| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| package org.apache.druid.math.expr.vector; |
| |
| import org.apache.druid.math.expr.Expr; |
| |
| /** |
| * common machinery for processing single input operators and functions, which should always treat null input as null |
| * output, and are backed by a primitive value instead of an object value (and need to use the null vector instead of |
| * checking the vector itself for nulls) |
| * |
| * this one is specialized for producing double[], see {@link UnivariateLongFunctionVectorValueProcessor} for |
| * long[] primitives. |
| */ |
| public abstract class UnivariateDoubleFunctionVectorValueProcessor<TInput> implements ExprVectorProcessor<double[]> |
| { |
| final ExprVectorProcessor<TInput> processor; |
| final boolean[] outNulls; |
| final double[] outValues; |
| |
| public UnivariateDoubleFunctionVectorValueProcessor( |
| ExprVectorProcessor<TInput> processor, |
| int maxVectorSize |
| ) |
| { |
| this.processor = processor; |
| this.outNulls = new boolean[maxVectorSize]; |
| this.outValues = new double[maxVectorSize]; |
| } |
| |
| @Override |
| public final ExprEvalVector<double[]> evalVector(Expr.VectorInputBinding bindings) |
| { |
| final ExprEvalVector<TInput> lhs = processor.evalVector(bindings); |
| |
| final int currentSize = bindings.getCurrentVectorSize(); |
| final boolean[] inputNulls = lhs.getNullVector(); |
| final boolean hasNulls = inputNulls != null; |
| |
| final TInput input = lhs.values(); |
| |
| if (hasNulls) { |
| for (int i = 0; i < currentSize; i++) { |
| outNulls[i] = inputNulls[i]; |
| if (!outNulls[i]) { |
| processIndex(input, i); |
| } else { |
| outValues[i] = 0.0; |
| } |
| } |
| } else { |
| for (int i = 0; i < currentSize; i++) { |
| outNulls[i] = false; |
| processIndex(input, i); |
| } |
| } |
| return asEval(); |
| } |
| |
| abstract void processIndex(TInput input, int i); |
| |
| final ExprEvalVector<double[]> asEval() |
| { |
| return new ExprEvalDoubleVector(outValues, outNulls); |
| } |
| } |