blob: bb09186e29bdccc5673329eb709e75402e463dcf [file] [log] [blame]
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.regionserver.wal;
import static org.apache.hadoop.hbase.regionserver.wal.WALActionsListener.RollRequestReason.ERROR;
import static org.apache.hadoop.hbase.regionserver.wal.WALActionsListener.RollRequestReason.LOW_REPLICATION;
import static org.apache.hadoop.hbase.regionserver.wal.WALActionsListener.RollRequestReason.SIZE;
import static org.apache.hadoop.hbase.regionserver.wal.WALActionsListener.RollRequestReason.SLOW_SYNC;
import static org.apache.hadoop.hbase.wal.DefaultWALProvider.WAL_FILE_NAME_DELIMITER;
import com.lmax.disruptor.BlockingWaitStrategy;
import com.lmax.disruptor.EventHandler;
import com.lmax.disruptor.ExceptionHandler;
import com.lmax.disruptor.LifecycleAware;
import com.lmax.disruptor.RingBuffer;
import com.lmax.disruptor.TimeoutException;
import com.lmax.disruptor.dsl.Disruptor;
import com.lmax.disruptor.dsl.ProducerType;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InterruptedIOException;
import java.io.OutputStream;
import java.lang.management.MemoryUsage;
import java.lang.reflect.InvocationTargetException;
import java.net.URLEncoder;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
import java.util.Map;
import java.util.NavigableMap;
import java.util.Set;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ConcurrentSkipListMap;
import java.util.concurrent.CopyOnWriteArrayList;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.ReentrantLock;
import org.apache.commons.lang.mutable.MutableLong;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HConstants;
import org.apache.hadoop.hbase.HRegionInfo;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.classification.InterfaceAudience;
import org.apache.hadoop.hbase.exceptions.TimeoutIOException;
import org.apache.hadoop.hbase.io.util.HeapMemorySizeUtil;
import org.apache.hadoop.hbase.regionserver.HRegion;
import org.apache.hadoop.hbase.regionserver.MultiVersionConcurrencyControl;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.hbase.util.ClassSize;
import org.apache.hadoop.hbase.util.DrainBarrier;
import org.apache.hadoop.hbase.util.EnvironmentEdgeManager;
import org.apache.hadoop.hbase.util.FSUtils;
import org.apache.hadoop.hbase.util.HasThread;
import org.apache.hadoop.hbase.util.Threads;
import org.apache.hadoop.hbase.wal.DefaultWALProvider;
import org.apache.hadoop.hbase.wal.WAL;
import org.apache.hadoop.hbase.wal.WALFactory;
import org.apache.hadoop.hbase.wal.WALKey;
import org.apache.hadoop.hbase.wal.WALPrettyPrinter;
import org.apache.hadoop.hbase.wal.WALProvider.Writer;
import org.apache.hadoop.hbase.wal.WALSplitter;
import org.apache.hadoop.hdfs.DFSOutputStream;
import org.apache.hadoop.hdfs.client.HdfsDataOutputStream;
import org.apache.hadoop.hdfs.protocol.DatanodeInfo;
import org.apache.hadoop.util.StringUtils;
import org.apache.htrace.NullScope;
import org.apache.htrace.Span;
import org.apache.htrace.Trace;
import org.apache.htrace.TraceScope;
/**
* Implementation of {@link WAL} to go against {@link FileSystem}; i.e. keep WALs in HDFS.
* Only one WAL is ever being written at a time. When a WAL hits a configured maximum size,
* it is rolled. This is done internal to the implementation.
*
* <p>As data is flushed from the MemStore to other on-disk structures (files sorted by
* key, hfiles), a WAL becomes obsolete. We can let go of all the log edits/entries for a given
* HRegion-sequence id. A bunch of work in the below is done keeping account of these region
* sequence ids -- what is flushed out to hfiles, and what is yet in WAL and in memory only.
*
* <p>It is only practical to delete entire files. Thus, we delete an entire on-disk file
* <code>F</code> when all of the edits in <code>F</code> have a log-sequence-id that's older
* (smaller) than the most-recent flush.
*
* <p>To read an WAL, call {@link WALFactory#createReader(org.apache.hadoop.fs.FileSystem,
* org.apache.hadoop.fs.Path)}.
*
* <h2>Failure Semantic</h2>
* If an exception on append or sync, roll the WAL because the current WAL is now a lame duck;
* any more appends or syncs will fail also with the same original exception. If we have made
* successful appends to the WAL and we then are unable to sync them, our current semantic is to
* return error to the client that the appends failed but also to abort the current context,
* usually the hosting server. We need to replay the WALs. TODO: Change this semantic. A roll of
* WAL may be sufficient as long as we have flagged client that the append failed. TODO:
* replication may pick up these last edits though they have been marked as failed append (Need to
* keep our own file lengths, not rely on HDFS).
*/
@InterfaceAudience.Private
public class FSHLog implements WAL {
// IMPLEMENTATION NOTES:
//
// At the core is a ring buffer. Our ring buffer is the LMAX Disruptor. It tries to
// minimize synchronizations and volatile writes when multiple contending threads as is the case
// here appending and syncing on a single WAL. The Disruptor is configured to handle multiple
// producers but it has one consumer only (the producers in HBase are IPC Handlers calling append
// and then sync). The single consumer/writer pulls the appends and syncs off the ring buffer.
// When a handler calls sync, it is given back a future. The producer 'blocks' on the future so
// it does not return until the sync completes. The future is passed over the ring buffer from
// the producer/handler to the consumer thread where it does its best to batch up the producer
// syncs so one WAL sync actually spans multiple producer sync invocations. How well the
// batching works depends on the write rate; i.e. we tend to batch more in times of
// high writes/syncs.
//
// Calls to append now also wait until the append has been done on the consumer side of the
// disruptor. We used to not wait but it makes the implemenation easier to grok if we have
// the region edit/sequence id after the append returns.
//
// TODO: Handlers need to coordinate appending AND syncing. Can we have the threads contend
// once only? Probably hard given syncs take way longer than an append.
//
// The consumer threads pass the syncs off to multiple syncing threads in a round robin fashion
// to ensure we keep up back-to-back FS sync calls (FS sync calls are the long poll writing the
// WAL). The consumer thread passes the futures to the sync threads for it to complete
// the futures when done.
//
// The 'sequence' in the below is the sequence of the append/sync on the ringbuffer. It
// acts as a sort-of transaction id. It is always incrementing.
//
// The RingBufferEventHandler class hosts the ring buffer consuming code. The threads that
// do the actual FS sync are implementations of SyncRunner. SafePointZigZagLatch is a
// synchronization class used to halt the consumer at a safe point -- just after all outstanding
// syncs and appends have completed -- so the log roller can swap the WAL out under it.
private static final Log LOG = LogFactory.getLog(FSHLog.class);
static final String SLOW_SYNC_TIME_MS ="hbase.regionserver.wal.slowsync.ms";
static final int DEFAULT_SLOW_SYNC_TIME_MS = 100; // in ms
static final String ROLL_ON_SYNC_TIME_MS = "hbase.regionserver.wal.roll.on.sync.ms";
static final int DEFAULT_ROLL_ON_SYNC_TIME_MS = 10000; // in ms
static final String SLOW_SYNC_ROLL_THRESHOLD = "hbase.regionserver.wal.slowsync.roll.threshold";
static final int DEFAULT_SLOW_SYNC_ROLL_THRESHOLD = 100; // 100 slow sync warnings
static final String SLOW_SYNC_ROLL_INTERVAL_MS =
"hbase.regionserver.wal.slowsync.roll.interval.ms";
static final int DEFAULT_SLOW_SYNC_ROLL_INTERVAL_MS = 60 * 1000; // in ms, 1 minute
static final String WAL_SYNC_TIMEOUT_MS = "hbase.regionserver.wal.sync.timeout";
static final int DEFAULT_WAL_SYNC_TIMEOUT_MS = 5 * 60 * 1000; // in ms, 5min
/**
* The nexus at which all incoming handlers meet. Does appends and sync with an ordering.
* Appends and syncs are each put on the ring which means handlers need to
* smash up against the ring twice (can we make it once only? ... maybe not since time to append
* is so different from time to sync and sometimes we don't want to sync or we want to async
* the sync). The ring is where we make sure of our ordering and it is also where we do
* batching up of handler sync calls.
*/
private final Disruptor<RingBufferTruck> disruptor;
/**
* An executorservice that runs the disruptor AppendEventHandler append executor.
*/
private final ExecutorService appendExecutor;
/**
* This fellow is run by the above appendExecutor service but it is all about batching up appends
* and syncs; it may shutdown without cleaning out the last few appends or syncs. To guard
* against this, keep a reference to this handler and do explicit close on way out to make sure
* all flushed out before we exit.
*/
private final RingBufferEventHandler ringBufferEventHandler;
/**
* Map of {@link SyncFuture}s owned by Thread objects. Used so we reuse SyncFutures.
* Thread local is used so JVM can GC the terminated thread for us. See HBASE-21228
* <p>
*/
private final ThreadLocal<SyncFuture> cachedSyncFutures;
/**
* The highest known outstanding unsync'd WALEdit sequence number where sequence number is the
* ring buffer sequence. Maintained by the ring buffer consumer.
*/
private volatile long highestUnsyncedSequence = -1;
/**
* Updated to the ring buffer sequence of the last successful sync call. This can be less than
* {@link #highestUnsyncedSequence} for case where we have an append where a sync has not yet
* come in for it. Maintained by the syncing threads.
*/
private final AtomicLong highestSyncedSequence = new AtomicLong(0);
/**
* file system instance
*/
protected final FileSystem fs;
/**
* WAL directory, where all WAL files would be placed.
*/
private final Path fullPathLogDir;
/**
* dir path where old logs are kept.
*/
private final Path fullPathArchiveDir;
/**
* Matches just those wal files that belong to this wal instance.
*/
private final PathFilter ourFiles;
/**
* Prefix of a WAL file, usually the region server name it is hosted on.
*/
private final String logFilePrefix;
/**
* Suffix included on generated wal file names
*/
private final String logFileSuffix;
/**
* Prefix used when checking for wal membership.
*/
private final String prefixPathStr;
private final WALCoprocessorHost coprocessorHost;
/**
* conf object
*/
protected final Configuration conf;
/** Listeners that are called on WAL events. */
private final List<WALActionsListener> listeners =
new CopyOnWriteArrayList<WALActionsListener>();
@Override
public void registerWALActionsListener(final WALActionsListener listener) {
this.listeners.add(listener);
}
@Override
public boolean unregisterWALActionsListener(final WALActionsListener listener) {
return this.listeners.remove(listener);
}
@Override
public WALCoprocessorHost getCoprocessorHost() {
return coprocessorHost;
}
/**
* FSDataOutputStream associated with the current SequenceFile.writer
*/
private FSDataOutputStream hdfs_out;
// All about log rolling if not enough replicas outstanding.
// Minimum tolerable replicas, if the actual value is lower than it, rollWriter will be triggered
private final int minTolerableReplication;
private final boolean useHsync;
private final long slowSyncNs, rollOnSyncNs;
private final int slowSyncRollThreshold;
private final int slowSyncCheckInterval;
private final AtomicInteger slowSyncCount = new AtomicInteger();
private final long walSyncTimeout;
// If live datanode count is lower than the default replicas value,
// RollWriter will be triggered in each sync(So the RollWriter will be
// triggered one by one in a short time). Using it as a workaround to slow
// down the roll frequency triggered by checkLowReplication().
private final AtomicInteger consecutiveLogRolls = new AtomicInteger(0);
private final int lowReplicationRollLimit;
// If consecutiveLogRolls is larger than lowReplicationRollLimit,
// then disable the rolling in checkLowReplication().
// Enable it if the replications recover.
private volatile boolean lowReplicationRollEnabled = true;
/**
* Class that does accounting of sequenceids in WAL subsystem. Holds oldest outstanding
* sequence id as yet not flushed as well as the most recent edit sequence id appended to the
* WAL. Has facility for answering questions such as "Is it safe to GC a WAL?".
*/
private SequenceIdAccounting sequenceIdAccounting = new SequenceIdAccounting();
/**
* Current log file.
*/
volatile Writer writer;
/** The barrier used to ensure that close() waits for all log rolls and flushes to finish. */
private final DrainBarrier closeBarrier = new DrainBarrier();
/**
* This lock makes sure only one log roll runs at a time. Should not be taken while any other
* lock is held. We don't just use synchronized because that results in bogus and tedious
* findbugs warning when it thinks synchronized controls writer thread safety. It is held when
* we are actually rolling the log. It is checked when we are looking to see if we should roll
* the log or not.
*/
private final ReentrantLock rollWriterLock = new ReentrantLock(true);
private volatile boolean closed = false;
private final AtomicBoolean shutdown = new AtomicBoolean(false);
// The timestamp (in ms) when the log file was created.
private final AtomicLong filenum = new AtomicLong(-1);
// Number of transactions in the current Wal.
private final AtomicInteger numEntries = new AtomicInteger(0);
// If > than this size, roll the log.
private final long logrollsize;
/**
* The total size of wal
*/
private AtomicLong totalLogSize = new AtomicLong(0);
/*
* If more than this many logs, force flush of oldest region to oldest edit
* goes to disk. If too many and we crash, then will take forever replaying.
* Keep the number of logs tidy.
*/
private final int maxLogs;
/** Number of log close errors tolerated before we abort */
private final int closeErrorsTolerated;
private final AtomicInteger closeErrorCount = new AtomicInteger();
protected volatile boolean rollRequested;
// Last time to check low replication on hlog's pipeline
private volatile long lastTimeCheckLowReplication = EnvironmentEdgeManager.currentTime();
// Last time we asked to roll the log due to a slow sync
private volatile long lastTimeCheckSlowSync = EnvironmentEdgeManager.currentTime();
/**
* WAL Comparator; it compares the timestamp (log filenum), present in the log file name.
* Throws an IllegalArgumentException if used to compare paths from different wals.
*/
final Comparator<Path> LOG_NAME_COMPARATOR = new Comparator<Path>() {
@Override
public int compare(Path o1, Path o2) {
long t1 = getFileNumFromFileName(o1);
long t2 = getFileNumFromFileName(o2);
if (t1 == t2) return 0;
return (t1 > t2) ? 1 : -1;
}
};
/**
* Map of WAL log file to the latest sequence ids of all regions it has entries of.
* The map is sorted by the log file creation timestamp (contained in the log file name).
*/
private NavigableMap<Path, Map<byte[], Long>> byWalRegionSequenceIds =
new ConcurrentSkipListMap<Path, Map<byte[], Long>>(LOG_NAME_COMPARATOR);
/**
* Exception handler to pass the disruptor ringbuffer. Same as native implementation only it
* logs using our logger instead of java native logger.
*/
static class RingBufferExceptionHandler implements ExceptionHandler {
@Override
public void handleEventException(Throwable ex, long sequence, Object event) {
LOG.error("Sequence=" + sequence + ", event=" + event, ex);
throw new RuntimeException(ex);
}
@Override
public void handleOnStartException(Throwable ex) {
LOG.error(ex);
throw new RuntimeException(ex);
}
@Override
public void handleOnShutdownException(Throwable ex) {
LOG.error(ex);
throw new RuntimeException(ex);
}
}
/**
* Constructor.
*
* @param fs filesystem handle
* @param root path for stored and archived wals
* @param logDir dir where wals are stored
* @param conf configuration to use
* @throws IOException
*/
public FSHLog(final FileSystem fs, final Path root, final String logDir, final Configuration conf)
throws IOException {
this(fs, root, logDir, HConstants.HREGION_OLDLOGDIR_NAME, conf, null, true, null, null);
}
/**
* Create an edit log at the given <code>dir</code> location.
*
* You should never have to load an existing log. If there is a log at
* startup, it should have already been processed and deleted by the time the
* WAL object is started up.
*
* @param fs filesystem handle
* @param rootDir path to where logs and oldlogs
* @param logDir dir where wals are stored
* @param archiveDir dir where wals are archived
* @param conf configuration to use
* @param listeners Listeners on WAL events. Listeners passed here will
* be registered before we do anything else; e.g. the
* Constructor {@link #rollWriter()}.
* @param failIfWALExists If true IOException will be thrown if files related to this wal
* already exist.
* @param prefix should always be hostname and port in distributed env and
* it will be URL encoded before being used.
* If prefix is null, "wal" will be used
* @param suffix will be url encoded. null is treated as empty. non-empty must start with
* {@link DefaultWALProvider#WAL_FILE_NAME_DELIMITER}
* @throws IOException
*/
public FSHLog(final FileSystem fs, final Path rootDir, final String logDir,
final String archiveDir, final Configuration conf,
final List<WALActionsListener> listeners,
final boolean failIfWALExists, final String prefix, final String suffix)
throws IOException {
this.fs = fs;
this.fullPathLogDir = new Path(rootDir, logDir);
this.fullPathArchiveDir = new Path(rootDir, archiveDir);
this.conf = conf;
if (!fs.exists(fullPathLogDir) && !fs.mkdirs(fullPathLogDir)) {
throw new IOException("Unable to mkdir " + fullPathLogDir);
}
if (!fs.exists(this.fullPathArchiveDir)) {
if (!fs.mkdirs(this.fullPathArchiveDir)) {
throw new IOException("Unable to mkdir " + this.fullPathArchiveDir);
}
}
// If prefix is null||empty then just name it wal
this.logFilePrefix =
prefix == null || prefix.isEmpty() ? "wal" : URLEncoder.encode(prefix, "UTF8");
// we only correctly differentiate suffices when numeric ones start with '.'
if (suffix != null && !(suffix.isEmpty()) && !(suffix.startsWith(WAL_FILE_NAME_DELIMITER))) {
throw new IllegalArgumentException("WAL suffix must start with '" + WAL_FILE_NAME_DELIMITER +
"' but instead was '" + suffix + "'");
}
// Now that it exists, set the storage policy for the entire directory of wal files related to
// this FSHLog instance
String storagePolicy =
conf.get(HConstants.WAL_STORAGE_POLICY, HConstants.DEFAULT_WAL_STORAGE_POLICY);
FSUtils.setStoragePolicy(fs, this.fullPathLogDir, storagePolicy);
this.logFileSuffix = (suffix == null) ? "" : URLEncoder.encode(suffix, "UTF8");
this.prefixPathStr = new Path(fullPathLogDir,
logFilePrefix + WAL_FILE_NAME_DELIMITER).toString();
this.ourFiles = new PathFilter() {
@Override
public boolean accept(final Path fileName) {
// The path should start with dir/<prefix> and end with our suffix
final String fileNameString = fileName.toString();
if (!fileNameString.startsWith(prefixPathStr)) {
return false;
}
if (logFileSuffix.isEmpty()) {
// in the case of the null suffix, we need to ensure the filename ends with a timestamp.
return org.apache.commons.lang.StringUtils.isNumeric(
fileNameString.substring(prefixPathStr.length()));
} else if (!fileNameString.endsWith(logFileSuffix)) {
return false;
}
return true;
}
};
if (failIfWALExists) {
final FileStatus[] walFiles = FSUtils.listStatus(fs, fullPathLogDir, ourFiles);
if (null != walFiles && 0 != walFiles.length) {
throw new IOException("Target WAL already exists within directory " + fullPathLogDir);
}
}
// Register listeners. TODO: Should this exist anymore? We have CPs?
if (listeners != null) {
for (WALActionsListener i: listeners) {
registerWALActionsListener(i);
}
}
this.coprocessorHost = new WALCoprocessorHost(this, conf);
// Get size to roll log at. Roll at 95% of HDFS block size so we avoid crossing HDFS blocks
// (it costs a little x'ing bocks)
final long blocksize = WALUtil.getWALBlockSize(conf, fs, fullPathLogDir, false);
this.logrollsize =
(long)(blocksize * conf.getFloat("hbase.regionserver.logroll.multiplier", 0.95f));
float memstoreRatio = conf.getFloat(HeapMemorySizeUtil.MEMSTORE_SIZE_KEY,
conf.getFloat(HeapMemorySizeUtil.MEMSTORE_SIZE_OLD_KEY,
HeapMemorySizeUtil.DEFAULT_MEMSTORE_SIZE));
boolean maxLogsDefined = conf.get("hbase.regionserver.maxlogs") != null;
if(maxLogsDefined){
LOG.warn("'hbase.regionserver.maxlogs' was deprecated.");
}
this.maxLogs = conf.getInt("hbase.regionserver.maxlogs",
Math.max(32, calculateMaxLogFiles(memstoreRatio, logrollsize)));
this.minTolerableReplication = conf.getInt("hbase.regionserver.hlog.tolerable.lowreplication",
FSUtils.getDefaultReplication(fs, this.fullPathLogDir));
this.lowReplicationRollLimit =
conf.getInt("hbase.regionserver.hlog.lowreplication.rolllimit", 5);
this.closeErrorsTolerated = conf.getInt("hbase.regionserver.logroll.errors.tolerated", 0);
LOG.info("WAL configuration: blocksize=" + StringUtils.byteDesc(blocksize) +
", rollsize=" + StringUtils.byteDesc(this.logrollsize) +
", prefix=" + this.logFilePrefix + ", suffix=" + logFileSuffix + ", logDir=" +
this.fullPathLogDir + ", archiveDir=" + this.fullPathArchiveDir);
this.useHsync = conf.getBoolean(HRegion.WAL_HSYNC_CONF_KEY, HRegion.DEFAULT_WAL_HSYNC);
this.slowSyncNs = TimeUnit.MILLISECONDS.toNanos(conf.getInt(SLOW_SYNC_TIME_MS,
conf.getInt("hbase.regionserver.hlog.slowsync.ms", DEFAULT_SLOW_SYNC_TIME_MS)));
this.rollOnSyncNs = TimeUnit.MILLISECONDS.toNanos(conf.getInt(ROLL_ON_SYNC_TIME_MS,
DEFAULT_ROLL_ON_SYNC_TIME_MS));
this.slowSyncRollThreshold = conf.getInt(SLOW_SYNC_ROLL_THRESHOLD,
DEFAULT_SLOW_SYNC_ROLL_THRESHOLD);
this.slowSyncCheckInterval = conf.getInt(SLOW_SYNC_ROLL_INTERVAL_MS,
DEFAULT_SLOW_SYNC_ROLL_INTERVAL_MS);
this.walSyncTimeout = conf.getLong(WAL_SYNC_TIMEOUT_MS,
conf.getLong("hbase.regionserver.hlog.sync.timeout", DEFAULT_WAL_SYNC_TIMEOUT_MS));
// rollWriter sets this.hdfs_out if it can.
rollWriter();
// This is the 'writer' -- a single threaded executor. This single thread 'consumes' what is
// put on the ring buffer.
String hostingThreadName = Thread.currentThread().getName();
this.appendExecutor = Executors.
newSingleThreadExecutor(Threads.getNamedThreadFactory(hostingThreadName + ".append"));
// Preallocate objects to use on the ring buffer. The way that appends and syncs work, we will
// be stuck and make no progress if the buffer is filled with appends only and there is no
// sync. If no sync, then the handlers will be outstanding just waiting on sync completion
// before they return.
final int preallocatedEventCount =
this.conf.getInt("hbase.regionserver.wal.disruptor.event.count", 1024 * 16);
// Using BlockingWaitStrategy. Stuff that is going on here takes so long it makes no sense
// spinning as other strategies do.
this.disruptor =
new Disruptor<RingBufferTruck>(RingBufferTruck.EVENT_FACTORY, preallocatedEventCount,
this.appendExecutor, ProducerType.MULTI, new BlockingWaitStrategy());
// Advance the ring buffer sequence so that it starts from 1 instead of 0,
// because SyncFuture.NOT_DONE = 0.
this.disruptor.getRingBuffer().next();
int syncerCount = conf.getInt("hbase.regionserver.hlog.syncer.count", 5);
int maxBatchCount = conf.getInt("hbase.regionserver.wal.sync.batch.count",
conf.getInt(HConstants.REGION_SERVER_HANDLER_COUNT, 200));
this.ringBufferEventHandler = new RingBufferEventHandler(syncerCount, maxBatchCount);
this.disruptor.handleExceptionsWith(new RingBufferExceptionHandler());
this.disruptor.handleEventsWith(new RingBufferEventHandler [] {this.ringBufferEventHandler});
this.cachedSyncFutures = new ThreadLocal<SyncFuture>() {
@Override
protected SyncFuture initialValue() {
return new SyncFuture();
}
};
// Starting up threads in constructor is a no no; Interface should have an init call.
this.disruptor.start();
}
private int calculateMaxLogFiles(float memstoreSizeRatio, long logRollSize) {
long max = -1L;
final MemoryUsage usage = HeapMemorySizeUtil.safeGetHeapMemoryUsage();
if (usage != null) {
max = usage.getMax();
}
int maxLogs = Math.round(max * memstoreSizeRatio * 2 / logRollSize);
return maxLogs;
}
/**
* Get the backing files associated with this WAL.
* @return may be null if there are no files.
*/
protected FileStatus[] getFiles() throws IOException {
return FSUtils.listStatus(fs, fullPathLogDir, ourFiles);
}
/**
* Currently, we need to expose the writer's OutputStream to tests so that they can manipulate
* the default behavior (such as setting the maxRecoveryErrorCount value for example (see
* {@link TestWALReplay#testReplayEditsWrittenIntoWAL()}). This is done using reflection on the
* underlying HDFS OutputStream.
* NOTE: This could be removed once Hadoop1 support is removed.
* @return null if underlying stream is not ready.
*/
OutputStream getOutputStream() {
FSDataOutputStream fsdos = this.hdfs_out;
if (fsdos == null) return null;
return fsdos.getWrappedStream();
}
@Override
public byte [][] rollWriter() throws FailedLogCloseException, IOException {
return rollWriter(false);
}
/**
* retrieve the next path to use for writing.
* Increments the internal filenum.
*/
private Path getNewPath() throws IOException {
this.filenum.set(System.currentTimeMillis());
Path newPath = getCurrentFileName();
while (fs.exists(newPath)) {
this.filenum.incrementAndGet();
newPath = getCurrentFileName();
}
return newPath;
}
Path getOldPath() {
long currentFilenum = this.filenum.get();
Path oldPath = null;
if (currentFilenum > 0) {
// ComputeFilename will take care of meta wal filename
oldPath = computeFilename(currentFilenum);
} // I presume if currentFilenum is <= 0, this is first file and null for oldPath if fine?
return oldPath;
}
/**
* Tell listeners about pre log roll.
* @throws IOException
*/
private void tellListenersAboutPreLogRoll(final Path oldPath, final Path newPath)
throws IOException {
coprocessorHost.preWALRoll(oldPath, newPath);
if (!this.listeners.isEmpty()) {
for (WALActionsListener i : this.listeners) {
i.preLogRoll(oldPath, newPath);
}
}
}
/**
* Tell listeners about post log roll.
* @throws IOException
*/
private void tellListenersAboutPostLogRoll(final Path oldPath, final Path newPath)
throws IOException {
if (!this.listeners.isEmpty()) {
for (WALActionsListener i : this.listeners) {
i.postLogRoll(oldPath, newPath);
}
}
coprocessorHost.postWALRoll(oldPath, newPath);
}
/**
* Run a sync after opening to set up the pipeline.
* @param nextWriter
* @param startTimeNanos
*/
private void preemptiveSync(final ProtobufLogWriter nextWriter) {
long startTimeNanos = System.nanoTime();
try {
nextWriter.sync(useHsync);
postSync(System.nanoTime() - startTimeNanos, 0);
} catch (IOException e) {
// optimization failed, no need to abort here.
LOG.warn("pre-sync failed but an optimization so keep going", e);
}
}
@Override
public byte [][] rollWriter(boolean force) throws FailedLogCloseException, IOException {
rollWriterLock.lock();
try {
// Return if nothing to flush.
if (!force && (this.writer != null && this.numEntries.get() <= 0)) return null;
byte [][] regionsToFlush = null;
if (this.closed) {
LOG.debug("WAL closed. Skipping rolling of writer");
return regionsToFlush;
}
if (!closeBarrier.beginOp()) {
LOG.debug("WAL closing. Skipping rolling of writer");
return regionsToFlush;
}
TraceScope scope = Trace.startSpan("FSHLog.rollWriter");
try {
Path oldPath = getOldPath();
Path newPath = getNewPath();
// Any exception from here on is catastrophic, non-recoverable so we currently abort.
Writer nextWriter = this.createWriterInstance(newPath);
FSDataOutputStream nextHdfsOut = null;
if (nextWriter instanceof ProtobufLogWriter) {
nextHdfsOut = ((ProtobufLogWriter)nextWriter).getStream();
// If a ProtobufLogWriter, go ahead and try and sync to force setup of pipeline.
// If this fails, we just keep going.... it is an optimization, not the end of the world.
preemptiveSync((ProtobufLogWriter)nextWriter);
}
tellListenersAboutPreLogRoll(oldPath, newPath);
// NewPath could be equal to oldPath if replaceWriter fails.
newPath = replaceWriter(oldPath, newPath, nextWriter, nextHdfsOut);
tellListenersAboutPostLogRoll(oldPath, newPath);
// Reset rollRequested status
rollRequested = false;
// We got a new writer, so reset the slow sync count
lastTimeCheckSlowSync = EnvironmentEdgeManager.currentTime();
slowSyncCount.set(0);
// Can we delete any of the old log files?
if (getNumRolledLogFiles() > 0) {
cleanOldLogs();
regionsToFlush = findRegionsToForceFlush();
}
} finally {
closeBarrier.endOp();
assert scope == NullScope.INSTANCE || !scope.isDetached();
scope.close();
}
return regionsToFlush;
} finally {
rollWriterLock.unlock();
}
}
/**
* This method allows subclasses to inject different writers without having to
* extend other methods like rollWriter().
*
* @return Writer instance
*/
protected Writer createWriterInstance(final Path path) throws IOException {
return DefaultWALProvider.createWriter(conf, fs, path, false);
}
/**
* Archive old logs. A WAL is eligible for archiving if all its WALEdits have been flushed.
* @throws IOException
*/
private void cleanOldLogs() throws IOException {
List<Path> logsToArchive = null;
// For each log file, look at its Map of regions to highest sequence id; if all sequence ids
// are older than what is currently in memory, the WAL can be GC'd.
for (Map.Entry<Path, Map<byte[], Long>> e : this.byWalRegionSequenceIds.entrySet()) {
Path log = e.getKey();
Map<byte[], Long> sequenceNums = e.getValue();
if (this.sequenceIdAccounting.areAllLower(sequenceNums)) {
if (logsToArchive == null) logsToArchive = new ArrayList<Path>();
logsToArchive.add(log);
if (LOG.isTraceEnabled()) LOG.trace("WAL file ready for archiving " + log);
}
}
if (logsToArchive != null) {
for (Path p : logsToArchive) {
this.totalLogSize.addAndGet(-this.fs.getFileStatus(p).getLen());
archiveLogFile(p);
this.byWalRegionSequenceIds.remove(p);
}
}
}
/**
* If the number of un-archived WAL files is greater than maximum allowed, check the first
* (oldest) WAL file, and returns those regions which should be flushed so that it can
* be archived.
* @return regions (encodedRegionNames) to flush in order to archive oldest WAL file.
* @throws IOException
*/
byte[][] findRegionsToForceFlush() throws IOException {
byte [][] regions = null;
int logCount = getNumRolledLogFiles();
if (logCount > this.maxLogs && logCount > 0) {
Map.Entry<Path, Map<byte[], Long>> firstWALEntry =
this.byWalRegionSequenceIds.firstEntry();
regions = this.sequenceIdAccounting.findLower(firstWALEntry.getValue());
}
if (regions != null) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < regions.length; i++) {
if (i > 0) sb.append(", ");
sb.append(Bytes.toStringBinary(regions[i]));
}
LOG.info("Too many WALs; count=" + logCount + ", max=" + this.maxLogs +
"; forcing flush of " + regions.length + " regions(s): " + sb.toString());
}
return regions;
}
/**
* Used to manufacture race condition reliably. For testing only.
* @see #beforeWaitOnSafePoint()
*/
protected void afterCreatingZigZagLatch() {}
/**
* @see #afterCreatingZigZagLatch()
*/
protected void beforeWaitOnSafePoint() {};
/**
* Cleans up current writer closing it and then puts in place the passed in
* <code>nextWriter</code>.
*
* In the case of creating a new WAL, oldPath will be null.
*
* In the case of rolling over from one file to the next, none of the params will be null.
*
* In the case of closing out this FSHLog with no further use newPath, nextWriter, and
* nextHdfsOut will be null.
*
* @param oldPath may be null
* @param newPath may be null
* @param nextWriter may be null
* @param nextHdfsOut may be null
* @return the passed in <code>newPath</code>
* @throws IOException if there is a problem flushing or closing the underlying FS
*/
Path replaceWriter(final Path oldPath, final Path newPath, Writer nextWriter,
final FSDataOutputStream nextHdfsOut)
throws IOException {
// Ask the ring buffer writer to pause at a safe point. Once we do this, the writer
// thread will eventually pause. An error hereafter needs to release the writer thread
// regardless -- hence the finally block below. Note, this method is called from the FSHLog
// constructor BEFORE the ring buffer is set running so it is null on first time through
// here; allow for that.
SyncFuture syncFuture = null;
SafePointZigZagLatch zigzagLatch = null;
long sequence = -1L;
if (this.ringBufferEventHandler != null) {
// Get sequence first to avoid dead lock when ring buffer is full
// Considering below sequence
// 1. replaceWriter is called and zigzagLatch is initialized
// 2. ringBufferEventHandler#onEvent is called and arrives at #attainSafePoint(long) then wait
// on safePointReleasedLatch
// 3. Since ring buffer is full, if we get sequence when publish sync, the replaceWriter
// thread will wait for the ring buffer to be consumed, but the only consumer is waiting
// replaceWriter thread to release safePointReleasedLatch, which causes a deadlock
sequence = getSequenceOnRingBuffer();
zigzagLatch = this.ringBufferEventHandler.attainSafePoint();
}
afterCreatingZigZagLatch();
TraceScope scope = Trace.startSpan("FSHFile.replaceWriter");
try {
// Wait on the safe point to be achieved. Send in a sync in case nothing has hit the
// ring buffer between the above notification of writer that we want it to go to
// 'safe point' and then here where we are waiting on it to attain safe point. Use
// 'sendSync' instead of 'sync' because we do not want this thread to block waiting on it
// to come back. Cleanup this syncFuture down below after we are ready to run again.
try {
if (zigzagLatch != null) {
// use assert to make sure no change breaks the logic that
// sequence and zigzagLatch will be set together
assert sequence > 0L : "Failed to get sequence from ring buffer";
Trace.addTimelineAnnotation("awaiting safepoint");
syncFuture = zigzagLatch.waitSafePoint(publishSyncOnRingBuffer(sequence));
}
} catch (FailedSyncBeforeLogCloseException e) {
// If unflushed/unsynced entries on close, it is reason to abort.
if (isUnflushedEntries()) throw e;
LOG.warn("Failed sync-before-close but no outstanding appends; closing WAL: " +
e.getMessage());
}
// It is at the safe point. Swap out writer from under the blocked writer thread.
// TODO: This is close is inline with critical section. Should happen in background?
try {
if (this.writer != null) {
Trace.addTimelineAnnotation("closing writer");
this.writer.close();
Trace.addTimelineAnnotation("writer closed");
}
this.closeErrorCount.set(0);
} catch (IOException ioe) {
int errors = closeErrorCount.incrementAndGet();
if (!isUnflushedEntries() && (errors <= this.closeErrorsTolerated)) {
LOG.warn("Riding over failed WAL close of " + oldPath + ", cause=\"" +
ioe.getMessage() + "\", errors=" + errors +
"; THIS FILE WAS NOT CLOSED BUT ALL EDITS SYNCED SO SHOULD BE OK");
} else {
throw ioe;
}
}
this.writer = nextWriter;
this.hdfs_out = nextHdfsOut;
int oldNumEntries = this.numEntries.get();
this.numEntries.set(0);
final String newPathString = (null == newPath ? null : FSUtils.getPath(newPath));
if (oldPath != null) {
this.byWalRegionSequenceIds.put(oldPath, this.sequenceIdAccounting.resetHighest());
long oldFileLen = this.fs.getFileStatus(oldPath).getLen();
this.totalLogSize.addAndGet(oldFileLen);
LOG.info("Rolled WAL " + FSUtils.getPath(oldPath) + " with entries=" + oldNumEntries +
", filesize=" + StringUtils.byteDesc(oldFileLen) + "; new WAL " +
newPathString);
} else {
LOG.info("New WAL " + newPathString);
}
} catch (InterruptedException ie) {
// Perpetuate the interrupt
Thread.currentThread().interrupt();
} catch (IOException e) {
long count = getUnflushedEntriesCount();
LOG.error("Failed close of WAL writer " + oldPath + ", unflushedEntries=" + count, e);
throw new FailedLogCloseException(oldPath + ", unflushedEntries=" + count, e);
} finally {
try {
// Let the writer thread go regardless, whether error or not.
if (zigzagLatch != null) {
zigzagLatch.releaseSafePoint();
// syncFuture will be null if we failed our wait on safe point above. Otherwise, if
// latch was obtained successfully, the sync we threw in either trigger the latch or it
// got stamped with an exception because the WAL was damaged and we could not sync. Now
// the write pipeline has been opened up again by releasing the safe point, process the
// syncFuture we got above. This is probably a noop but it may be stale exception from
// when old WAL was in place. Catch it if so.
if (syncFuture != null) {
try {
blockOnSync(syncFuture);
} catch (IOException ioe) {
if (LOG.isTraceEnabled()) LOG.trace("Stale sync exception", ioe);
}
}
}
} finally {
scope.close();
}
}
return newPath;
}
long getUnflushedEntriesCount() {
long highestSynced = this.highestSyncedSequence.get();
return highestSynced > this.highestUnsyncedSequence?
0: this.highestUnsyncedSequence - highestSynced;
}
boolean isUnflushedEntries() {
return getUnflushedEntriesCount() > 0;
}
/*
* only public so WALSplitter can use.
* @return archived location of a WAL file with the given path p
*/
public static Path getWALArchivePath(Path archiveDir, Path p) {
return new Path(archiveDir, p.getName());
}
private void archiveLogFile(final Path p) throws IOException {
Path newPath = getWALArchivePath(this.fullPathArchiveDir, p);
// Tell our listeners that a log is going to be archived.
if (!this.listeners.isEmpty()) {
for (WALActionsListener i : this.listeners) {
i.preLogArchive(p, newPath);
}
}
LOG.info("Archiving " + p + " to " + newPath);
if (!FSUtils.renameAndSetModifyTime(this.fs, p, newPath)) {
throw new IOException("Unable to rename " + p + " to " + newPath);
}
// Tell our listeners that a log has been archived.
if (!this.listeners.isEmpty()) {
for (WALActionsListener i : this.listeners) {
i.postLogArchive(p, newPath);
}
}
}
/**
* This is a convenience method that computes a new filename with a given
* file-number.
* @param filenum to use
* @return Path
*/
protected Path computeFilename(final long filenum) {
if (filenum < 0) {
throw new RuntimeException("WAL file number can't be < 0");
}
String child = logFilePrefix + WAL_FILE_NAME_DELIMITER + filenum + logFileSuffix;
return new Path(fullPathLogDir, child);
}
/**
* This is a convenience method that computes a new filename with a given
* using the current WAL file-number
* @return Path
*/
public Path getCurrentFileName() {
return computeFilename(this.filenum.get());
}
/**
* @return current file number (timestamp)
*/
public long getFilenum() {
return filenum.get();
}
@Override
public String toString() {
return "FSHLog " + logFilePrefix + ":" + logFileSuffix + "(num " + filenum + ")";
}
/**
* A log file has a creation timestamp (in ms) in its file name ({@link #filenum}.
* This helper method returns the creation timestamp from a given log file.
* It extracts the timestamp assuming the filename is created with the
* {@link #computeFilename(long filenum)} method.
* @param fileName
* @return timestamp, as in the log file name.
*/
protected long getFileNumFromFileName(Path fileName) {
if (fileName == null) throw new IllegalArgumentException("file name can't be null");
if (!ourFiles.accept(fileName)) {
throw new IllegalArgumentException("The log file " + fileName +
" doesn't belong to this WAL. (" + toString() + ")");
}
final String fileNameString = fileName.toString();
String chompedPath = fileNameString.substring(prefixPathStr.length(),
(fileNameString.length() - logFileSuffix.length()));
return Long.parseLong(chompedPath);
}
@Override
public void close() throws IOException {
shutdown();
final FileStatus[] files = getFiles();
if (null != files && 0 != files.length) {
for (FileStatus file : files) {
Path p = getWALArchivePath(this.fullPathArchiveDir, file.getPath());
// Tell our listeners that a log is going to be archived.
if (!this.listeners.isEmpty()) {
for (WALActionsListener i : this.listeners) {
i.preLogArchive(file.getPath(), p);
}
}
if (!FSUtils.renameAndSetModifyTime(fs, file.getPath(), p)) {
throw new IOException("Unable to rename " + file.getPath() + " to " + p);
}
// Tell our listeners that a log was archived.
if (!this.listeners.isEmpty()) {
for (WALActionsListener i : this.listeners) {
i.postLogArchive(file.getPath(), p);
}
}
}
LOG.debug("Moved " + files.length + " WAL file(s) to " +
FSUtils.getPath(this.fullPathArchiveDir));
}
LOG.info("Closed WAL: " + toString());
}
@Override
public void shutdown() throws IOException {
if (shutdown.compareAndSet(false, true)) {
// Close FSHlog instance before shutting down disruptor. This will make sure we will not
// add more entries to ring buffer (via append) while we disruptor#shutdown is in progress.
this.closed = true;
try {
// Prevent all further flushing and rolling.
closeBarrier.stopAndDrainOps();
} catch (InterruptedException e) {
LOG.error("Exception while waiting for cache flushes and log rolls", e);
Thread.currentThread().interrupt();
}
// Shutdown the disruptor. Will stop after all entries have been processed. Make sure we
// have stopped incoming appends before calling this else it will not shutdown. We are
// conservative below waiting a long time and if not elapsed, then halting.
if (this.disruptor != null) {
long timeoutms = conf.getLong("hbase.wal.disruptor.shutdown.timeout.ms", 60000);
try {
this.disruptor.shutdown(timeoutms, TimeUnit.MILLISECONDS);
} catch (TimeoutException e) {
LOG.warn("Timed out bringing down disruptor after " + timeoutms + "ms; forcing halt " +
"(It is a problem if this is NOT an ABORT! -- DATALOSS!!!!)");
this.disruptor.halt();
this.disruptor.shutdown();
}
}
// With disruptor down, this is safe to let go.
if (this.appendExecutor != null) this.appendExecutor.shutdown();
// Tell our listeners that the log is closing
if (!this.listeners.isEmpty()) {
for (WALActionsListener i : this.listeners) {
i.logCloseRequested();
}
}
if (LOG.isDebugEnabled()) {
LOG.debug("Closing WAL writer in " + FSUtils.getPath(fullPathLogDir));
}
if (this.writer != null) {
this.writer.close();
this.writer = null;
}
}
}
@edu.umd.cs.findbugs.annotations.SuppressWarnings(value="NP_NULL_ON_SOME_PATH_EXCEPTION",
justification="Will never be null")
@Override
public long append(final HTableDescriptor htd, final HRegionInfo hri, final WALKey key,
final WALEdit edits, final boolean inMemstore) throws IOException {
if (this.closed) throw new IOException("Cannot append; log is closed");
// Make a trace scope for the append. It is closed on other side of the ring buffer by the
// single consuming thread. Don't have to worry about it.
TraceScope scope = Trace.startSpan("FSHLog.append");
final MutableLong txidHolder = new MutableLong();
final RingBuffer<RingBufferTruck> ringBuffer = disruptor.getRingBuffer();
MultiVersionConcurrencyControl.WriteEntry we = key.getMvcc().begin(new Runnable() {
@Override public void run() {
txidHolder.setValue(ringBuffer.next());
}
});
long txid = txidHolder.longValue();
try {
FSWALEntry entry = new FSWALEntry(txid, key, edits, htd, hri, inMemstore);
entry.stampRegionSequenceId(we);
ringBuffer.get(txid).loadPayload(entry, scope.detach());
} finally {
ringBuffer.publish(txid);
}
return txid;
}
/**
* Thread to runs the hdfs sync call. This call takes a while to complete. This is the longest
* pole adding edits to the WAL and this must complete to be sure all edits persisted. We run
* multiple threads sync'ng rather than one that just syncs in series so we have better
* latencies; otherwise, an edit that arrived just after a sync started, might have to wait
* almost the length of two sync invocations before it is marked done.
* <p>When the sync completes, it marks all the passed in futures done. On the other end of the
* sync future is a blocked thread, usually a regionserver Handler. There may be more than one
* future passed in the case where a few threads arrive at about the same time and all invoke
* 'sync'. In this case we'll batch up the invocations and run one filesystem sync only for a
* batch of Handler sync invocations. Do not confuse these Handler SyncFutures with the futures
* an ExecutorService returns when you call submit. We have no use for these in this model. These
* SyncFutures are 'artificial', something to hold the Handler until the filesystem sync
* completes.
*/
private class SyncRunner extends HasThread {
private volatile long sequence;
// Keep around last exception thrown. Clear on successful sync.
private final BlockingQueue<SyncFuture> syncFutures;
private volatile SyncFuture takeSyncFuture = null;
/**
* UPDATE!
* @param syncs the batch of calls to sync that arrived as this thread was starting; when done,
* we will put the result of the actual hdfs sync call as the result.
* @param sequence The sequence number on the ring buffer when this thread was set running.
* If this actual writer sync completes then all appends up this point have been
* flushed/synced/pushed to datanodes. If we fail, then the passed in <code>syncs</code>
* futures will return the exception to their clients; some of the edits may have made it out
* to data nodes but we will report all that were part of this session as failed.
*/
SyncRunner(final String name, final int maxHandlersCount) {
super(name);
// LinkedBlockingQueue because of
// http://www.javacodegeeks.com/2010/09/java-best-practices-queue-battle-and.html
// Could use other blockingqueues here or concurrent queues.
//
// We could let the capacity be 'open' but bound it so we get alerted in pathological case
// where we cannot sync and we have a bunch of threads all backed up waiting on their syncs
// to come in. LinkedBlockingQueue actually shrinks when you remove elements so Q should
// stay neat and tidy in usual case. Let the max size be three times the maximum handlers.
// The passed in maxHandlerCount is the user-level handlers which is what we put up most of
// but HBase has other handlers running too -- opening region handlers which want to write
// the meta table when succesful (i.e. sync), closing handlers -- etc. These are usually
// much fewer in number than the user-space handlers so Q-size should be user handlers plus
// some space for these other handlers. Lets multiply by 3 for good-measure.
this.syncFutures = new LinkedBlockingQueue<SyncFuture>(maxHandlersCount * 3);
}
void offer(final long sequence, final SyncFuture [] syncFutures, final int syncFutureCount) {
// Set sequence first because the add to the queue will wake the thread if sleeping.
this.sequence = sequence;
for (int i = 0; i < syncFutureCount; ++i) {
this.syncFutures.add(syncFutures[i]);
}
}
/**
* Release the passed <code>syncFuture</code>
* @param syncFuture
* @param currentSequence
* @param t
* @return Returns 1.
*/
private int releaseSyncFuture(final SyncFuture syncFuture, final long currentSequence,
final Throwable t) {
if (!syncFuture.done(currentSequence, t)) {
throw new IllegalStateException();
}
// This function releases one sync future only.
return 1;
}
/**
* Release all SyncFutures whose sequence is <= <code>currentSequence</code>.
* @param currentSequence
* @param t May be non-null if we are processing SyncFutures because an exception was thrown.
* @return Count of SyncFutures we let go.
*/
private int releaseSyncFutures(final long currentSequence, final Throwable t) {
int syncCount = 0;
for (SyncFuture syncFuture; (syncFuture = this.syncFutures.peek()) != null;) {
if (syncFuture.getRingBufferSequence() > currentSequence) {
break;
}
releaseSyncFuture(syncFuture, currentSequence, t);
if (!this.syncFutures.remove(syncFuture)) {
throw new IllegalStateException(syncFuture.toString());
}
syncCount++;
}
return syncCount;
}
/**
* @param sequence The sequence we ran the filesystem sync against.
* @return Current highest synced sequence.
*/
private long updateHighestSyncedSequence(long sequence) {
long currentHighestSyncedSequence;
// Set the highestSyncedSequence IFF our current sequence id is the 'highest'.
do {
currentHighestSyncedSequence = highestSyncedSequence.get();
if (currentHighestSyncedSequence >= sequence) {
// Set the sync number to current highwater mark; might be able to let go more
// queued sync futures
sequence = currentHighestSyncedSequence;
break;
}
} while (!highestSyncedSequence.compareAndSet(currentHighestSyncedSequence, sequence));
return sequence;
}
boolean areSyncFuturesReleased() {
// check whether there is no sync futures offered, and no in-flight sync futures that is being
// processed.
return syncFutures.size() <= 0
&& takeSyncFuture == null;
}
@Override
public void run() {
long currentSequence;
while (!isInterrupted()) {
int syncCount = 0;
try {
// Make a local copy of takeSyncFuture after we get it. We've been running into NPEs
// 2020-03-22 16:54:32,180 WARN [sync.1] wal.FSHLog$SyncRunner(589): UNEXPECTED
// java.lang.NullPointerException
// at org.apache.hadoop.hbase.regionserver.wal.FSHLog$SyncRunner.run(FSHLog.java:582)
// at java.lang.Thread.run(Thread.java:748)
SyncFuture sf;
while (true) {
takeSyncFuture = null;
// We have to process what we 'take' from the queue
takeSyncFuture = this.syncFutures.take();
// Make local copy.
sf = takeSyncFuture;
currentSequence = this.sequence;
long syncFutureSequence = sf.getRingBufferSequence();
if (syncFutureSequence > currentSequence) {
throw new IllegalStateException("currentSequence=" + currentSequence +
", syncFutureSequence=" + syncFutureSequence);
}
// See if we can process any syncfutures BEFORE we go sync.
long currentHighestSyncedSequence = highestSyncedSequence.get();
if (currentSequence < currentHighestSyncedSequence) {
syncCount += releaseSyncFuture(sf, currentHighestSyncedSequence, null);
// Done with the 'take'. Go around again and do a new 'take'.
continue;
}
break;
}
// I got something. Lets run. Save off current sequence number in case it changes
// while we run.
TraceScope scope = Trace.continueSpan(sf.getSpan());
long start = System.nanoTime();
Throwable lastException = null;
try {
Trace.addTimelineAnnotation("syncing writer");
long unSyncedFlushSeq = highestUnsyncedSequence;
writer.sync(sf.isForceSync());
Trace.addTimelineAnnotation("writer synced");
if (unSyncedFlushSeq > currentSequence) {
currentSequence = unSyncedFlushSeq;
}
currentSequence = updateHighestSyncedSequence(currentSequence);
} catch (IOException e) {
LOG.error("Error syncing, request close of WAL", e);
lastException = e;
} catch (Exception e) {
LOG.warn("UNEXPECTED", e);
lastException = e;
} finally {
// reattach the span to the future before releasing.
sf.setSpan(scope.detach());
// First release what we 'took' from the queue.
syncCount += releaseSyncFuture(sf, currentSequence, lastException);
// Can we release other syncs?
syncCount += releaseSyncFutures(currentSequence, lastException);
if (lastException != null) {
requestLogRoll();
} else {
checkLogRoll();
}
}
postSync(System.nanoTime() - start, syncCount);
} catch (InterruptedException e) {
// Presume legit interrupt.
Thread.currentThread().interrupt();
} catch (Throwable t) {
LOG.warn("UNEXPECTED, continuing", t);
}
}
}
}
/**
* Schedule a log roll if needed.
*/
public void checkLogRoll() {
// If we have already requested a roll, do nothing
if (isLogRollRequested()) {
return;
}
// Will return immediately if we are in the middle of a WAL log roll currently.
if (!rollWriterLock.tryLock()) {
return;
}
try {
if (checkLowReplication()) {
LOG.warn("Requesting log roll because of low replication, current pipeline: " +
Arrays.toString(getPipeLine()));
requestLogRoll(LOW_REPLICATION);
} else if (writer != null && writer.getLength() > logrollsize) {
if (LOG.isDebugEnabled()) {
LOG.debug("Requesting log roll because of file size threshold; length=" +
writer.getLength() + ", logrollsize=" + logrollsize);
}
requestLogRoll(SIZE);
} else if (checkSlowSync()) {
// We log this already in checkSlowSync
requestLogRoll(SLOW_SYNC);
}
} catch (IOException e) {
LOG.warn("Writer.getLength() failed; continuing", e);
} finally {
rollWriterLock.unlock();
}
}
/**
* @return true if number of replicas for the WAL is lower than threshold
*/
private boolean checkLowReplication() {
boolean logRollNeeded = false;
this.lastTimeCheckLowReplication = EnvironmentEdgeManager.currentTime();
// if the number of replicas in HDFS has fallen below the configured
// value, then roll logs.
try {
int numCurrentReplicas = getLogReplication();
if (numCurrentReplicas != 0 && numCurrentReplicas < this.minTolerableReplication) {
if (this.lowReplicationRollEnabled) {
if (this.consecutiveLogRolls.get() < this.lowReplicationRollLimit) {
LOG.warn("HDFS pipeline error detected. " + "Found "
+ numCurrentReplicas + " replicas but expecting no less than "
+ this.minTolerableReplication + " replicas. "
+ " Requesting close of WAL. current pipeline: "
+ Arrays.toString(getPipeLine()));
logRollNeeded = true;
// If rollWriter is requested, increase consecutiveLogRolls. Once it
// is larger than lowReplicationRollLimit, disable the
// LowReplication-Roller
this.consecutiveLogRolls.getAndIncrement();
} else {
LOG.warn("Too many consecutive RollWriter requests, it's a sign of "
+ "the total number of live datanodes is lower than the tolerable replicas.");
this.consecutiveLogRolls.set(0);
this.lowReplicationRollEnabled = false;
}
}
} else if (numCurrentReplicas >= this.minTolerableReplication) {
if (!this.lowReplicationRollEnabled) {
// The new writer's log replicas is always the default value.
// So we should not enable LowReplication-Roller. If numEntries
// is lower than or equals 1, we consider it as a new writer.
if (this.numEntries.get() <= 1) {
return logRollNeeded;
}
// Once the live datanode number and the replicas return to normal,
// enable the LowReplication-Roller.
this.lowReplicationRollEnabled = true;
LOG.info("LowReplication-Roller was enabled.");
}
}
} catch (Exception e) {
LOG.warn("DFSOutputStream.getNumCurrentReplicas failed because of " + e +
", continuing...");
}
return logRollNeeded;
}
/**
* @return true if we exceeded the slow sync roll threshold over the last check
* interval
*/
private boolean checkSlowSync() {
boolean result = false;
long now = EnvironmentEdgeManager.currentTime();
long elapsedTime = now - lastTimeCheckSlowSync;
if (elapsedTime >= slowSyncCheckInterval) {
if (slowSyncCount.get() >= slowSyncRollThreshold) {
if (elapsedTime >= (2 * slowSyncCheckInterval)) {
// If two or more slowSyncCheckInterval have elapsed this is a corner case
// where a train of slow syncs almost triggered us but then there was a long
// interval from then until the one more that pushed us over. If so, we
// should do nothing and let the count reset.
if (LOG.isDebugEnabled()) {
LOG.debug("checkSlowSync triggered but we decided to ignore it; " +
"count=" + slowSyncCount.get() + ", threshold=" + slowSyncRollThreshold +
", elapsedTime=" + elapsedTime + " ms, slowSyncCheckInterval=" +
slowSyncCheckInterval + " ms");
}
// Fall through to count reset below
} else {
LOG.warn("Requesting log roll because we exceeded slow sync threshold; count=" +
slowSyncCount.get() + ", threshold=" + slowSyncRollThreshold +
", current pipeline: " + Arrays.toString(getPipeLine()));
result = true;
}
}
lastTimeCheckSlowSync = now;
slowSyncCount.set(0);
}
return result;
}
private SyncFuture publishSyncOnRingBuffer(long sequence) {
return publishSyncOnRingBuffer(sequence, null, false);
}
private long getSequenceOnRingBuffer() {
return this.disruptor.getRingBuffer().next();
}
private SyncFuture publishSyncOnRingBuffer(Span span, boolean forceSync) {
long sequence = this.disruptor.getRingBuffer().next();
return publishSyncOnRingBuffer(sequence, span, forceSync);
}
private SyncFuture publishSyncOnRingBuffer(long sequence, Span span, boolean forceSync) {
SyncFuture syncFuture = getSyncFuture(sequence, span).setForceSync(forceSync);
try {
RingBufferTruck truck = this.disruptor.getRingBuffer().get(sequence);
truck.loadPayload(syncFuture);
} finally {
this.disruptor.getRingBuffer().publish(sequence);
}
return syncFuture;
}
// Sync all known transactions
private Span publishSyncThenBlockOnCompletion(Span span, boolean forceSync) throws IOException {
return blockOnSync(publishSyncOnRingBuffer(span, forceSync));
}
private Span blockOnSync(final SyncFuture syncFuture) throws IOException {
// Now we have published the ringbuffer, halt the current thread until we get an answer back.
try {
syncFuture.get(walSyncTimeout);
return syncFuture.getSpan();
} catch (TimeoutIOException tioe) {
// SyncFuture reuse by thread, if TimeoutIOException happens, ringbuffer
// still refer to it, so if this thread use it next time may get a wrong
// result.
this.cachedSyncFutures.remove();
throw tioe;
} catch (InterruptedException ie) {
LOG.warn("Interrupted", ie);
throw convertInterruptedExceptionToIOException(ie);
} catch (ExecutionException e) {
throw ensureIOException(e.getCause());
}
}
private IOException convertInterruptedExceptionToIOException(final InterruptedException ie) {
Thread.currentThread().interrupt();
IOException ioe = new InterruptedIOException();
ioe.initCause(ie);
return ioe;
}
private SyncFuture getSyncFuture(final long sequence, Span span) {
return cachedSyncFutures.get().reset(sequence);
}
private void postSync(final long timeInNanos, final int handlerSyncs) {
if (timeInNanos > this.slowSyncNs) {
String msg =
new StringBuilder().append("Slow sync cost: ")
.append(TimeUnit.NANOSECONDS.toMillis(timeInNanos))
.append(" ms, current pipeline: ")
.append(Arrays.toString(getPipeLine())).toString();
Trace.addTimelineAnnotation(msg);
LOG.info(msg);
// A single sync took too long.
// Elsewhere in checkSlowSync, called from checkLogRoll, we will look at cumulative
// effects. Here we have a single data point that indicates we should take immediate
// action, so do so.
if (timeInNanos > this.rollOnSyncNs) {
LOG.warn("Requesting log roll because we exceeded slow sync threshold; time=" +
TimeUnit.NANOSECONDS.toMillis(timeInNanos) + " ms, threshold=" +
TimeUnit.NANOSECONDS.toMillis(rollOnSyncNs) + " ms, current pipeline: " +
Arrays.toString(getPipeLine()));
requestLogRoll(SLOW_SYNC);
}
slowSyncCount.incrementAndGet(); // it's fine to unconditionally increment this
}
if (!listeners.isEmpty()) {
for (WALActionsListener listener : listeners) {
listener.postSync(timeInNanos, handlerSyncs);
}
}
}
private long postAppend(final Entry e, final long elapsedTime) throws IOException {
long len = 0;
if (!listeners.isEmpty()) {
for (Cell cell : e.getEdit().getCells()) {
len += CellUtil.estimatedSerializedSizeOf(cell);
}
for (WALActionsListener listener : listeners) {
listener.postAppend(len, elapsedTime, e.getKey(), e.getEdit());
}
}
return len;
}
/**
* This method gets the datanode replication count for the current WAL.
*
* If the pipeline isn't started yet or is empty, you will get the default
* replication factor. Therefore, if this function returns 0, it means you
* are not properly running with the HDFS-826 patch.
* @throws InvocationTargetException
* @throws IllegalAccessException
* @throws IllegalArgumentException
*
* @throws Exception
*/
int getLogReplication() {
try {
//in standalone mode, it will return 0
if (this.hdfs_out instanceof HdfsDataOutputStream) {
return ((HdfsDataOutputStream) this.hdfs_out).getCurrentBlockReplication();
}
} catch (IOException e) {
LOG.info("", e);
}
return 0;
}
@Override
public void sync() throws IOException {
sync(useHsync);
}
@Override
public void sync(boolean forceSync) throws IOException {
TraceScope scope = Trace.startSpan("FSHLog.sync");
try {
scope = Trace.continueSpan(publishSyncThenBlockOnCompletion(scope.detach(), forceSync));
} finally {
assert scope == NullScope.INSTANCE || !scope.isDetached();
scope.close();
}
}
@Override
public void sync(long txid) throws IOException {
sync(txid, useHsync);
}
@Override
public void sync(long txid, boolean forceSync) throws IOException {
if (this.highestSyncedSequence.get() >= txid) {
// Already sync'd.
return;
}
TraceScope scope = Trace.startSpan("FSHLog.sync");
try {
scope = Trace.continueSpan(publishSyncThenBlockOnCompletion(scope.detach(), forceSync));
} finally {
assert scope == NullScope.INSTANCE || !scope.isDetached();
scope.close();
}
}
protected boolean isLogRollRequested() {
return rollRequested;
}
// public only until class moves to o.a.h.h.wal
public void requestLogRoll() {
requestLogRoll(ERROR);
}
private void requestLogRoll(final WALActionsListener.RollRequestReason reason) {
// If we have already requested a roll, don't do it again
if (rollRequested) {
return;
}
if (!this.listeners.isEmpty()) {
rollRequested = true; // No point to assert this unless there is a registered listener
for (WALActionsListener i: this.listeners) {
i.logRollRequested(reason);
}
}
}
// public only until class moves to o.a.h.h.wal
/** @return the number of rolled log files */
public int getNumRolledLogFiles() {
return byWalRegionSequenceIds.size();
}
// public only until class moves to o.a.h.h.wal
/** @return the number of log files in use */
public int getNumLogFiles() {
// +1 for current use log
return getNumRolledLogFiles() + 1;
}
// public only until class moves to o.a.h.h.wal
/** @return the size of log files in use */
public long getLogFileSize() {
return this.totalLogSize.get();
}
@Override
public Long startCacheFlush(final byte[] encodedRegionName, Set<byte[]> families) {
if (!closeBarrier.beginOp()) {
LOG.info("Flush not started for " + Bytes.toString(encodedRegionName) + "; server closing.");
return null;
}
return this.sequenceIdAccounting.startCacheFlush(encodedRegionName, families);
}
@Override
public void completeCacheFlush(final byte [] encodedRegionName) {
this.sequenceIdAccounting.completeCacheFlush(encodedRegionName);
closeBarrier.endOp();
}
@Override
public void abortCacheFlush(byte[] encodedRegionName) {
this.sequenceIdAccounting.abortCacheFlush(encodedRegionName);
closeBarrier.endOp();
}
boolean isLowReplicationRollEnabled() {
return lowReplicationRollEnabled;
}
public static final long FIXED_OVERHEAD = ClassSize.align(
ClassSize.OBJECT + (5 * ClassSize.REFERENCE) +
ClassSize.ATOMIC_INTEGER + (3 * Bytes.SIZEOF_INT) + (4 * Bytes.SIZEOF_LONG));
private static void split(final Configuration conf, final Path p) throws IOException {
FileSystem fs = FSUtils.getWALFileSystem(conf);
if (!fs.exists(p)) {
throw new FileNotFoundException(p.toString());
}
if (!fs.getFileStatus(p).isDirectory()) {
throw new IOException(p + " is not a directory");
}
final Path baseDir = FSUtils.getWALRootDir(conf);
final Path archiveDir = new Path(baseDir, HConstants.HREGION_OLDLOGDIR_NAME);
WALSplitter.split(baseDir, p, archiveDir, fs, conf, WALFactory.getInstance(conf));
}
@Override
public long getEarliestMemstoreSeqNum(byte[] encodedRegionName) {
// Used by tests. Deprecated as too subtle for general usage.
return this.sequenceIdAccounting.getLowestSequenceId(encodedRegionName);
}
@Override
public long getEarliestMemstoreSeqNum(byte[] encodedRegionName, byte[] familyName) {
// This method is used by tests and for figuring if we should flush or not because our
// sequenceids are too old. It is also used reporting the master our oldest sequenceid for use
// figuring what edits can be skipped during log recovery. getEarliestMemStoreSequenceId
// from this.sequenceIdAccounting is looking first in flushingOldestStoreSequenceIds, the
// currently flushing sequence ids, and if anything found there, it is returning these. This is
// the right thing to do for the reporting oldest sequenceids to master; we won't skip edits if
// we crash during the flush. For figuring what to flush, we might get requeued if our sequence
// id is old even though we are currently flushing. This may mean we do too much flushing.
return this.sequenceIdAccounting.getLowestSequenceId(encodedRegionName, familyName);
}
/**
* This class is used coordinating two threads holding one thread at a
* 'safe point' while the orchestrating thread does some work that requires the first thread
* paused: e.g. holding the WAL writer while its WAL is swapped out from under it by another
* thread.
*
* <p>Thread A signals Thread B to hold when it gets to a 'safe point'. Thread A wait until
* Thread B gets there. When the 'safe point' has been attained, Thread B signals Thread A.
* Thread B then holds at the 'safe point'. Thread A on notification that Thread B is paused,
* goes ahead and does the work it needs to do while Thread B is holding. When Thread A is done,
* it flags B and then Thread A and Thread B continue along on their merry way. Pause and
* signalling 'zigzags' between the two participating threads. We use two latches -- one the
* inverse of the other -- pausing and signaling when states are achieved.
*
* <p>To start up the drama, Thread A creates an instance of this class each time it would do
* this zigzag dance and passes it to Thread B (these classes use Latches so it is one shot
* only). Thread B notices the new instance (via reading a volatile reference or how ever) and it
* starts to work toward the 'safe point'. Thread A calls {@link #waitSafePoint()} when it
* cannot proceed until the Thread B 'safe point' is attained. Thread A will be held inside in
* {@link #waitSafePoint()} until Thread B reaches the 'safe point'. Once there, Thread B
* frees Thread A by calling {@link #safePointAttained()}. Thread A now knows Thread B
* is at the 'safe point' and that it is holding there (When Thread B calls
* {@link #safePointAttained()} it blocks here until Thread A calls {@link #releaseSafePoint()}).
* Thread A proceeds to do what it needs to do while Thread B is paused. When finished,
* it lets Thread B lose by calling {@link #releaseSafePoint()} and away go both Threads again.
*/
static class SafePointZigZagLatch {
/**
* Count down this latch when safe point attained.
*/
private volatile CountDownLatch safePointAttainedLatch = new CountDownLatch(1);
/**
* Latch to wait on. Will be released when we can proceed.
*/
private volatile CountDownLatch safePointReleasedLatch = new CountDownLatch(1);
private void checkIfSyncFailed(SyncFuture syncFuture) throws FailedSyncBeforeLogCloseException {
if (syncFuture.isThrowable()) {
throw new FailedSyncBeforeLogCloseException(syncFuture.getThrowable());
}
}
/**
* For Thread A to call when it is ready to wait on the 'safe point' to be attained.
* Thread A will be held in here until Thread B calls {@link #safePointAttained()}
* @param syncFuture We need this as barometer on outstanding syncs. If it comes home with
* an exception, then something is up w/ our syncing.
* @throws InterruptedException
* @throws ExecutionException
* @return The passed <code>syncFuture</code>
* @throws FailedSyncBeforeLogCloseException
*/
SyncFuture waitSafePoint(SyncFuture syncFuture) throws InterruptedException,
FailedSyncBeforeLogCloseException {
while (!this.safePointAttainedLatch.await(1, TimeUnit.MILLISECONDS)) {
checkIfSyncFailed(syncFuture);
}
checkIfSyncFailed(syncFuture);
return syncFuture;
}
/**
* Called by Thread B when it attains the 'safe point'. In this method, Thread B signals
* Thread A it can proceed. Thread B will be held in here until {@link #releaseSafePoint()}
* is called by Thread A.
* @throws InterruptedException
*/
void safePointAttained() throws InterruptedException {
this.safePointAttainedLatch.countDown();
this.safePointReleasedLatch.await();
}
/**
* Called by Thread A when it is done with the work it needs to do while Thread B is
* halted. This will release the Thread B held in a call to {@link #safePointAttained()}
*/
void releaseSafePoint() {
this.safePointReleasedLatch.countDown();
}
/**
* @return True is this is a 'cocked', fresh instance, and not one that has already fired.
*/
boolean isCocked() {
return this.safePointAttainedLatch.getCount() > 0 &&
this.safePointReleasedLatch.getCount() > 0;
}
}
/**
* Handler that is run by the disruptor ringbuffer consumer. Consumer is a SINGLE
* 'writer/appender' thread. Appends edits and starts up sync runs. Tries its best to batch up
* syncs. There is no discernible benefit batching appends so we just append as they come in
* because it simplifies the below implementation. See metrics for batching effectiveness
* (In measurement, at 100 concurrent handlers writing 1k, we are batching > 10 appends and 10
* handler sync invocations for every actual dfsclient sync call; at 10 concurrent handlers,
* YMMV).
* <p>Herein, we have an array into which we store the sync futures as they come in. When we
* have a 'batch', we'll then pass what we have collected to a SyncRunner thread to do the
* filesystem sync. When it completes, it will then call
* {@link SyncFuture#done(long, Throwable)} on each of SyncFutures in the batch to release
* blocked Handler threads.
* <p>I've tried various effects to try and make latencies low while keeping throughput high.
* I've tried keeping a single Queue of SyncFutures in this class appending to its tail as the
* syncs coming and having sync runner threads poll off the head to 'finish' completed
* SyncFutures. I've tried linkedlist, and various from concurrent utils whether
* LinkedBlockingQueue or ArrayBlockingQueue, etc. The more points of synchronization, the
* more 'work' (according to 'perf stats') that has to be done; small increases in stall
* percentages seem to have a big impact on throughput/latencies. The below model where we have
* an array into which we stash the syncs and then hand them off to the sync thread seemed like
* a decent compromise. See HBASE-8755 for more detail.
*/
class RingBufferEventHandler implements EventHandler<RingBufferTruck>, LifecycleAware {
private final SyncRunner [] syncRunners;
private final SyncFuture [] syncFutures;
// Had 'interesting' issues when this was non-volatile. On occasion, we'd not pass all
// syncFutures to the next sync'ing thread.
private AtomicInteger syncFuturesCount = new AtomicInteger();
private volatile SafePointZigZagLatch zigzagLatch;
/**
* Set if we get an exception appending or syncing so that all subsequence appends and syncs
* on this WAL fail until WAL is replaced.
*/
private Exception exception = null;
/**
* Object to block on while waiting on safe point.
*/
private final Object safePointWaiter = new Object();
private volatile boolean shutdown = false;
/**
* Which syncrunner to use next.
*/
private int syncRunnerIndex;
RingBufferEventHandler(final int syncRunnerCount, final int maxBatchCount) {
this.syncFutures = new SyncFuture[maxBatchCount];
this.syncRunners = new SyncRunner[syncRunnerCount];
for (int i = 0; i < syncRunnerCount; i++) {
this.syncRunners[i] = new SyncRunner("sync." + i, maxBatchCount);
}
}
private void cleanupOutstandingSyncsOnException(final long sequence, final Exception e) {
// There could be handler-count syncFutures outstanding.
for (int i = 0; i < this.syncFuturesCount.get(); i++) {
this.syncFutures[i].done(sequence, e);
}
this.syncFuturesCount.set(0);
}
/**
* @return True if outstanding sync futures still
*/
private boolean isOutstandingSyncs() {
// Look at SyncFutures in the EventHandler
for (int i = 0; i < this.syncFuturesCount.get(); i++) {
if (!this.syncFutures[i].isDone()) {
return true;
}
}
return false;
}
private boolean isOutstandingSyncsFromRunners() {
// Look at SyncFutures in the SyncRunners
for (SyncRunner syncRunner: syncRunners) {
if(syncRunner.isAlive() && !syncRunner.areSyncFuturesReleased()) {
return true;
}
}
return false;
}
@Override
// We can set endOfBatch in the below method if at end of our this.syncFutures array
public void onEvent(final RingBufferTruck truck, final long sequence, boolean endOfBatch)
throws Exception {
// Appends and syncs are coming in order off the ringbuffer. We depend on this fact. We'll
// add appends to dfsclient as they come in. Batching appends doesn't give any significant
// benefit on measurement. Handler sync calls we will batch up. If we get an exception
// appending an edit, we fail all subsequent appends and syncs with the same exception until
// the WAL is reset. It is important that we not short-circuit and exit early this method.
// It is important that we always go through the attainSafePoint on the end. Another thread,
// the log roller may be waiting on a signal from us here and will just hang without it.
try {
if (truck.hasSyncFuturePayload()) {
this.syncFutures[this.syncFuturesCount.getAndIncrement()] =
truck.unloadSyncFuturePayload();
// Force flush of syncs if we are carrying a full complement of syncFutures.
if (this.syncFuturesCount.get() == this.syncFutures.length) {
endOfBatch = true;
}
} else if (truck.hasFSWALEntryPayload()) {
TraceScope scope = Trace.continueSpan(truck.unloadSpanPayload());
try {
FSWALEntry entry = truck.unloadFSWALEntryPayload();
if (this.exception != null) {
// Return to keep processing events coming off the ringbuffer
return;
}
append(entry);
} catch (Exception e) {
// Failed append. Record the exception.
this.exception = e;
// invoking cleanupOutstandingSyncsOnException when append failed with exception,
// it will cleanup existing sync requests recorded in syncFutures but not offered to SyncRunner yet,
// so there won't be any sync future left over if no further truck published to disruptor.
cleanupOutstandingSyncsOnException(sequence,
this.exception instanceof DamagedWALException ? this.exception
: new DamagedWALException("On sync", this.exception));
// Return to keep processing events coming off the ringbuffer
return;
} finally {
assert scope == NullScope.INSTANCE || !scope.isDetached();
scope.close(); // append scope is complete
}
} else {
// What is this if not an append or sync. Fail all up to this!!!
cleanupOutstandingSyncsOnException(sequence,
new IllegalStateException("Neither append nor sync"));
// Return to keep processing.
return;
}
// TODO: Check size and if big go ahead and call a sync if we have enough data.
// This is a sync. If existing exception, fall through. Else look to see if batch.
if (this.exception == null) {
// If not a batch, return to consume more events from the ring buffer before proceeding;
// we want to get up a batch of syncs and appends before we go do a filesystem sync.
if (!endOfBatch || this.syncFuturesCount.get() <= 0) {
return;
}
// syncRunnerIndex is bound to the range [0, Integer.MAX_INT - 1] as follows:
// * The maximum value possible for syncRunners.length is Integer.MAX_INT
// * syncRunnerIndex starts at 0 and is incremented only here
// * after the increment, the value is bounded by the '%' operator to [0, syncRunners.length),
// presuming the value was positive prior to the '%' operator.
// * after being bound to [0, Integer.MAX_INT - 1], the new value is stored in syncRunnerIndex
// ensuring that it can't grow without bound and overflow.
// * note that the value after the increment must be positive, because the most it could have
// been prior was Integer.MAX_INT - 1 and we only increment by 1.
this.syncRunnerIndex = (this.syncRunnerIndex + 1) % this.syncRunners.length;
try {
// Below expects that the offer 'transfers' responsibility for the outstanding syncs to
// the syncRunner. We should never get an exception in here.
this.syncRunners[this.syncRunnerIndex].offer(sequence, this.syncFutures,
this.syncFuturesCount.get());
} catch (Exception e) {
// Should NEVER get here.
requestLogRoll();
this.exception = new DamagedWALException("Failed offering sync", e);
}
}
// We may have picked up an exception above trying to offer sync
if (this.exception != null) {
cleanupOutstandingSyncsOnException(sequence,
this.exception instanceof DamagedWALException?
this.exception:
new DamagedWALException("On sync", this.exception));
}
attainSafePoint(sequence);
this.syncFuturesCount.set(0);
} catch (Throwable t) {
LOG.error("UNEXPECTED!!! syncFutures.length=" + this.syncFutures.length, t);
}
}
SafePointZigZagLatch attainSafePoint() {
this.zigzagLatch = new SafePointZigZagLatch();
return this.zigzagLatch;
}
/**
* Check if we should attain safe point. If so, go there and then wait till signalled before
* we proceeding.
*/
private void attainSafePoint(final long currentSequence) {
if (this.zigzagLatch == null || !this.zigzagLatch.isCocked()) {
return;
}
// If here, another thread is waiting on us to get to safe point. Don't leave it hanging.
beforeWaitOnSafePoint();
try {
// Wait on outstanding syncers; wait for them to finish syncing (unless we've been
// shutdown or unless our latch has been thrown because we have been aborted or unless
// this WAL is broken and we can't get a sync/append to complete).
while ((!this.shutdown && this.zigzagLatch.isCocked()
&& highestSyncedSequence.get() < currentSequence &&
// We could be in here and all syncs are failing or failed. Check for this. Otherwise
// we'll just be stuck here for ever. In other words, ensure there syncs running.
isOutstandingSyncs())
// Wait for all SyncRunners to finish their work so that we can replace the writer
|| isOutstandingSyncsFromRunners()) {
synchronized (this.safePointWaiter) {
this.safePointWaiter.wait(0, 1);
}
}
// Tell waiting thread we've attained safe point. Can clear this.throwable if set here
// because we know that next event through the ringbuffer will be going to a new WAL
// after we do the zigzaglatch dance.
this.exception = null;
this.zigzagLatch.safePointAttained();
} catch (InterruptedException e) {
LOG.warn("Interrupted ", e);
Thread.currentThread().interrupt();
}
}
/**
* Append to the WAL. Does all CP and WAL listener calls.
* @param entry
* @throws Exception
*/
void append(final FSWALEntry entry) throws Exception {
// TODO: WORK ON MAKING THIS APPEND FASTER. DOING WAY TOO MUCH WORK WITH CPs, PBing, etc.
atHeadOfRingBufferEventHandlerAppend();
long start = EnvironmentEdgeManager.currentTime();
byte [] encodedRegionName = entry.getKey().getEncodedRegionName();
long regionSequenceId = WALKey.NO_SEQUENCE_ID;
try {
regionSequenceId = entry.getKey().getSequenceId();
// Edits are empty, there is nothing to append. Maybe empty when we are looking for a
// region sequence id only, a region edit/sequence id that is not associated with an actual
// edit. It has to go through all the rigmarole to be sure we have the right ordering.
if (entry.getEdit().isEmpty()) {
return;
}
// Coprocessor hook.
if (!coprocessorHost.preWALWrite(entry.getHRegionInfo(), entry.getKey(),
entry.getEdit())) {
if (entry.getEdit().isReplay()) {
// Set replication scope null so that this won't be replicated
entry.getKey().setScopes(null);
}
}
if (!listeners.isEmpty()) {
for (WALActionsListener i: listeners) {
// TODO: Why does listener take a table description and CPs take a regioninfo? Fix.
i.visitLogEntryBeforeWrite(entry.getHTableDescriptor(), entry.getKey(),
entry.getEdit());
}
}
writer.append(entry);
assert highestUnsyncedSequence < entry.getSequence();
highestUnsyncedSequence = entry.getSequence();
sequenceIdAccounting.update(encodedRegionName, entry.getFamilyNames(), regionSequenceId,
entry.isInMemstore());
coprocessorHost.postWALWrite(entry.getHRegionInfo(), entry.getKey(), entry.getEdit());
// Update metrics.
postAppend(entry, EnvironmentEdgeManager.currentTime() - start);
} catch (Exception e) {
String msg = "Append sequenceId=" + regionSequenceId + ", requesting roll of WAL";
LOG.warn(msg, e);
requestLogRoll();
throw new DamagedWALException(msg, e);
}
numEntries.incrementAndGet();
}
@Override
public void onStart() {
for (SyncRunner syncRunner: this.syncRunners) {
syncRunner.start();
}
}
@Override
public void onShutdown() {
for (SyncRunner syncRunner: this.syncRunners) {
syncRunner.interrupt();
}
}
}
/**
* Exposed for testing only. Use to tricks like halt the ring buffer appending.
*/
void atHeadOfRingBufferEventHandlerAppend() {
// Noop
}
private static IOException ensureIOException(final Throwable t) {
return (t instanceof IOException)? (IOException)t: new IOException(t);
}
private static void usage() {
System.err.println("Usage: FSHLog <ARGS>");
System.err.println("Arguments:");
System.err.println(" --dump Dump textual representation of passed one or more files");
System.err.println(" For example: " +
"FSHLog --dump hdfs://example.com:9000/hbase/.logs/MACHINE/LOGFILE");
System.err.println(" --split Split the passed directory of WAL logs");
System.err.println(" For example: " +
"FSHLog --split hdfs://example.com:9000/hbase/.logs/DIR");
}
/**
* Pass one or more log file names and it will either dump out a text version
* on <code>stdout</code> or split the specified log files.
*
* @param args
* @throws IOException
*/
public static void main(String[] args) throws IOException {
if (args.length < 2) {
usage();
System.exit(-1);
}
// either dump using the WALPrettyPrinter or split, depending on args
if (args[0].compareTo("--dump") == 0) {
WALPrettyPrinter.run(Arrays.copyOfRange(args, 1, args.length));
} else if (args[0].compareTo("--perf") == 0) {
LOG.fatal("Please use the WALPerformanceEvaluation tool instead. i.e.:");
LOG.fatal("\thbase org.apache.hadoop.hbase.wal.WALPerformanceEvaluation --iterations " +
args[1]);
System.exit(-1);
} else if (args[0].compareTo("--split") == 0) {
Configuration conf = HBaseConfiguration.create();
for (int i = 1; i < args.length; i++) {
try {
Path logPath = new Path(args[i]);
FSUtils.setFsDefault(conf, logPath);
split(conf, logPath);
} catch (IOException t) {
t.printStackTrace(System.err);
System.exit(-1);
}
}
} else {
usage();
System.exit(-1);
}
}
/**
* This method gets the pipeline for the current WAL.
*/
DatanodeInfo[] getPipeLine() {
if (this.hdfs_out != null) {
if (this.hdfs_out.getWrappedStream() instanceof DFSOutputStream) {
return ((DFSOutputStream) this.hdfs_out.getWrappedStream()).getPipeline();
}
}
return new DatanodeInfo[0];
}
/**
*
* @return last time on checking low replication
*/
public long getLastTimeCheckLowReplication() {
return this.lastTimeCheckLowReplication;
}
Writer getWriter() {
return this.writer;
}
void setWriter(Writer writer) {
this.writer = writer;
}
}