versionsToReturn(final int wantedVersions) {
if (wantedVersions <= 0) {
throw new IllegalArgumentException("Number of versions must be > 0");
}
// Make sure we do not return more than maximum versions for this store.
int maxVersions = this.family.getMaxVersions();
return wantedVersions > maxVersions ? maxVersions: wantedVersions;
}
@Override
public boolean canSplit() {
// Not split-able if we find a reference store file present in the store.
boolean result = !hasReferences();
if (!result) {
LOG.trace("Not splittable; has references: {}", this);
}
return result;
}
/**
* Determines if Store should be split.
*/
public Optional<byte[]> getSplitPoint() {
this.lock.readLock().lock();
try {
// Should already be enforced by the split policy!
assert !this.getRegionInfo().isMetaRegion();
// Not split-able if we find a reference store file present in the store.
if (hasReferences()) {
LOG.trace("Not splittable; has references: {}", this);
return Optional.empty();
}
return this.storeEngine.getStoreFileManager().getSplitPoint();
} catch(IOException e) {
LOG.warn("Failed getting store size for {}", this, e);
} finally {
this.lock.readLock().unlock();
}
return Optional.empty();
}
@Override
public long getLastCompactSize() {
return this.lastCompactSize;
}
@Override
public long getSize() {
return storeSize.get();
}
public void triggerMajorCompaction() {
this.forceMajor = true;
}
//////////////////////////////////////////////////////////////////////////////
// File administration
//////////////////////////////////////////////////////////////////////////////
/**
* Return a scanner for both the memstore and the HStore files. Assumes we are not in a
* compaction.
* @param scan Scan to apply when scanning the stores
* @param targetCols columns to scan
* @return a scanner over the current key values
* @throws IOException on failure
*/
public KeyValueScanner getScanner(Scan scan, final NavigableSet<byte[]> targetCols, long readPt)
throws IOException {
lock.readLock().lock();
try {
ScanInfo scanInfo;
if (this.getCoprocessorHost() != null) {
scanInfo = this.getCoprocessorHost().preStoreScannerOpen(this, scan);
} else {
scanInfo = getScanInfo();
}
return createScanner(scan, scanInfo, targetCols, readPt);
} finally {
lock.readLock().unlock();
}
}
// HMobStore will override this method to return its own implementation.
protected KeyValueScanner createScanner(Scan scan, ScanInfo scanInfo,
NavigableSet<byte[]> targetCols, long readPt) throws IOException {
return scan.isReversed() ? new ReversedStoreScanner(this, scanInfo, scan, targetCols, readPt)
: new StoreScanner(this, scanInfo, scan, targetCols, readPt);
}
/**
* Recreates the scanners on the current list of active store file scanners
* @param currentFileScanners the current set of active store file scanners
* @param cacheBlocks cache the blocks or not
* @param usePread use pread or not
* @param isCompaction is the scanner for compaction
* @param matcher the scan query matcher
* @param startRow the scan's start row
* @param includeStartRow should the scan include the start row
* @param stopRow the scan's stop row
* @param includeStopRow should the scan include the stop row
* @param readPt the read point of the current scane
* @param includeMemstoreScanner whether the current scanner should include memstorescanner
* @return list of scanners recreated on the current Scanners
*/
public List<KeyValueScanner> recreateScanners(List<KeyValueScanner> currentFileScanners,
boolean cacheBlocks, boolean usePread, boolean isCompaction, ScanQueryMatcher matcher,
byte[] startRow, boolean includeStartRow, byte[] stopRow, boolean includeStopRow, long readPt,
boolean includeMemstoreScanner) throws IOException {
this.lock.readLock().lock();
try {
Map<String, HStoreFile> name2File =
new HashMap<>(getStorefilesCount() + getCompactedFilesCount());
for (HStoreFile file : getStorefiles()) {
name2File.put(file.getFileInfo().getActiveFileName(), file);
}
Collection<HStoreFile> compactedFiles = getCompactedFiles();
for (HStoreFile file : IterableUtils.emptyIfNull(compactedFiles)) {
name2File.put(file.getFileInfo().getActiveFileName(), file);
}
List<HStoreFile> filesToReopen = new ArrayList<>();
for (KeyValueScanner kvs : currentFileScanners) {
assert kvs.isFileScanner();
if (kvs.peek() == null) {
continue;
}
filesToReopen.add(name2File.get(kvs.getFilePath().getName()));
}
if (filesToReopen.isEmpty()) {
return null;
}
return getScanners(filesToReopen, cacheBlocks, false, false, matcher, startRow,
includeStartRow, stopRow, includeStopRow, readPt, false);
} finally {
this.lock.readLock().unlock();
}
}
@Override
public String toString() {
return this.getRegionInfo().getShortNameToLog()+ "/" + this.getColumnFamilyName();
}
@Override
public int getStorefilesCount() {
return this.storeEngine.getStoreFileManager().getStorefileCount();
}
@Override
public int getCompactedFilesCount() {
return this.storeEngine.getStoreFileManager().getCompactedFilesCount();
}
private LongStream getStoreFileAgeStream() {
return this.storeEngine.getStoreFileManager().getStorefiles().stream().filter(sf -> {
if (sf.getReader() == null) {
LOG.warn("StoreFile {} has a null Reader", sf);
return false;
} else {
return true;
}
}).filter(HStoreFile::isHFile).mapToLong(sf -> sf.getFileInfo().getCreatedTimestamp())
.map(t -> EnvironmentEdgeManager.currentTime() - t);
}
@Override
public OptionalLong getMaxStoreFileAge() {
return getStoreFileAgeStream().max();
}
@Override
public OptionalLong getMinStoreFileAge() {
return getStoreFileAgeStream().min();
}
@Override
public OptionalDouble getAvgStoreFileAge() {
return getStoreFileAgeStream().average();
}
@Override
public long getNumReferenceFiles() {
return this.storeEngine.getStoreFileManager().getStorefiles().stream()
.filter(HStoreFile::isReference).count();
}
@Override
public long getNumHFiles() {
return this.storeEngine.getStoreFileManager().getStorefiles().stream()
.filter(HStoreFile::isHFile).count();
}
@Override
public long getStoreSizeUncompressed() {
return this.totalUncompressedBytes.get();
}
@Override
public long getStorefilesSize() {
// Include all StoreFiles
return getStorefilesSize(this.storeEngine.getStoreFileManager().getStorefiles(), sf -> true);
}
@Override
public long getHFilesSize() {
// Include only StoreFiles which are HFiles
return getStorefilesSize(this.storeEngine.getStoreFileManager().getStorefiles(),
HStoreFile::isHFile);
}
private long getTotalUncompressedBytes(List<HStoreFile> files) {
return files.stream()
.mapToLong(file -> getStorefileFieldSize(file, StoreFileReader::getTotalUncompressedBytes))
.sum();
}
private long getStorefilesSize(Collection<HStoreFile> files, Predicate<HStoreFile> predicate) {
return files.stream().filter(predicate)
.mapToLong(file -> getStorefileFieldSize(file, StoreFileReader::length)).sum();
}
private long getStorefileFieldSize(HStoreFile file, ToLongFunction<StoreFileReader> f) {
if (file == null) {
return 0L;
}
StoreFileReader reader = file.getReader();
if (reader == null) {
return 0L;
}
return f.applyAsLong(reader);
}
private long getStorefilesFieldSize(ToLongFunction<StoreFileReader> f) {
return this.storeEngine.getStoreFileManager().getStorefiles().stream()
.mapToLong(file -> getStorefileFieldSize(file, f)).sum();
}
@Override
public long getStorefilesRootLevelIndexSize() {
return getStorefilesFieldSize(StoreFileReader::indexSize);
}
@Override
public long getTotalStaticIndexSize() {
return getStorefilesFieldSize(StoreFileReader::getUncompressedDataIndexSize);
}
@Override
public long getTotalStaticBloomSize() {
return getStorefilesFieldSize(StoreFileReader::getTotalBloomSize);
}
@Override
public MemStoreSize getMemStoreSize() {
return this.memstore.size();
}
@Override
public int getCompactPriority() {
int priority = this.storeEngine.getStoreFileManager().getStoreCompactionPriority();
if (priority == PRIORITY_USER) {
LOG.warn("Compaction priority is USER despite there being no user compaction");
}
return priority;
}
public boolean throttleCompaction(long compactionSize) {
return storeEngine.getCompactionPolicy().throttleCompaction(compactionSize);
}
public HRegion getHRegion() {
return this.region;
}
public RegionCoprocessorHost getCoprocessorHost() {
return this.region.getCoprocessorHost();
}
@Override
public RegionInfo getRegionInfo() {
return this.fs.getRegionInfo();
}
@Override
public boolean areWritesEnabled() {
return this.region.areWritesEnabled();
}
@Override
public long getSmallestReadPoint() {
return this.region.getSmallestReadPoint();
}
/**
* Adds or replaces the specified KeyValues.
* <p>
* For each KeyValue specified, if a cell with the same row, family, and qualifier exists in
* MemStore, it will be replaced. Otherwise, it will just be inserted to MemStore.
* <p>
* This operation is atomic on each KeyValue (row/family/qualifier) but not necessarily atomic
* across all of them.
* @param readpoint readpoint below which we can safely remove duplicate KVs
*/
public void upsert(Iterable<Cell> cells, long readpoint, MemStoreSizing memstoreSizing)
throws IOException {
this.lock.readLock().lock();
try {
this.memstore.upsert(cells, readpoint, memstoreSizing);
} finally {
this.lock.readLock().unlock();
}
}
public StoreFlushContext createFlushContext(long cacheFlushId, FlushLifeCycleTracker tracker) {
return new StoreFlusherImpl(cacheFlushId, tracker);
}
private final class StoreFlusherImpl implements StoreFlushContext {
private final FlushLifeCycleTracker tracker;
private final long cacheFlushSeqNum;
private MemStoreSnapshot snapshot;
private List<Path> tempFiles;
private List<Path> committedFiles;
private long cacheFlushCount;
private long cacheFlushSize;
private long outputFileSize;
private StoreFlusherImpl(long cacheFlushSeqNum, FlushLifeCycleTracker tracker) {
this.cacheFlushSeqNum = cacheFlushSeqNum;
this.tracker = tracker;
}
/**
* This is not thread safe. The caller should have a lock on the region or the store.
* If necessary, the lock can be added with the patch provided in HBASE-10087
*/
@Override
public MemStoreSize prepare() {
// passing the current sequence number of the wal - to allow bookkeeping in the memstore
this.snapshot = memstore.snapshot();
this.cacheFlushCount = snapshot.getCellsCount();
this.cacheFlushSize = snapshot.getDataSize();
committedFiles = new ArrayList<>(1);
return snapshot.getMemStoreSize();
}
@Override
public void flushCache(MonitoredTask status) throws IOException {
RegionServerServices rsService = region.getRegionServerServices();
ThroughputController throughputController =
rsService == null ? null : rsService.getFlushThroughputController();
tempFiles =
HStore.this.flushCache(cacheFlushSeqNum, snapshot, status, throughputController, tracker);
}
@Override
public boolean commit(MonitoredTask status) throws IOException {
if (CollectionUtils.isEmpty(this.tempFiles)) {
return false;
}
List<HStoreFile> storeFiles = new ArrayList<>(this.tempFiles.size());
for (Path storeFilePath : tempFiles) {
try {
HStoreFile sf = HStore.this.commitFile(storeFilePath, cacheFlushSeqNum, status);
outputFileSize += sf.getReader().length();
storeFiles.add(sf);
} catch (IOException ex) {
LOG.error("Failed to commit store file {}", storeFilePath, ex);
// Try to delete the files we have committed before.
for (HStoreFile sf : storeFiles) {
Path pathToDelete = sf.getPath();
try {
sf.deleteStoreFile();
} catch (IOException deleteEx) {
LOG.error(HBaseMarkers.FATAL, "Failed to delete store file we committed, "
+ "halting {}", pathToDelete, ex);
Runtime.getRuntime().halt(1);
}
}
throw new IOException("Failed to commit the flush", ex);
}
}
for (HStoreFile sf : storeFiles) {
if (HStore.this.getCoprocessorHost() != null) {
HStore.this.getCoprocessorHost().postFlush(HStore.this, sf, tracker);
}
committedFiles.add(sf.getPath());
}
HStore.this.flushedCellsCount.addAndGet(cacheFlushCount);
HStore.this.flushedCellsSize.addAndGet(cacheFlushSize);
HStore.this.flushedOutputFileSize.addAndGet(outputFileSize);
// Add new file to store files. Clear snapshot too while we have the Store write lock.
return HStore.this.updateStorefiles(storeFiles, snapshot.getId());
}
@Override
public long getOutputFileSize() {
return outputFileSize;
}
@Override
public List<Path> getCommittedFiles() {
return committedFiles;
}
/**
* Similar to commit, but called in secondary region replicas for replaying the
* flush cache from primary region. Adds the new files to the store, and drops the
* snapshot depending on dropMemstoreSnapshot argument.
* @param fileNames names of the flushed files
* @param dropMemstoreSnapshot whether to drop the prepared memstore snapshot
*/
@Override
public void replayFlush(List<String> fileNames, boolean dropMemstoreSnapshot)
throws IOException {
List<HStoreFile> storeFiles = new ArrayList<>(fileNames.size());
for (String file : fileNames) {
// open the file as a store file (hfile link, etc)
StoreFileInfo storeFileInfo = fs.getStoreFileInfo(getColumnFamilyName(), file);
HStoreFile storeFile = createStoreFileAndReader(storeFileInfo);
storeFiles.add(storeFile);
HStore.this.storeSize.addAndGet(storeFile.getReader().length());
HStore.this.totalUncompressedBytes
.addAndGet(storeFile.getReader().getTotalUncompressedBytes());
if (LOG.isInfoEnabled()) {
LOG.info(this + " added " + storeFile + ", entries=" + storeFile.getReader().getEntries() +
", sequenceid=" + storeFile.getReader().getSequenceID() + ", filesize="
+ TraditionalBinaryPrefix.long2String(storeFile.getReader().length(), "", 1));
}
}
long snapshotId = -1; // -1 means do not drop
if (dropMemstoreSnapshot && snapshot != null) {
snapshotId = snapshot.getId();
snapshot.close();
}
HStore.this.updateStorefiles(storeFiles, snapshotId);
}
/**
* Abort the snapshot preparation. Drops the snapshot if any.
*/
@Override
public void abort() throws IOException {
if (snapshot != null) {
//We need to close the snapshot when aborting, otherwise, the segment scanner
//won't be closed. If we are using MSLAB, the chunk referenced by those scanners
//can't be released, thus memory leak
snapshot.close();
HStore.this.updateStorefiles(Collections.emptyList(), snapshot.getId());
}
}
}
@Override
public boolean needsCompaction() {
List<HStoreFile> filesCompactingClone = null;
synchronized (filesCompacting) {
filesCompactingClone = Lists.newArrayList(filesCompacting);
}
return this.storeEngine.needsCompaction(filesCompactingClone);
}
/**
* Used for tests.
* @return cache configuration for this Store.
*/
public CacheConfig getCacheConfig() {
return this.cacheConf;
}
public static final long FIXED_OVERHEAD = ClassSize.estimateBase(HStore.class, false);
public static final long DEEP_OVERHEAD = ClassSize.align(FIXED_OVERHEAD
+ ClassSize.OBJECT + ClassSize.REENTRANT_LOCK
+ ClassSize.CONCURRENT_SKIPLISTMAP
+ ClassSize.CONCURRENT_SKIPLISTMAP_ENTRY + ClassSize.OBJECT
+ ScanInfo.FIXED_OVERHEAD);
@Override
public long heapSize() {
MemStoreSize memstoreSize = this.memstore.size();
return DEEP_OVERHEAD + memstoreSize.getHeapSize();
}
@Override
public CellComparator getComparator() {
return comparator;
}
public ScanInfo getScanInfo() {
return scanInfo;
}
/**
* Set scan info, used by test
* @param scanInfo new scan info to use for test
*/
void setScanInfo(ScanInfo scanInfo) {
this.scanInfo = scanInfo;
}
@Override
public boolean hasTooManyStoreFiles() {
return getStorefilesCount() > this.blockingFileCount;
}
@Override
public long getFlushedCellsCount() {
return flushedCellsCount.get();
}
@Override
public long getFlushedCellsSize() {
return flushedCellsSize.get();
}
@Override
public long getFlushedOutputFileSize() {
return flushedOutputFileSize.get();
}
@Override
public long getCompactedCellsCount() {
return compactedCellsCount.get();
}
@Override
public long getCompactedCellsSize() {
return compactedCellsSize.get();
}
@Override
public long getMajorCompactedCellsCount() {
return majorCompactedCellsCount.get();
}
@Override
public long getMajorCompactedCellsSize() {
return majorCompactedCellsSize.get();
}
/**
* Returns the StoreEngine that is backing this concrete implementation of Store.
* @return Returns the {@link StoreEngine} object used internally inside this HStore object.
*/
public StoreEngine<?, ?, ?, ?> getStoreEngine() {
return this.storeEngine;
}
protected OffPeakHours getOffPeakHours() {
return this.offPeakHours;
}
/**
* {@inheritDoc}
*/
@Override
public void onConfigurationChange(Configuration conf) {
this.conf = new CompoundConfiguration()
.add(conf)
.addBytesMap(family.getValues());
this.storeEngine.compactionPolicy.setConf(conf);
this.offPeakHours = OffPeakHours.getInstance(conf);
}
/**
* {@inheritDoc}
*/
@Override
public void registerChildren(ConfigurationManager manager) {
// No children to register
}
/**
* {@inheritDoc}
*/
@Override
public void deregisterChildren(ConfigurationManager manager) {
// No children to deregister
}
@Override
public double getCompactionPressure() {
return storeEngine.getStoreFileManager().getCompactionPressure();
}
@Override
public boolean isPrimaryReplicaStore() {
return getRegionInfo().getReplicaId() == RegionInfo.DEFAULT_REPLICA_ID;
}
/**
* Sets the store up for a region level snapshot operation.
* @see #postSnapshotOperation()
*/
public void preSnapshotOperation() {
archiveLock.lock();
}
/**
* Perform tasks needed after the completion of snapshot operation.
* @see #preSnapshotOperation()
*/
public void postSnapshotOperation() {
archiveLock.unlock();
}
/**
* Closes and archives the compacted files under this store
*/
public synchronized void closeAndArchiveCompactedFiles() throws IOException {
// ensure other threads do not attempt to archive the same files on close()
archiveLock.lock();
try {
lock.readLock().lock();
Collection<HStoreFile> copyCompactedfiles = null;
try {
Collection<HStoreFile> compactedfiles =
this.getStoreEngine().getStoreFileManager().getCompactedfiles();
if (CollectionUtils.isNotEmpty(compactedfiles)) {
// Do a copy under read lock
copyCompactedfiles = new ArrayList<>(compactedfiles);
} else {
LOG.trace("No compacted files to archive");
}
} finally {
lock.readLock().unlock();
}
if (CollectionUtils.isNotEmpty(copyCompactedfiles)) {
removeCompactedfiles(copyCompactedfiles, true);
}
} finally {
archiveLock.unlock();
}
}
/**
* Archives and removes the compacted files
* @param compactedfiles The compacted files in this store that are not active in reads
* @param evictOnClose true if blocks should be evicted from the cache when an HFile reader is
* closed, false if not
*/
private void removeCompactedfiles(Collection<HStoreFile> compactedfiles, boolean evictOnClose)
throws IOException {
final List<HStoreFile> filesToRemove = new ArrayList<>(compactedfiles.size());
final List<Long> storeFileSizes = new ArrayList<>(compactedfiles.size());
for (final HStoreFile file : compactedfiles) {
synchronized (file) {
try {
StoreFileReader r = file.getReader();
if (r == null) {
LOG.debug("The file {} was closed but still not archived", file);
// HACK: Temporarily re-open the reader so we can get the size of the file. Ideally,
// we should know the size of an HStoreFile without having to ask the HStoreFileReader
// for that.
long length = getStoreFileSize(file);
filesToRemove.add(file);
storeFileSizes.add(length);
continue;
}
if (file.isCompactedAway() && !file.isReferencedInReads()) {
// Even if deleting fails we need not bother as any new scanners won't be
// able to use the compacted file as the status is already compactedAway
LOG.trace("Closing and archiving the file {}", file);
// Copy the file size before closing the reader
final long length = r.length();
r.close(evictOnClose);
// Just close and return
filesToRemove.add(file);
// Only add the length if we successfully added the file to `filesToRemove`
storeFileSizes.add(length);
} else {
LOG.info("Can't archive compacted file " + file.getPath()
+ " because of either isCompactedAway=" + file.isCompactedAway()
+ " or file has reference, isReferencedInReads=" + file.isReferencedInReads()
+ ", refCount=" + r.getRefCount() + ", skipping for now.");
}
} catch (Exception e) {
LOG.error("Exception while trying to close the compacted store file {}", file.getPath(),
e);
}
}
}
if (this.isPrimaryReplicaStore()) {
// Only the primary region is allowed to move the file to archive.
// The secondary region does not move the files to archive. Any active reads from
// the secondary region will still work because the file as such has active readers on it.
if (!filesToRemove.isEmpty()) {
LOG.debug("Moving the files {} to archive", filesToRemove);
// Only if this is successful it has to be removed
try {
this.fs.removeStoreFiles(this.getColumnFamilyDescriptor().getNameAsString(),
filesToRemove);
} catch (FailedArchiveException fae) {
// Even if archiving some files failed, we still need to clear out any of the
// files which were successfully archived. Otherwise we will receive a
// FileNotFoundException when we attempt to re-archive them in the next go around.
Collection<Path> failedFiles = fae.getFailedFiles();
Iterator<HStoreFile> iter = filesToRemove.iterator();
Iterator<Long> sizeIter = storeFileSizes.iterator();
while (iter.hasNext()) {
sizeIter.next();
if (failedFiles.contains(iter.next().getPath())) {
iter.remove();
sizeIter.remove();
}
}
if (!filesToRemove.isEmpty()) {
clearCompactedfiles(filesToRemove);
}
throw fae;
}
}
}
if (!filesToRemove.isEmpty()) {
// Clear the compactedfiles from the store file manager
clearCompactedfiles(filesToRemove);
// Try to send report of this archival to the Master for updating quota usage faster
reportArchivedFilesForQuota(filesToRemove, storeFileSizes);
}
}
/**
* Computes the length of a store file without succumbing to any errors along the way. If an
* error is encountered, the implementation returns {@code 0} instead of the actual size.
*
* @param file The file to compute the size of.
* @return The size in bytes of the provided {@code file}.
*/
long getStoreFileSize(HStoreFile file) {
long length = 0;
try {
file.initReader();
length = file.getReader().length();
} catch (IOException e) {
LOG.trace("Failed to open reader when trying to compute store file size for {}, ignoring",
file, e);
} finally {
try {
file.closeStoreFile(
file.getCacheConf() != null ? file.getCacheConf().shouldEvictOnClose() : true);
} catch (IOException e) {
LOG.trace("Failed to close reader after computing store file size for {}, ignoring",
file, e);
}
}
return length;
}
public Long preFlushSeqIDEstimation() {
return memstore.preFlushSeqIDEstimation();
}
@Override
public boolean isSloppyMemStore() {
return this.memstore.isSloppy();
}
private void clearCompactedfiles(List<HStoreFile> filesToRemove) throws IOException {
LOG.trace("Clearing the compacted file {} from this store", filesToRemove);
try {
lock.writeLock().lock();
this.getStoreEngine().getStoreFileManager().removeCompactedFiles(filesToRemove);
} finally {
lock.writeLock().unlock();
}
}
void reportArchivedFilesForQuota(List<? extends StoreFile> archivedFiles, List<Long> fileSizes) {
// Sanity check from the caller
if (archivedFiles.size() != fileSizes.size()) {
throw new RuntimeException("Coding error: should never see lists of varying size");
}
RegionServerServices rss = this.region.getRegionServerServices();
if (rss == null) {
return;
}
List<Entry<String,Long>> filesWithSizes = new ArrayList<>(archivedFiles.size());
Iterator<Long> fileSizeIter = fileSizes.iterator();
for (StoreFile storeFile : archivedFiles) {
final long fileSize = fileSizeIter.next();
if (storeFile.isHFile() && fileSize != 0) {
filesWithSizes.add(Maps.immutableEntry(storeFile.getPath().getName(), fileSize));
}
}
if (LOG.isTraceEnabled()) {
LOG.trace("Files archived: " + archivedFiles + ", reporting the following to the Master: "
+ filesWithSizes);
}
boolean success = rss.reportFileArchivalForQuotas(getTableName(), filesWithSizes);
if (!success) {
LOG.warn("Failed to report archival of files: " + filesWithSizes);
}
}
@Override
public int getCurrentParallelPutCount() {
return currentParallelPutCount.get();
}
public int getStoreRefCount() {
return this.storeEngine.getStoreFileManager().getStorefiles().stream()
.filter(sf -> sf.getReader() != null).filter(HStoreFile::isHFile)
.mapToInt(HStoreFile::getRefCount).sum();
}
/**
* @return get maximum ref count of storeFile among all compacted HStore Files for the HStore
*/
public int getMaxCompactedStoreFileRefCount() {
OptionalInt maxCompactedStoreFileRefCount = this.storeEngine.getStoreFileManager()
.getCompactedfiles()
.stream()
.filter(sf -> sf.getReader() != null)
.filter(HStoreFile::isHFile)
.mapToInt(HStoreFile::getRefCount)
.max();
return maxCompactedStoreFileRefCount.isPresent()
? maxCompactedStoreFileRefCount.getAsInt() : 0;
}
@Override
public long getMemstoreOnlyRowReadsCount() {
return memstoreOnlyRowReadsCount.sum();
}
@Override
public long getMixedRowReadsCount() {
return mixedRowReadsCount.sum();
}
void updateMetricsStore(boolean memstoreRead) {
if (memstoreRead) {
memstoreOnlyRowReadsCount.increment();
} else {
mixedRowReadsCount.increment();
}
}
}