| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| from collections import OrderedDict |
| from collections.abc import Iterable |
| import sys |
| import weakref |
| |
| try: |
| import numpy as np |
| except ImportError: |
| np = None |
| import pytest |
| import pyarrow as pa |
| import pyarrow.compute as pc |
| from pyarrow.interchange import from_dataframe |
| from pyarrow.vendored.version import Version |
| |
| |
| def test_chunked_array_basics(): |
| data = pa.chunked_array([], type=pa.string()) |
| assert data.type == pa.string() |
| assert data.to_pylist() == [] |
| data.validate() |
| |
| data2 = pa.chunked_array([], type='binary') |
| assert data2.type == pa.binary() |
| |
| with pytest.raises(ValueError): |
| pa.chunked_array([]) |
| |
| data = pa.chunked_array([ |
| [1, 2, 3], |
| [4, 5, 6], |
| [7, 8, 9] |
| ]) |
| assert isinstance(data.chunks, list) |
| assert all(isinstance(c, pa.lib.Int64Array) for c in data.chunks) |
| assert all(isinstance(c, pa.lib.Int64Array) for c in data.iterchunks()) |
| assert len(data.chunks) == 3 |
| assert data.get_total_buffer_size() == sum(c.get_total_buffer_size() |
| for c in data.iterchunks()) |
| assert sys.getsizeof(data) >= object.__sizeof__( |
| data) + data.get_total_buffer_size() |
| assert data.nbytes == 3 * 3 * 8 # 3 items per 3 lists with int64 size(8) |
| data.validate() |
| |
| wr = weakref.ref(data) |
| assert wr() is not None |
| del data |
| assert wr() is None |
| |
| |
| def test_chunked_array_construction(): |
| arr = pa.chunked_array([ |
| [1, 2, 3], |
| [4, 5, 6], |
| [7, 8, 9], |
| ]) |
| assert arr.type == pa.int64() |
| assert len(arr) == 9 |
| assert len(arr.chunks) == 3 |
| |
| arr = pa.chunked_array([ |
| [1, 2, 3], |
| [4., 5., 6.], |
| [7, 8, 9], |
| ]) |
| assert arr.type == pa.int64() |
| assert len(arr) == 9 |
| assert len(arr.chunks) == 3 |
| |
| arr = pa.chunked_array([ |
| [1, 2, 3], |
| [4., 5., 6.], |
| [7, 8, 9], |
| ], type=pa.int8()) |
| assert arr.type == pa.int8() |
| assert len(arr) == 9 |
| assert len(arr.chunks) == 3 |
| |
| arr = pa.chunked_array([ |
| [1, 2, 3], |
| [] |
| ]) |
| assert arr.type == pa.int64() |
| assert len(arr) == 3 |
| assert len(arr.chunks) == 2 |
| |
| msg = "cannot construct ChunkedArray from empty vector and omitted type" |
| with pytest.raises(ValueError, match=msg): |
| assert pa.chunked_array([]) |
| |
| assert pa.chunked_array([], type=pa.string()).type == pa.string() |
| assert pa.chunked_array([[]]).type == pa.null() |
| assert pa.chunked_array([[]], type=pa.string()).type == pa.string() |
| |
| |
| def test_combine_chunks(): |
| # ARROW-77363 |
| arr = pa.array([1, 2]) |
| chunked_arr = pa.chunked_array([arr, arr]) |
| res = chunked_arr.combine_chunks() |
| expected = pa.array([1, 2, 1, 2]) |
| assert res.equals(expected) |
| |
| |
| def test_chunked_array_can_combine_chunks_with_no_chunks(): |
| # https://issues.apache.org/jira/browse/ARROW-17256 |
| assert pa.chunked_array([], type=pa.bool_()).combine_chunks() == pa.array( |
| [], type=pa.bool_() |
| ) |
| assert pa.chunked_array( |
| [pa.array([], type=pa.bool_())], type=pa.bool_() |
| ).combine_chunks() == pa.array([], type=pa.bool_()) |
| |
| |
| @pytest.mark.numpy |
| def test_chunked_array_to_numpy(): |
| data = pa.chunked_array([ |
| [1, 2, 3], |
| [4, 5, 6], |
| [] |
| ]) |
| arr1 = np.asarray(data) |
| arr2 = data.to_numpy() |
| |
| assert isinstance(arr2, np.ndarray) |
| assert arr2.shape == (6,) |
| assert np.array_equal(arr1, arr2) |
| |
| |
| def test_chunked_array_mismatch_types(): |
| msg = "chunks must all be same type" |
| with pytest.raises(TypeError, match=msg): |
| # Given array types are different |
| pa.chunked_array([ |
| pa.array([1, 2, 3]), |
| pa.array([1., 2., 3.]) |
| ]) |
| |
| with pytest.raises(TypeError, match=msg): |
| # Given array type is different from explicit type argument |
| pa.chunked_array([pa.array([1, 2, 3])], type=pa.float64()) |
| |
| |
| def test_chunked_array_str(): |
| data = [ |
| pa.array([1, 2, 3]), |
| pa.array([4, 5, 6]) |
| ] |
| data = pa.chunked_array(data) |
| assert str(data) == """[ |
| [ |
| 1, |
| 2, |
| 3 |
| ], |
| [ |
| 4, |
| 5, |
| 6 |
| ] |
| ]""" |
| |
| |
| @pytest.mark.numpy |
| def test_chunked_array_getitem(): |
| data = [ |
| pa.array([1, 2, 3]), |
| pa.array([4, 5, 6]) |
| ] |
| data = pa.chunked_array(data) |
| assert data[1].as_py() == 2 |
| assert data[-1].as_py() == 6 |
| assert data[-6].as_py() == 1 |
| with pytest.raises(IndexError): |
| data[6] |
| with pytest.raises(IndexError): |
| data[-7] |
| # Ensure this works with numpy scalars |
| assert data[np.int32(1)].as_py() == 2 |
| |
| data_slice = data[2:4] |
| assert data_slice.to_pylist() == [3, 4] |
| |
| data_slice = data[4:-1] |
| assert data_slice.to_pylist() == [5] |
| |
| data_slice = data[99:99] |
| assert data_slice.type == data.type |
| assert data_slice.to_pylist() == [] |
| |
| |
| def test_chunked_array_slice(): |
| data = [ |
| pa.array([1, 2, 3]), |
| pa.array([4, 5, 6]) |
| ] |
| data = pa.chunked_array(data) |
| |
| data_slice = data.slice(len(data)) |
| assert data_slice.type == data.type |
| assert data_slice.to_pylist() == [] |
| |
| data_slice = data.slice(len(data) + 10) |
| assert data_slice.type == data.type |
| assert data_slice.to_pylist() == [] |
| |
| table = pa.Table.from_arrays([data], names=["a"]) |
| table_slice = table.slice(len(table)) |
| assert len(table_slice) == 0 |
| |
| table = pa.Table.from_arrays([data], names=["a"]) |
| table_slice = table.slice(len(table) + 10) |
| assert len(table_slice) == 0 |
| |
| |
| def test_chunked_array_iter(): |
| data = [ |
| pa.array([0]), |
| pa.array([1, 2, 3]), |
| pa.array([4, 5, 6]), |
| pa.array([7, 8, 9]) |
| ] |
| arr = pa.chunked_array(data) |
| |
| for i, j in zip(range(10), arr): |
| assert i == j.as_py() |
| |
| assert isinstance(arr, Iterable) |
| |
| |
| def test_chunked_array_equals(): |
| def eq(xarrs, yarrs): |
| if isinstance(xarrs, pa.ChunkedArray): |
| x = xarrs |
| else: |
| x = pa.chunked_array(xarrs) |
| if isinstance(yarrs, pa.ChunkedArray): |
| y = yarrs |
| else: |
| y = pa.chunked_array(yarrs) |
| assert x.equals(y) |
| assert y.equals(x) |
| assert x == y |
| assert x != str(y) |
| |
| def ne(xarrs, yarrs): |
| if isinstance(xarrs, pa.ChunkedArray): |
| x = xarrs |
| else: |
| x = pa.chunked_array(xarrs) |
| if isinstance(yarrs, pa.ChunkedArray): |
| y = yarrs |
| else: |
| y = pa.chunked_array(yarrs) |
| assert not x.equals(y) |
| assert not y.equals(x) |
| assert x != y |
| |
| eq(pa.chunked_array([], type=pa.int32()), |
| pa.chunked_array([], type=pa.int32())) |
| ne(pa.chunked_array([], type=pa.int32()), |
| pa.chunked_array([], type=pa.int64())) |
| |
| a = pa.array([0, 2], type=pa.int32()) |
| b = pa.array([0, 2], type=pa.int64()) |
| c = pa.array([0, 3], type=pa.int32()) |
| d = pa.array([0, 2, 0, 3], type=pa.int32()) |
| |
| eq([a], [a]) |
| ne([a], [b]) |
| eq([a, c], [a, c]) |
| eq([a, c], [d]) |
| ne([c, a], [a, c]) |
| |
| # ARROW-4822 |
| assert not pa.chunked_array([], type=pa.int32()).equals(None) |
| |
| |
| @pytest.mark.parametrize( |
| ('data', 'typ'), |
| [ |
| ([True, False, True, True], pa.bool_()), |
| ([1, 2, 4, 6], pa.int64()), |
| ([1.0, 2.5, None], pa.float64()), |
| (['a', None, 'b'], pa.string()), |
| ([], pa.list_(pa.uint8())), |
| ([[1, 2], [3]], pa.list_(pa.int64())), |
| ([['a'], None, ['b', 'c']], pa.list_(pa.string())), |
| ([(1, 'a'), (2, 'c'), None], |
| pa.struct([pa.field('a', pa.int64()), pa.field('b', pa.string())])) |
| ] |
| ) |
| def test_chunked_array_pickle(data, typ, pickle_module): |
| arrays = [] |
| while data: |
| arrays.append(pa.array(data[:2], type=typ)) |
| data = data[2:] |
| array = pa.chunked_array(arrays, type=typ) |
| array.validate() |
| result = pickle_module.loads(pickle_module.dumps(array)) |
| result.validate() |
| assert result.equals(array) |
| |
| |
| @pytest.mark.pandas |
| def test_chunked_array_to_pandas(): |
| import pandas as pd |
| |
| data = [ |
| pa.array([-10, -5, 0, 5, 10]) |
| ] |
| table = pa.table(data, names=['a']) |
| col = table.column(0) |
| assert isinstance(col, pa.ChunkedArray) |
| series = col.to_pandas() |
| assert isinstance(series, pd.Series) |
| assert series.shape == (5,) |
| assert series[0] == -10 |
| assert series.name == 'a' |
| |
| |
| @pytest.mark.pandas |
| def test_chunked_array_to_pandas_preserve_name(): |
| # https://issues.apache.org/jira/browse/ARROW-7709 |
| import pandas as pd |
| import pandas.testing as tm |
| |
| for data in [ |
| pa.array([1, 2, 3]), |
| pa.array(pd.Categorical(["a", "b", "a"])), |
| pa.array(pd.date_range("2012", periods=3)), |
| pa.array(pd.date_range("2012", periods=3, tz="Europe/Brussels")), |
| pa.array([1, 2, 3], pa.timestamp("ms")), |
| pa.array([1, 2, 3], pa.timestamp("ms", "Europe/Brussels"))]: |
| table = pa.table({"name": data}) |
| result = table.column("name").to_pandas() |
| assert result.name == "name" |
| expected = pd.Series(data.to_pandas(), name="name") |
| tm.assert_series_equal(result, expected) |
| |
| |
| @pytest.mark.pandas |
| def test_table_roundtrip_to_pandas_empty_dataframe(): |
| # https://issues.apache.org/jira/browse/ARROW-10643 |
| # The conversion should not results in a table with 0 rows if the original |
| # DataFrame has a RangeIndex but is empty. |
| import pandas as pd |
| |
| data = pd.DataFrame(index=pd.RangeIndex(0, 10, 1)) |
| table = pa.table(data) |
| result = table.to_pandas() |
| |
| assert table.num_rows == 10 |
| assert data.shape == (10, 0) |
| assert result.shape == (10, 0) |
| assert result.index.equals(data.index) |
| |
| data = pd.DataFrame(index=pd.RangeIndex(0, 10, 3)) |
| table = pa.table(data) |
| result = table.to_pandas() |
| |
| assert table.num_rows == 4 |
| assert data.shape == (4, 0) |
| assert result.shape == (4, 0) |
| assert result.index.equals(data.index) |
| |
| |
| @pytest.mark.pandas |
| def test_recordbatch_roundtrip_to_pandas_empty_dataframe(): |
| # https://issues.apache.org/jira/browse/ARROW-10643 |
| # The conversion should not results in a RecordBatch with 0 rows if |
| # the original DataFrame has a RangeIndex but is empty. |
| import pandas as pd |
| |
| data = pd.DataFrame(index=pd.RangeIndex(0, 10, 1)) |
| batch = pa.RecordBatch.from_pandas(data) |
| result = batch.to_pandas() |
| |
| assert batch.num_rows == 10 |
| assert data.shape == (10, 0) |
| assert result.shape == (10, 0) |
| assert result.index.equals(data.index) |
| |
| data = pd.DataFrame(index=pd.RangeIndex(0, 10, 3)) |
| batch = pa.RecordBatch.from_pandas(data) |
| result = batch.to_pandas() |
| |
| assert batch.num_rows == 4 |
| assert data.shape == (4, 0) |
| assert result.shape == (4, 0) |
| assert result.index.equals(data.index) |
| |
| |
| @pytest.mark.pandas |
| def test_to_pandas_empty_table(): |
| # https://issues.apache.org/jira/browse/ARROW-15370 |
| import pandas as pd |
| import pandas.testing as tm |
| |
| df = pd.DataFrame({'a': [1, 2], 'b': [0.1, 0.2]}) |
| table = pa.table(df) |
| result = table.schema.empty_table().to_pandas() |
| assert result.shape == (0, 2) |
| tm.assert_frame_equal(result, df.iloc[:0]) |
| |
| |
| @pytest.mark.pandas |
| @pytest.mark.nopandas |
| def test_chunked_array_asarray(): |
| # ensure this is tested both when pandas is present or not (ARROW-6564) |
| |
| data = [ |
| pa.array([0]), |
| pa.array([1, 2, 3]) |
| ] |
| chunked_arr = pa.chunked_array(data) |
| |
| np_arr = np.asarray(chunked_arr) |
| assert np_arr.tolist() == [0, 1, 2, 3] |
| assert np_arr.dtype == np.dtype('int64') |
| |
| # An optional type can be specified when calling np.asarray |
| np_arr = np.asarray(chunked_arr, dtype='str') |
| assert np_arr.tolist() == ['0', '1', '2', '3'] |
| |
| # Types are modified when there are nulls |
| data = [ |
| pa.array([1, None]), |
| pa.array([1, 2, 3]) |
| ] |
| chunked_arr = pa.chunked_array(data) |
| |
| np_arr = np.asarray(chunked_arr) |
| elements = np_arr.tolist() |
| assert elements[0] == 1. |
| assert np.isnan(elements[1]) |
| assert elements[2:] == [1., 2., 3.] |
| assert np_arr.dtype == np.dtype('float64') |
| |
| # DictionaryType data will be converted to dense numpy array |
| arr = pa.DictionaryArray.from_arrays( |
| pa.array([0, 1, 2, 0, 1]), pa.array(['a', 'b', 'c'])) |
| chunked_arr = pa.chunked_array([arr, arr]) |
| np_arr = np.asarray(chunked_arr) |
| assert np_arr.dtype == np.dtype('object') |
| assert np_arr.tolist() == ['a', 'b', 'c', 'a', 'b'] * 2 |
| |
| |
| def test_chunked_array_flatten(): |
| ty = pa.struct([pa.field('x', pa.int16()), |
| pa.field('y', pa.float32())]) |
| a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) |
| carr = pa.chunked_array(a) |
| x, y = carr.flatten() |
| assert x.equals(pa.chunked_array(pa.array([1, 3, 5], type=pa.int16()))) |
| assert y.equals(pa.chunked_array(pa.array([2.5, 4.5, 6.5], |
| type=pa.float32()))) |
| |
| # Empty column |
| a = pa.array([], type=ty) |
| carr = pa.chunked_array(a) |
| x, y = carr.flatten() |
| assert x.equals(pa.chunked_array(pa.array([], type=pa.int16()))) |
| assert y.equals(pa.chunked_array(pa.array([], type=pa.float32()))) |
| |
| |
| def test_chunked_array_unify_dictionaries(): |
| arr = pa.chunked_array([ |
| pa.array(["foo", "bar", None, "foo"]).dictionary_encode(), |
| pa.array(["quux", None, "foo"]).dictionary_encode(), |
| ]) |
| assert arr.chunk(0).dictionary.equals(pa.array(["foo", "bar"])) |
| assert arr.chunk(1).dictionary.equals(pa.array(["quux", "foo"])) |
| arr = arr.unify_dictionaries() |
| expected_dict = pa.array(["foo", "bar", "quux"]) |
| assert arr.chunk(0).dictionary.equals(expected_dict) |
| assert arr.chunk(1).dictionary.equals(expected_dict) |
| assert arr.to_pylist() == ["foo", "bar", None, "foo", "quux", None, "foo"] |
| |
| |
| def test_recordbatch_dunder_init(): |
| with pytest.raises(TypeError, match='RecordBatch'): |
| pa.RecordBatch() |
| |
| |
| def test_chunked_array_c_array_interface(): |
| class ArrayWrapper: |
| def __init__(self, array): |
| self.array = array |
| |
| def __arrow_c_array__(self, requested_schema=None): |
| return self.array.__arrow_c_array__(requested_schema) |
| |
| data = pa.array([1, 2, 3], pa.int64()) |
| chunked = pa.chunked_array([data]) |
| wrapper = ArrayWrapper(data) |
| |
| # Can roundtrip through the wrapper. |
| result = pa.chunked_array(wrapper) |
| assert result == chunked |
| |
| # Can also import with a type that implementer can cast to. |
| result = pa.chunked_array(wrapper, type=pa.int16()) |
| assert result == chunked.cast(pa.int16()) |
| |
| |
| def test_chunked_array_c_stream_interface(): |
| class ChunkedArrayWrapper: |
| def __init__(self, chunked): |
| self.chunked = chunked |
| |
| def __arrow_c_stream__(self, requested_schema=None): |
| return self.chunked.__arrow_c_stream__(requested_schema) |
| |
| data = pa.chunked_array([[1, 2, 3], [4, None, 6]]) |
| wrapper = ChunkedArrayWrapper(data) |
| |
| # Can roundtrip through the wrapper. |
| result = pa.chunked_array(wrapper) |
| assert result == data |
| |
| # Can also import with a type that implementer can cast to. |
| result = pa.chunked_array(wrapper, type=pa.int16()) |
| assert result == data.cast(pa.int16()) |
| |
| |
| class BatchWrapper: |
| def __init__(self, batch): |
| self.batch = batch |
| |
| def __arrow_c_array__(self, requested_schema=None): |
| return self.batch.__arrow_c_array__(requested_schema) |
| |
| |
| class BatchDeviceWrapper: |
| def __init__(self, batch): |
| self.batch = batch |
| |
| def __arrow_c_device_array__(self, requested_schema=None, **kwargs): |
| return self.batch.__arrow_c_device_array__(requested_schema, **kwargs) |
| |
| |
| @pytest.mark.parametrize("wrapper_class", [BatchWrapper, BatchDeviceWrapper]) |
| def test_recordbatch_c_array_interface(wrapper_class): |
| data = pa.record_batch([ |
| pa.array([1, 2, 3], type=pa.int64()) |
| ], names=['a']) |
| wrapper = wrapper_class(data) |
| |
| # Can roundtrip through the wrapper. |
| result = pa.record_batch(wrapper) |
| assert result == data |
| |
| # Can also import with a schema that implementer can cast to. |
| castable_schema = pa.schema([ |
| pa.field('a', pa.int32()) |
| ]) |
| result = pa.record_batch(wrapper, schema=castable_schema) |
| expected = pa.record_batch([ |
| pa.array([1, 2, 3], type=pa.int32()) |
| ], names=['a']) |
| assert result == expected |
| |
| |
| def test_recordbatch_c_array_interface_device_unsupported_keyword(): |
| # For the device-aware version, we raise a specific error for unsupported keywords |
| data = pa.record_batch( |
| [pa.array([1, 2, 3], type=pa.int64())], names=['a'] |
| ) |
| |
| with pytest.raises( |
| NotImplementedError, |
| match=r"Received unsupported keyword argument\(s\): \['other'\]" |
| ): |
| data.__arrow_c_device_array__(other="not-none") |
| |
| # but with None value it is ignored |
| _ = data.__arrow_c_device_array__(other=None) |
| |
| |
| @pytest.mark.parametrize("wrapper_class", [BatchWrapper, BatchDeviceWrapper]) |
| def test_table_c_array_interface(wrapper_class): |
| data = pa.record_batch([ |
| pa.array([1, 2, 3], type=pa.int64()) |
| ], names=['a']) |
| wrapper = wrapper_class(data) |
| |
| # Can roundtrip through the wrapper. |
| result = pa.table(wrapper) |
| expected = pa.Table.from_batches([data]) |
| assert result == expected |
| |
| # Can also import with a schema that implementer can cast to. |
| castable_schema = pa.schema([ |
| pa.field('a', pa.int32()) |
| ]) |
| result = pa.table(wrapper, schema=castable_schema) |
| expected = pa.table({ |
| 'a': pa.array([1, 2, 3], type=pa.int32()) |
| }) |
| assert result == expected |
| |
| |
| def test_table_c_stream_interface(): |
| class StreamWrapper: |
| def __init__(self, batches): |
| self.batches = batches |
| |
| def __arrow_c_stream__(self, requested_schema=None): |
| reader = pa.RecordBatchReader.from_batches( |
| self.batches[0].schema, self.batches) |
| return reader.__arrow_c_stream__(requested_schema) |
| |
| data = [ |
| pa.record_batch([pa.array([1, 2, 3], type=pa.int64())], names=['a']), |
| pa.record_batch([pa.array([4, 5, 6], type=pa.int64())], names=['a']) |
| ] |
| wrapper = StreamWrapper(data) |
| |
| # Can roundtrip through the wrapper. |
| result = pa.table(wrapper) |
| expected = pa.Table.from_batches(data) |
| assert result == expected |
| |
| # Passing schema works if already that schema |
| result = pa.table(wrapper, schema=data[0].schema) |
| assert result == expected |
| |
| # Passing a different schema will cast |
| good_schema = pa.schema([pa.field('a', pa.int32())]) |
| result = pa.table(wrapper, schema=good_schema) |
| assert result == expected.cast(good_schema) |
| |
| # If schema doesn't match, raises NotImplementedError |
| with pytest.raises( |
| pa.lib.ArrowTypeError, match="Field 0 cannot be cast" |
| ): |
| pa.table( |
| wrapper, schema=pa.schema([pa.field('a', pa.list_(pa.int32()))]) |
| ) |
| |
| |
| def test_recordbatch_itercolumns(): |
| data = [ |
| pa.array(range(5), type='int16'), |
| pa.array([-10, -5, 0, None, 10], type='int32') |
| ] |
| batch = pa.record_batch(data, ['c0', 'c1']) |
| |
| columns = [] |
| for col in batch.itercolumns(): |
| columns.append(col) |
| |
| assert batch.columns == columns |
| assert batch == pa.record_batch(columns, names=batch.column_names) |
| assert batch != pa.record_batch(columns[1:], names=batch.column_names[1:]) |
| assert batch != columns |
| |
| |
| def test_recordbatch_equals(): |
| data1 = [ |
| pa.array(range(5), type='int16'), |
| pa.array([-10, -5, 0, None, 10], type='int32') |
| ] |
| data2 = [ |
| pa.array(['a', 'b', 'c']), |
| pa.array([['d'], ['e'], ['f']]), |
| ] |
| column_names = ['c0', 'c1'] |
| |
| batch = pa.record_batch(data1, column_names) |
| assert batch == pa.record_batch(data1, column_names) |
| assert batch.equals(pa.record_batch(data1, column_names)) |
| |
| assert batch != pa.record_batch(data2, column_names) |
| assert not batch.equals(pa.record_batch(data2, column_names)) |
| |
| batch_meta = pa.record_batch(data1, names=column_names, |
| metadata={'key': 'value'}) |
| assert batch_meta.equals(batch) |
| assert not batch_meta.equals(batch, check_metadata=True) |
| |
| # ARROW-8889 |
| assert not batch.equals(None) |
| assert batch != "foo" |
| |
| |
| def test_recordbatch_take(): |
| batch = pa.record_batch( |
| [pa.array([1, 2, 3, None, 5]), |
| pa.array(['a', 'b', 'c', 'd', 'e'])], |
| ['f1', 'f2']) |
| assert batch.take(pa.array([2, 3])).equals(batch.slice(2, 2)) |
| assert batch.take(pa.array([2, None])).equals( |
| pa.record_batch([pa.array([3, None]), pa.array(['c', None])], |
| ['f1', 'f2'])) |
| |
| |
| def test_recordbatch_column_sets_private_name(): |
| # ARROW-6429 |
| rb = pa.record_batch([pa.array([1, 2, 3, 4])], names=['a0']) |
| assert rb[0]._name == 'a0' |
| |
| |
| def test_recordbatch_from_arrays_validate_schema(): |
| # ARROW-6263 |
| arr = pa.array([1, 2]) |
| schema = pa.schema([pa.field('f0', pa.list_(pa.utf8()))]) |
| with pytest.raises(NotImplementedError): |
| pa.record_batch([arr], schema=schema) |
| |
| |
| def test_recordbatch_from_arrays_validate_lengths(): |
| # ARROW-2820 |
| data = [pa.array([1]), pa.array(["tokyo", "like", "happy"]), |
| pa.array(["derek"])] |
| |
| with pytest.raises(ValueError): |
| pa.record_batch(data, ['id', 'tags', 'name']) |
| |
| |
| def test_recordbatch_no_fields(): |
| batch = pa.record_batch([], []) |
| |
| assert len(batch) == 0 |
| assert batch.num_rows == 0 |
| assert batch.num_columns == 0 |
| |
| |
| def test_recordbatch_from_arrays_invalid_names(): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]) |
| ] |
| with pytest.raises(ValueError): |
| pa.record_batch(data, names=['a', 'b', 'c']) |
| |
| with pytest.raises(ValueError): |
| pa.record_batch(data, names=['a']) |
| |
| |
| def test_recordbatch_empty_metadata(): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]) |
| ] |
| |
| batch = pa.record_batch(data, ['c0', 'c1']) |
| assert batch.schema.metadata is None |
| |
| |
| def test_recordbatch_pickle(pickle_module): |
| data = [ |
| pa.array(range(5), type='int8'), |
| pa.array([-10, -5, 0, 5, 10], type='float32') |
| ] |
| fields = [ |
| pa.field('ints', pa.int8()), |
| pa.field('floats', pa.float32()), |
| ] |
| schema = pa.schema(fields, metadata={b'foo': b'bar'}) |
| batch = pa.record_batch(data, schema=schema) |
| |
| result = pickle_module.loads(pickle_module.dumps(batch)) |
| assert result.equals(batch) |
| assert result.schema == schema |
| |
| |
| def test_recordbatch_get_field(): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]), |
| pa.array(range(5, 10)) |
| ] |
| batch = pa.RecordBatch.from_arrays(data, names=('a', 'b', 'c')) |
| |
| assert batch.field('a').equals(batch.schema.field('a')) |
| assert batch.field(0).equals(batch.schema.field('a')) |
| |
| with pytest.raises(KeyError): |
| batch.field('d') |
| |
| with pytest.raises(TypeError): |
| batch.field(None) |
| |
| with pytest.raises(IndexError): |
| batch.field(4) |
| |
| |
| def test_recordbatch_select_column(): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]), |
| pa.array(range(5, 10)) |
| ] |
| batch = pa.RecordBatch.from_arrays(data, names=('a', 'b', 'c')) |
| |
| assert batch.column('a').equals(batch.column(0)) |
| |
| with pytest.raises( |
| KeyError, match='Field "d" does not exist in schema'): |
| batch.column('d') |
| |
| with pytest.raises(TypeError): |
| batch.column(None) |
| |
| with pytest.raises(IndexError): |
| batch.column(4) |
| |
| |
| def test_recordbatch_select(): |
| a1 = pa.array([1, 2, 3, None, 5]) |
| a2 = pa.array(['a', 'b', 'c', 'd', 'e']) |
| a3 = pa.array([[1, 2], [3, 4], [5, 6], None, [9, 10]]) |
| batch = pa.record_batch([a1, a2, a3], ['f1', 'f2', 'f3']) |
| |
| # selecting with string names |
| result = batch.select(['f1']) |
| expected = pa.record_batch([a1], ['f1']) |
| assert result.equals(expected) |
| |
| result = batch.select(['f3', 'f2']) |
| expected = pa.record_batch([a3, a2], ['f3', 'f2']) |
| assert result.equals(expected) |
| |
| # selecting with integer indices |
| result = batch.select([0]) |
| expected = pa.record_batch([a1], ['f1']) |
| assert result.equals(expected) |
| |
| result = batch.select([2, 1]) |
| expected = pa.record_batch([a3, a2], ['f3', 'f2']) |
| assert result.equals(expected) |
| |
| # preserve metadata |
| batch2 = batch.replace_schema_metadata({"a": "test"}) |
| result = batch2.select(["f1", "f2"]) |
| assert b"a" in result.schema.metadata |
| |
| # selecting non-existing column raises |
| with pytest.raises(KeyError, match='Field "f5" does not exist'): |
| batch.select(['f5']) |
| |
| with pytest.raises(IndexError, match="index out of bounds"): |
| batch.select([5]) |
| |
| # duplicate selection gives duplicated names in resulting recordbatch |
| result = batch.select(['f2', 'f2']) |
| expected = pa.record_batch([a2, a2], ['f2', 'f2']) |
| assert result.equals(expected) |
| |
| # selection duplicated column raises |
| batch = pa.record_batch([a1, a2, a3], ['f1', 'f2', 'f1']) |
| with pytest.raises(KeyError, match='Field "f1" exists 2 times'): |
| batch.select(['f1']) |
| |
| result = batch.select(['f2']) |
| expected = pa.record_batch([a2], ['f2']) |
| assert result.equals(expected) |
| |
| |
| def test_recordbatch_from_struct_array_invalid(): |
| with pytest.raises(TypeError): |
| pa.RecordBatch.from_struct_array(pa.array(range(5))) |
| |
| |
| def test_recordbatch_from_struct_array(): |
| struct_array = pa.array( |
| [{"ints": 1}, {"floats": 1.0}], |
| type=pa.struct([("ints", pa.int32()), ("floats", pa.float32())]), |
| ) |
| result = pa.RecordBatch.from_struct_array(struct_array) |
| assert result.equals(pa.RecordBatch.from_arrays( |
| [ |
| pa.array([1, None], type=pa.int32()), |
| pa.array([None, 1.0], type=pa.float32()), |
| ], ["ints", "floats"] |
| )) |
| |
| |
| def test_recordbatch_to_struct_array(): |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array([1, None], type=pa.int32()), |
| pa.array([None, 1.0], type=pa.float32()), |
| ], ["ints", "floats"] |
| ) |
| result = batch.to_struct_array() |
| assert result.equals(pa.array( |
| [{"ints": 1}, {"floats": 1.0}], |
| type=pa.struct([("ints", pa.int32()), ("floats", pa.float32())]), |
| )) |
| |
| |
| def test_table_from_struct_array_invalid(): |
| with pytest.raises(TypeError, match="Argument 'struct_array' has incorrect type"): |
| pa.Table.from_struct_array(pa.array(range(5))) |
| |
| |
| def test_table_from_struct_array(): |
| struct_array = pa.array( |
| [{"ints": 1}, {"floats": 1.0}], |
| type=pa.struct([("ints", pa.int32()), ("floats", pa.float32())]), |
| ) |
| result = pa.Table.from_struct_array(struct_array) |
| assert result.equals(pa.Table.from_arrays( |
| [ |
| pa.array([1, None], type=pa.int32()), |
| pa.array([None, 1.0], type=pa.float32()), |
| ], ["ints", "floats"] |
| )) |
| |
| |
| def test_table_from_struct_array_chunked_array(): |
| chunked_struct_array = pa.chunked_array( |
| [[{"ints": 1}, {"floats": 1.0}]], |
| type=pa.struct([("ints", pa.int32()), ("floats", pa.float32())]), |
| ) |
| result = pa.Table.from_struct_array(chunked_struct_array) |
| assert result.equals(pa.Table.from_arrays( |
| [ |
| pa.array([1, None], type=pa.int32()), |
| pa.array([None, 1.0], type=pa.float32()), |
| ], ["ints", "floats"] |
| )) |
| |
| |
| def test_table_to_struct_array(): |
| table = pa.Table.from_arrays( |
| [ |
| pa.array([1, None], type=pa.int32()), |
| pa.array([None, 1.0], type=pa.float32()), |
| ], ["ints", "floats"] |
| ) |
| result = table.to_struct_array() |
| assert result.equals(pa.chunked_array( |
| [[{"ints": 1}, {"floats": 1.0}]], |
| type=pa.struct([("ints", pa.int32()), ("floats", pa.float32())]), |
| )) |
| |
| |
| def test_table_to_struct_array_with_max_chunksize(): |
| table = pa.Table.from_arrays( |
| [ |
| pa.array([1, None], type=pa.int32()), |
| pa.array([None, 1.0], type=pa.float32()), |
| ], ["ints", "floats"] |
| ) |
| result = table.to_struct_array(max_chunksize=1) |
| assert result.equals(pa.chunked_array( |
| [[{"ints": 1}], [{"floats": 1.0}]], |
| type=pa.struct([("ints", pa.int32()), ("floats", pa.float32())]), |
| )) |
| |
| |
| def test_table_to_struct_array_for_empty_table(): |
| table = pa.Table.from_arrays( |
| [ |
| pa.array([], type=pa.int32()), |
| pa.array([], type=pa.float32()), |
| ], ["ints", "floats"] |
| ) |
| result = table.to_struct_array() |
| assert result.equals( |
| pa.chunked_array( |
| [], |
| type=pa.struct({"ints": pa.int32(), "floats": pa.float32()}), |
| ), |
| ) |
| |
| |
| def check_tensors(tensor, expected_tensor, type, size): |
| assert tensor.equals(expected_tensor) |
| assert tensor.size == size |
| assert tensor.type == type |
| assert tensor.shape == expected_tensor.shape |
| assert tensor.strides == expected_tensor.strides |
| |
| |
| @pytest.mark.numpy |
| @pytest.mark.parametrize('typ_str', [ |
| "uint8", "uint16", "uint32", "uint64", |
| "int8", "int16", "int32", "int64", |
| "float32", "float64", |
| ]) |
| def test_recordbatch_to_tensor_uniform_type(typ_str): |
| typ = np.dtype(typ_str) |
| arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9] |
| arr2 = [10, 20, 30, 40, 50, 60, 70, 80, 90] |
| arr3 = [100, 100, 100, 100, 100, 100, 100, 100, 100] |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array(arr1, type=pa.from_numpy_dtype(typ)), |
| pa.array(arr2, type=pa.from_numpy_dtype(typ)), |
| pa.array(arr3, type=pa.from_numpy_dtype(typ)), |
| ], ["a", "b", "c"] |
| ) |
| |
| result = batch.to_tensor(row_major=False) |
| x = np.column_stack([arr1, arr2, arr3]).astype(typ, order="F") |
| expected = pa.Tensor.from_numpy(x) |
| check_tensors(result, expected, pa.from_numpy_dtype(typ), 27) |
| |
| result = batch.to_tensor() |
| x = np.column_stack([arr1, arr2, arr3]).astype(typ, order="C") |
| expected = pa.Tensor.from_numpy(x) |
| check_tensors(result, expected, pa.from_numpy_dtype(typ), 27) |
| |
| # Test offset |
| batch1 = batch.slice(1) |
| arr1 = [2, 3, 4, 5, 6, 7, 8, 9] |
| arr2 = [20, 30, 40, 50, 60, 70, 80, 90] |
| arr3 = [100, 100, 100, 100, 100, 100, 100, 100] |
| |
| result = batch1.to_tensor(row_major=False) |
| x = np.column_stack([arr1, arr2, arr3]).astype(typ, order="F") |
| expected = pa.Tensor.from_numpy(x) |
| check_tensors(result, expected, pa.from_numpy_dtype(typ), 24) |
| |
| result = batch1.to_tensor() |
| x = np.column_stack([arr1, arr2, arr3]).astype(typ, order="C") |
| expected = pa.Tensor.from_numpy(x) |
| check_tensors(result, expected, pa.from_numpy_dtype(typ), 24) |
| |
| batch2 = batch.slice(1, 5) |
| arr1 = [2, 3, 4, 5, 6] |
| arr2 = [20, 30, 40, 50, 60] |
| arr3 = [100, 100, 100, 100, 100] |
| |
| result = batch2.to_tensor(row_major=False) |
| x = np.column_stack([arr1, arr2, arr3]).astype(typ, order="F") |
| expected = pa.Tensor.from_numpy(x) |
| check_tensors(result, expected, pa.from_numpy_dtype(typ), 15) |
| |
| result = batch2.to_tensor() |
| x = np.column_stack([arr1, arr2, arr3]).astype(typ, order="C") |
| expected = pa.Tensor.from_numpy(x) |
| check_tensors(result, expected, pa.from_numpy_dtype(typ), 15) |
| |
| |
| @pytest.mark.numpy |
| def test_recordbatch_to_tensor_uniform_float_16(): |
| arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9] |
| arr2 = [10, 20, 30, 40, 50, 60, 70, 80, 90] |
| arr3 = [100, 100, 100, 100, 100, 100, 100, 100, 100] |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array(np.array(arr1, dtype=np.float16), type=pa.float16()), |
| pa.array(np.array(arr2, dtype=np.float16), type=pa.float16()), |
| pa.array(np.array(arr3, dtype=np.float16), type=pa.float16()), |
| ], ["a", "b", "c"] |
| ) |
| |
| result = batch.to_tensor(row_major=False) |
| x = np.column_stack([arr1, arr2, arr3]).astype(np.float16, order="F") |
| expected = pa.Tensor.from_numpy(x) |
| check_tensors(result, expected, pa.float16(), 27) |
| |
| result = batch.to_tensor() |
| x = np.column_stack([arr1, arr2, arr3]).astype(np.float16, order="C") |
| expected = pa.Tensor.from_numpy(x) |
| check_tensors(result, expected, pa.float16(), 27) |
| |
| |
| @pytest.mark.numpy |
| def test_recordbatch_to_tensor_mixed_type(): |
| # uint16 + int16 = int32 |
| arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9] |
| arr2 = [10, 20, 30, 40, 50, 60, 70, 80, 90] |
| arr3 = [100, 200, 300, np.nan, 500, 600, 700, 800, 900] |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array(arr1, type=pa.uint16()), |
| pa.array(arr2, type=pa.int16()), |
| ], ["a", "b"] |
| ) |
| |
| result = batch.to_tensor(row_major=False) |
| x = np.column_stack([arr1, arr2]).astype(np.int32, order="F") |
| expected = pa.Tensor.from_numpy(x) |
| check_tensors(result, expected, pa.int32(), 18) |
| |
| result = batch.to_tensor() |
| x = np.column_stack([arr1, arr2]).astype(np.int32, order="C") |
| expected = pa.Tensor.from_numpy(x) |
| check_tensors(result, expected, pa.int32(), 18) |
| |
| # uint16 + int16 + float32 = float64 |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array(arr1, type=pa.uint16()), |
| pa.array(arr2, type=pa.int16()), |
| pa.array(arr3, type=pa.float32()), |
| ], ["a", "b", "c"] |
| ) |
| result = batch.to_tensor(row_major=False) |
| x = np.column_stack([arr1, arr2, arr3]).astype(np.float64, order="F") |
| expected = pa.Tensor.from_numpy(x) |
| |
| np.testing.assert_equal(result.to_numpy(), x) |
| assert result.size == 27 |
| assert result.type == pa.float64() |
| assert result.shape == expected.shape |
| assert result.strides == expected.strides |
| |
| result = batch.to_tensor() |
| x = np.column_stack([arr1, arr2, arr3]).astype(np.float64, order="C") |
| expected = pa.Tensor.from_numpy(x) |
| |
| np.testing.assert_equal(result.to_numpy(), x) |
| assert result.size == 27 |
| assert result.type == pa.float64() |
| assert result.shape == expected.shape |
| assert result.strides == expected.strides |
| |
| |
| @pytest.mark.numpy |
| def test_recordbatch_to_tensor_unsupported_mixed_type_with_float16(): |
| arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9] |
| arr2 = [10, 20, 30, 40, 50, 60, 70, 80, 90] |
| arr3 = [100, 200, 300, 400, 500, 600, 700, 800, 900] |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array(arr1, type=pa.uint16()), |
| pa.array(np.array(arr2, dtype=np.float16), type=pa.float16()), |
| pa.array(arr3, type=pa.float32()), |
| ], ["a", "b", "c"] |
| ) |
| |
| with pytest.raises( |
| NotImplementedError, |
| match="Casting from or to halffloat is not supported." |
| ): |
| batch.to_tensor() |
| |
| |
| @pytest.mark.numpy |
| def test_recordbatch_to_tensor_nan(): |
| arr1 = [1, 2, 3, 4, np.nan, 6, 7, 8, 9] |
| arr2 = [10, 20, 30, 40, 50, 60, 70, np.nan, 90] |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array(arr1, type=pa.float32()), |
| pa.array(arr2, type=pa.float32()), |
| ], ["a", "b"] |
| ) |
| result = batch.to_tensor(row_major=False) |
| x = np.column_stack([arr1, arr2]).astype(np.float32, order="F") |
| expected = pa.Tensor.from_numpy(x) |
| |
| np.testing.assert_equal(result.to_numpy(), x) |
| assert result.size == 18 |
| assert result.type == pa.float32() |
| assert result.shape == expected.shape |
| assert result.strides == expected.strides |
| |
| |
| @pytest.mark.numpy |
| def test_recordbatch_to_tensor_null(): |
| arr1 = [1, 2, 3, 4, None, 6, 7, 8, 9] |
| arr2 = [10, 20, 30, 40, 50, 60, 70, None, 90] |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array(arr1, type=pa.int32()), |
| pa.array(arr2, type=pa.float32()), |
| ], ["a", "b"] |
| ) |
| with pytest.raises( |
| pa.ArrowTypeError, |
| match="Can only convert a RecordBatch with no nulls." |
| ): |
| batch.to_tensor() |
| |
| result = batch.to_tensor(null_to_nan=True, row_major=False) |
| x = np.column_stack([arr1, arr2]).astype(np.float64, order="F") |
| expected = pa.Tensor.from_numpy(x) |
| |
| np.testing.assert_equal(result.to_numpy(), x) |
| assert result.size == 18 |
| assert result.type == pa.float64() |
| assert result.shape == expected.shape |
| assert result.strides == expected.strides |
| |
| # int32 -> float64 |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array(arr1, type=pa.int32()), |
| pa.array(arr2, type=pa.int32()), |
| ], ["a", "b"] |
| ) |
| |
| result = batch.to_tensor(null_to_nan=True, row_major=False) |
| |
| np.testing.assert_equal(result.to_numpy(), x) |
| assert result.size == 18 |
| assert result.type == pa.float64() |
| assert result.shape == expected.shape |
| assert result.strides == expected.strides |
| |
| # int8 -> float32 |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array(arr1, type=pa.int8()), |
| pa.array(arr2, type=pa.int8()), |
| ], ["a", "b"] |
| ) |
| |
| result = batch.to_tensor(null_to_nan=True, row_major=False) |
| x = np.column_stack([arr1, arr2]).astype(np.float32, order="F") |
| expected = pa.Tensor.from_numpy(x) |
| |
| np.testing.assert_equal(result.to_numpy(), x) |
| assert result.size == 18 |
| assert result.type == pa.float32() |
| assert result.shape == expected.shape |
| assert result.strides == expected.strides |
| |
| |
| @pytest.mark.numpy |
| def test_recordbatch_to_tensor_empty(): |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array([], type=pa.float32()), |
| pa.array([], type=pa.float32()), |
| ], ["a", "b"] |
| ) |
| result = batch.to_tensor() |
| |
| x = np.column_stack([[], []]).astype(np.float32, order="F") |
| expected = pa.Tensor.from_numpy(x) |
| |
| assert result.size == expected.size |
| assert result.type == pa.float32() |
| assert result.shape == expected.shape |
| assert result.strides == (4, 4) |
| |
| |
| def test_recordbatch_to_tensor_unsupported(): |
| arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9] |
| # Unsupported data type |
| arr2 = ["a", "b", "c", "a", "b", "c", "a", "b", "c"] |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array(arr1, type=pa.int32()), |
| pa.array(arr2, type=pa.utf8()), |
| ], ["a", "b"] |
| ) |
| with pytest.raises( |
| pa.ArrowTypeError, |
| match="DataType is not supported" |
| ): |
| batch.to_tensor() |
| |
| |
| def _table_like_slice_tests(factory): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]) |
| ] |
| names = ['c0', 'c1'] |
| |
| obj = factory(data, names=names) |
| |
| sliced = obj.slice(2) |
| assert sliced.num_rows == 3 |
| |
| expected = factory([x.slice(2) for x in data], names=names) |
| assert sliced.equals(expected) |
| |
| sliced2 = obj.slice(2, 2) |
| expected2 = factory([x.slice(2, 2) for x in data], names=names) |
| assert sliced2.equals(expected2) |
| |
| # 0 offset |
| assert obj.slice(0).equals(obj) |
| |
| # Slice past end of array |
| assert len(obj.slice(len(obj))) == 0 |
| |
| with pytest.raises(IndexError): |
| obj.slice(-1) |
| |
| # Check __getitem__-based slicing |
| assert obj.slice(0, 0).equals(obj[:0]) |
| assert obj.slice(0, 2).equals(obj[:2]) |
| assert obj.slice(2, 2).equals(obj[2:4]) |
| assert obj.slice(2, len(obj) - 2).equals(obj[2:]) |
| assert obj.slice(len(obj) - 2, 2).equals(obj[-2:]) |
| assert obj.slice(len(obj) - 4, 2).equals(obj[-4:-2]) |
| |
| |
| def test_recordbatch_slice_getitem(): |
| return _table_like_slice_tests(pa.RecordBatch.from_arrays) |
| |
| |
| def test_table_slice_getitem(): |
| return _table_like_slice_tests(pa.table) |
| |
| |
| @pytest.mark.pandas |
| def test_slice_zero_length_table(): |
| # ARROW-7907: a segfault on this code was fixed after 0.16.0 |
| table = pa.table({'a': pa.array([], type=pa.timestamp('us'))}) |
| table_slice = table.slice(0, 0) |
| table_slice.to_pandas() |
| |
| table = pa.table({'a': pa.chunked_array([], type=pa.string())}) |
| table.to_pandas() |
| |
| |
| @pytest.mark.numpy |
| def test_recordbatchlist_schema_equals(): |
| a1 = np.array([1], dtype='uint32') |
| a2 = np.array([4.0, 5.0], dtype='float64') |
| batch1 = pa.record_batch([pa.array(a1)], ['c1']) |
| batch2 = pa.record_batch([pa.array(a2)], ['c1']) |
| |
| with pytest.raises(pa.ArrowInvalid): |
| pa.Table.from_batches([batch1, batch2]) |
| |
| |
| def test_table_column_sets_private_name(): |
| # ARROW-6429 |
| t = pa.table([pa.array([1, 2, 3, 4])], names=['a0']) |
| assert t[0]._name == 'a0' |
| |
| |
| def test_table_equals(): |
| table = pa.Table.from_arrays([], names=[]) |
| assert table.equals(table) |
| |
| # ARROW-4822 |
| assert not table.equals(None) |
| |
| other = pa.Table.from_arrays([], names=[], metadata={'key': 'value'}) |
| assert not table.equals(other, check_metadata=True) |
| assert table.equals(other) |
| |
| |
| def test_table_from_batches_and_schema(): |
| schema = pa.schema([ |
| pa.field('a', pa.int64()), |
| pa.field('b', pa.float64()), |
| ]) |
| batch = pa.record_batch([pa.array([1]), pa.array([3.14])], |
| names=['a', 'b']) |
| table = pa.Table.from_batches([batch], schema) |
| assert table.schema.equals(schema) |
| assert table.column(0) == pa.chunked_array([[1]]) |
| assert table.column(1) == pa.chunked_array([[3.14]]) |
| |
| incompatible_schema = pa.schema([pa.field('a', pa.int64())]) |
| with pytest.raises(pa.ArrowInvalid): |
| pa.Table.from_batches([batch], incompatible_schema) |
| |
| incompatible_batch = pa.record_batch([pa.array([1])], ['a']) |
| with pytest.raises(pa.ArrowInvalid): |
| pa.Table.from_batches([incompatible_batch], schema) |
| |
| |
| @pytest.mark.pandas |
| def test_table_to_batches(): |
| from pandas.testing import assert_frame_equal |
| import pandas as pd |
| |
| df1 = pd.DataFrame({'a': list(range(10))}) |
| df2 = pd.DataFrame({'a': list(range(10, 30))}) |
| |
| batch1 = pa.RecordBatch.from_pandas(df1, preserve_index=False) |
| batch2 = pa.RecordBatch.from_pandas(df2, preserve_index=False) |
| |
| table = pa.Table.from_batches([batch1, batch2, batch1]) |
| |
| expected_df = pd.concat([df1, df2, df1], ignore_index=True) |
| |
| batches = table.to_batches() |
| assert len(batches) == 3 |
| |
| assert_frame_equal(pa.Table.from_batches(batches).to_pandas(), |
| expected_df) |
| |
| batches = table.to_batches(max_chunksize=15) |
| assert list(map(len, batches)) == [10, 15, 5, 10] |
| |
| assert_frame_equal(table.to_pandas(), expected_df) |
| assert_frame_equal(pa.Table.from_batches(batches).to_pandas(), |
| expected_df) |
| |
| table_from_iter = pa.Table.from_batches(iter([batch1, batch2, batch1])) |
| assert table.equals(table_from_iter) |
| |
| with pytest.raises(ValueError): |
| table.to_batches(max_chunksize=0) |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_basics(cls): |
| data = [ |
| pa.array(range(5), type='int16'), |
| pa.array([-10, -5, 0, None, 10], type='int32') |
| ] |
| table = cls.from_arrays(data, names=('a', 'b')) |
| table.validate() |
| |
| assert not table.schema.metadata |
| assert len(table) == 5 |
| assert table.num_rows == 5 |
| assert table.num_columns == len(data) |
| assert table.shape == (5, 2) |
| # (only the second array has a null bitmap) |
| assert table.get_total_buffer_size() == (5 * 2) + (5 * 4 + 1) |
| assert table.nbytes == (5 * 2) + (5 * 4 + 1) |
| assert sys.getsizeof(table) >= object.__sizeof__( |
| table) + table.get_total_buffer_size() |
| |
| pydict = table.to_pydict() |
| assert pydict == OrderedDict([ |
| ('a', [0, 1, 2, 3, 4]), |
| ('b', [-10, -5, 0, None, 10]) |
| ]) |
| assert isinstance(pydict, dict) |
| assert table == cls.from_pydict(pydict, schema=table.schema) |
| |
| with pytest.raises(IndexError): |
| # bounds checking |
| table[2] |
| |
| columns = [] |
| for col in table.itercolumns(): |
| |
| if cls is pa.Table: |
| assert type(col) is pa.ChunkedArray |
| |
| for chunk in col.iterchunks(): |
| assert chunk is not None |
| |
| with pytest.raises(IndexError): |
| col.chunk(-1) |
| |
| with pytest.raises(IndexError): |
| col.chunk(col.num_chunks) |
| |
| else: |
| assert issubclass(type(col), pa.Array) |
| |
| columns.append(col) |
| |
| assert table.columns == columns |
| assert table == cls.from_arrays(columns, names=table.column_names) |
| assert table != cls.from_arrays(columns[1:], names=table.column_names[1:]) |
| assert table != columns |
| |
| # Schema passed explicitly |
| schema = pa.schema([pa.field('c0', pa.int16(), |
| metadata={'key': 'value'}), |
| pa.field('c1', pa.int32())], |
| metadata={b'foo': b'bar'}) |
| table = cls.from_arrays(data, schema=schema) |
| assert table.schema == schema |
| |
| wr = weakref.ref(table) |
| assert wr() is not None |
| del table |
| assert wr() is None |
| |
| |
| def test_table_dunder_init(): |
| with pytest.raises(TypeError, match='Table'): |
| pa.Table() |
| |
| |
| def test_table_from_arrays_preserves_column_metadata(): |
| # Added to test https://issues.apache.org/jira/browse/ARROW-3866 |
| arr0 = pa.array([1, 2]) |
| arr1 = pa.array([3, 4]) |
| field0 = pa.field('field1', pa.int64(), metadata=dict(a="A", b="B")) |
| field1 = pa.field('field2', pa.int64(), nullable=False) |
| table = pa.Table.from_arrays([arr0, arr1], |
| schema=pa.schema([field0, field1])) |
| assert b"a" in table.field(0).metadata |
| assert table.field(1).nullable is False |
| |
| |
| def test_table_from_arrays_invalid_names(): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]) |
| ] |
| with pytest.raises(ValueError): |
| pa.Table.from_arrays(data, names=['a', 'b', 'c']) |
| |
| with pytest.raises(ValueError): |
| pa.Table.from_arrays(data, names=['a']) |
| |
| |
| def test_table_from_lists(): |
| data = [ |
| list(range(5)), |
| [-10, -5, 0, 5, 10] |
| ] |
| |
| result = pa.table(data, names=['a', 'b']) |
| expected = pa.Table.from_arrays(data, names=['a', 'b']) |
| assert result.equals(expected) |
| |
| schema = pa.schema([ |
| pa.field('a', pa.uint16()), |
| pa.field('b', pa.int64()) |
| ]) |
| result = pa.table(data, schema=schema) |
| expected = pa.Table.from_arrays(data, schema=schema) |
| assert result.equals(expected) |
| |
| |
| def test_table_pickle(pickle_module): |
| data = [ |
| pa.chunked_array([[1, 2], [3, 4]], type=pa.uint32()), |
| pa.chunked_array([["some", "strings", None, ""]], type=pa.string()), |
| ] |
| schema = pa.schema([pa.field('ints', pa.uint32()), |
| pa.field('strs', pa.string())], |
| metadata={b'foo': b'bar'}) |
| table = pa.Table.from_arrays(data, schema=schema) |
| |
| result = pickle_module.loads(pickle_module.dumps(table)) |
| result.validate() |
| assert result.equals(table) |
| |
| |
| def test_table_get_field(): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]), |
| pa.array(range(5, 10)) |
| ] |
| table = pa.Table.from_arrays(data, names=('a', 'b', 'c')) |
| |
| assert table.field('a').equals(table.schema.field('a')) |
| assert table.field(0).equals(table.schema.field('a')) |
| |
| with pytest.raises(KeyError): |
| table.field('d') |
| |
| with pytest.raises(TypeError): |
| table.field(None) |
| |
| with pytest.raises(IndexError): |
| table.field(4) |
| |
| |
| def test_table_select_column(): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]), |
| pa.array(range(5, 10)) |
| ] |
| table = pa.Table.from_arrays(data, names=('a', 'b', 'c')) |
| |
| assert table.column('a').equals(table.column(0)) |
| |
| with pytest.raises(KeyError, |
| match='Field "d" does not exist in schema'): |
| table.column('d') |
| |
| with pytest.raises(TypeError): |
| table.column(None) |
| |
| with pytest.raises(IndexError): |
| table.column(4) |
| |
| |
| def test_table_column_with_duplicates(): |
| # ARROW-8209 |
| table = pa.table([pa.array([1, 2, 3]), |
| pa.array([4, 5, 6]), |
| pa.array([7, 8, 9])], names=['a', 'b', 'a']) |
| |
| with pytest.raises(KeyError, |
| match='Field "a" exists 2 times in schema'): |
| table.column('a') |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_add_column(cls): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]), |
| pa.array(range(5, 10)) |
| ] |
| table = cls.from_arrays(data, names=('a', 'b', 'c')) |
| |
| new_field = pa.field('d', data[1].type) |
| t2 = table.add_column(3, new_field, data[1]) |
| t3 = table.append_column(new_field, data[1]) |
| |
| expected = cls.from_arrays(data + [data[1]], |
| names=('a', 'b', 'c', 'd')) |
| assert t2.equals(expected) |
| assert t3.equals(expected) |
| |
| t4 = table.add_column(0, new_field, data[1]) |
| expected = cls.from_arrays([data[1]] + data, |
| names=('d', 'a', 'b', 'c')) |
| assert t4.equals(expected) |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_set_column(cls): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]), |
| pa.array(range(5, 10)) |
| ] |
| table = cls.from_arrays(data, names=('a', 'b', 'c')) |
| |
| new_field = pa.field('d', data[1].type) |
| t2 = table.set_column(0, new_field, data[1]) |
| |
| expected_data = list(data) |
| expected_data[0] = data[1] |
| expected = cls.from_arrays(expected_data, |
| names=('d', 'b', 'c')) |
| assert t2.equals(expected) |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_drop_columns(cls): |
| """ drop one or more columns given labels""" |
| a = pa.array(range(5)) |
| b = pa.array([-10, -5, 0, 5, 10]) |
| c = pa.array(range(5, 10)) |
| |
| table = cls.from_arrays([a, b, c], names=('a', 'b', 'c')) |
| t2 = table.drop_columns(['a', 'b']) |
| t3 = table.drop_columns('a') |
| |
| exp_t2 = cls.from_arrays([c], names=('c',)) |
| assert exp_t2.equals(t2) |
| exp_t3 = cls.from_arrays([b, c], names=('b', 'c',)) |
| assert exp_t3.equals(t3) |
| |
| # -- raise KeyError if column not in Table |
| with pytest.raises(KeyError, match="Column 'd' not found"): |
| table.drop_columns(['d']) |
| |
| |
| def test_table_drop(): |
| """ verify the alias of drop_columns is working""" |
| a = pa.array(range(5)) |
| b = pa.array([-10, -5, 0, 5, 10]) |
| c = pa.array(range(5, 10)) |
| |
| table = pa.Table.from_arrays([a, b, c], names=('a', 'b', 'c')) |
| t2 = table.drop(['a', 'b']) |
| t3 = table.drop('a') |
| |
| exp_t2 = pa.Table.from_arrays([c], names=('c',)) |
| assert exp_t2.equals(t2) |
| exp_t3 = pa.Table.from_arrays([b, c], names=('b', 'c',)) |
| assert exp_t3.equals(t3) |
| |
| # -- raise KeyError if column not in Table |
| with pytest.raises(KeyError, match="Column 'd' not found"): |
| table.drop(['d']) |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_remove_column(cls): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]), |
| pa.array(range(5, 10)) |
| ] |
| table = cls.from_arrays(data, names=('a', 'b', 'c')) |
| |
| t2 = table.remove_column(0) |
| t2.validate() |
| expected = cls.from_arrays(data[1:], names=('b', 'c')) |
| assert t2.equals(expected) |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_remove_column_empty(cls): |
| # ARROW-1865 |
| data = [ |
| pa.array(range(5)), |
| ] |
| table = cls.from_arrays(data, names=['a']) |
| |
| t2 = table.remove_column(0) |
| t2.validate() |
| assert len(t2) == len(table) |
| |
| t3 = t2.add_column(0, table.field(0), table[0]) |
| t3.validate() |
| assert t3.equals(table) |
| |
| |
| def test_empty_table_with_names(): |
| # ARROW-13784 |
| data = [] |
| names = ["a", "b"] |
| message = ( |
| 'Length of names [(]2[)] does not match length of arrays [(]0[)]') |
| with pytest.raises(ValueError, match=message): |
| pa.Table.from_arrays(data, names=names) |
| |
| |
| def test_empty_table(): |
| table = pa.table([]) |
| |
| assert table.column_names == [] |
| assert table.equals(pa.Table.from_arrays([], [])) |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_rename_columns(cls): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]), |
| pa.array(range(5, 10)) |
| ] |
| table = cls.from_arrays(data, names=['a', 'b', 'c']) |
| assert table.column_names == ['a', 'b', 'c'] |
| |
| expected = cls.from_arrays(data, names=['eh', 'bee', 'sea']) |
| |
| # Testing with list |
| t2 = table.rename_columns(['eh', 'bee', 'sea']) |
| t2.validate() |
| assert t2.column_names == ['eh', 'bee', 'sea'] |
| assert t2.equals(expected) |
| |
| # Testing with tuple |
| t3 = table.rename_columns(('eh', 'bee', 'sea')) |
| t3.validate() |
| assert t3.column_names == ['eh', 'bee', 'sea'] |
| assert t3.equals(expected) |
| |
| message = "names must be a list or dict not <class 'str'>" |
| with pytest.raises(TypeError, match=message): |
| table.rename_columns('not a list') |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_rename_columns_mapping(cls): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]), |
| pa.array(range(5, 10)) |
| ] |
| table = cls.from_arrays(data, names=['a', 'b', 'c']) |
| assert table.column_names == ['a', 'b', 'c'] |
| |
| expected = cls.from_arrays(data, names=['eh', 'b', 'sea']) |
| t1 = table.rename_columns({'a': 'eh', 'c': 'sea'}) |
| t1.validate() |
| assert t1 == expected |
| |
| # Test renaming duplicate column names |
| table = cls.from_arrays(data, names=['a', 'a', 'c']) |
| expected = cls.from_arrays(data, names=['eh', 'eh', 'sea']) |
| t2 = table.rename_columns({'a': 'eh', 'c': 'sea'}) |
| t2.validate() |
| assert t2 == expected |
| |
| # Test column not found |
| with pytest.raises(KeyError, match=r"Column 'd' not found"): |
| table.rename_columns({'a': 'eh', 'd': 'sea'}) |
| |
| |
| def test_table_flatten(): |
| ty1 = pa.struct([pa.field('x', pa.int16()), |
| pa.field('y', pa.float32())]) |
| ty2 = pa.struct([pa.field('nest', ty1)]) |
| a = pa.array([(1, 2.5), (3, 4.5)], type=ty1) |
| b = pa.array([((11, 12.5),), ((13, 14.5),)], type=ty2) |
| c = pa.array([False, True], type=pa.bool_()) |
| |
| table = pa.Table.from_arrays([a, b, c], names=['a', 'b', 'c']) |
| t2 = table.flatten() |
| t2.validate() |
| expected = pa.Table.from_arrays([ |
| pa.array([1, 3], type=pa.int16()), |
| pa.array([2.5, 4.5], type=pa.float32()), |
| pa.array([(11, 12.5), (13, 14.5)], type=ty1), |
| c], |
| names=['a.x', 'a.y', 'b.nest', 'c']) |
| assert t2.equals(expected) |
| |
| |
| def test_table_combine_chunks(): |
| batch1 = pa.record_batch([pa.array([1]), pa.array(["a"])], |
| names=['f1', 'f2']) |
| batch2 = pa.record_batch([pa.array([2]), pa.array(["b"])], |
| names=['f1', 'f2']) |
| table = pa.Table.from_batches([batch1, batch2]) |
| combined = table.combine_chunks() |
| combined.validate() |
| assert combined.equals(table) |
| for c in combined.columns: |
| assert c.num_chunks == 1 |
| |
| |
| def test_table_unify_dictionaries(): |
| batch1 = pa.record_batch([ |
| pa.array(["foo", "bar", None, "foo"]).dictionary_encode(), |
| pa.array([123, 456, 456, 789]).dictionary_encode(), |
| pa.array([True, False, None, None])], names=['a', 'b', 'c']) |
| batch2 = pa.record_batch([ |
| pa.array(["quux", "foo", None, "quux"]).dictionary_encode(), |
| pa.array([456, 789, 789, None]).dictionary_encode(), |
| pa.array([False, None, None, True])], names=['a', 'b', 'c']) |
| |
| table = pa.Table.from_batches([batch1, batch2]) |
| table = table.replace_schema_metadata({b"key1": b"value1"}) |
| assert table.column(0).chunk(0).dictionary.equals( |
| pa.array(["foo", "bar"])) |
| assert table.column(0).chunk(1).dictionary.equals( |
| pa.array(["quux", "foo"])) |
| assert table.column(1).chunk(0).dictionary.equals( |
| pa.array([123, 456, 789])) |
| assert table.column(1).chunk(1).dictionary.equals( |
| pa.array([456, 789])) |
| |
| table = table.unify_dictionaries(pa.default_memory_pool()) |
| expected_dict_0 = pa.array(["foo", "bar", "quux"]) |
| expected_dict_1 = pa.array([123, 456, 789]) |
| assert table.column(0).chunk(0).dictionary.equals(expected_dict_0) |
| assert table.column(0).chunk(1).dictionary.equals(expected_dict_0) |
| assert table.column(1).chunk(0).dictionary.equals(expected_dict_1) |
| assert table.column(1).chunk(1).dictionary.equals(expected_dict_1) |
| |
| assert table.to_pydict() == { |
| 'a': ["foo", "bar", None, "foo", "quux", "foo", None, "quux"], |
| 'b': [123, 456, 456, 789, 456, 789, 789, None], |
| 'c': [True, False, None, None, False, None, None, True], |
| } |
| assert table.schema.metadata == {b"key1": b"value1"} |
| |
| |
| def test_table_maps_as_pydicts(): |
| arrays = [ |
| pa.array( |
| [{'x': 1, 'y': 2}, {'z': 3}], |
| type=pa.map_(pa.string(), pa.int32()) |
| ) |
| ] |
| table = pa.Table.from_arrays(arrays, names=['a']) |
| |
| table_dict = table.to_pydict(maps_as_pydicts="strict") |
| assert 'a' in table_dict |
| column_list = table_dict['a'] |
| assert len(column_list) == 2 |
| assert column_list == [{'x': 1, 'y': 2}, {'z': 3}] |
| |
| table_list = table.to_pylist(maps_as_pydicts="strict") |
| assert len(table_list) == 2 |
| assert table_list == [{'a': {'x': 1, 'y': 2}}, {'a': {'z': 3}}] |
| |
| |
| def test_concat_tables(): |
| data = [ |
| list(range(5)), |
| [-10., -5., 0., 5., 10.] |
| ] |
| data2 = [ |
| list(range(5, 10)), |
| [1., 2., 3., 4., 5.] |
| ] |
| |
| t1 = pa.Table.from_arrays([pa.array(x) for x in data], |
| names=('a', 'b')) |
| t2 = pa.Table.from_arrays([pa.array(x) for x in data2], |
| names=('a', 'b')) |
| |
| result = pa.concat_tables([t1, t2]) |
| result.validate() |
| assert len(result) == 10 |
| |
| expected = pa.Table.from_arrays([pa.array(x + y) |
| for x, y in zip(data, data2)], |
| names=('a', 'b')) |
| |
| assert result.equals(expected) |
| |
| |
| def test_concat_tables_permissive(): |
| t1 = pa.Table.from_arrays([list(range(10))], names=('a',)) |
| t2 = pa.Table.from_arrays([list(('a', 'b', 'c'))], names=('a',)) |
| |
| with pytest.raises( |
| pa.ArrowTypeError, |
| match="Unable to merge: Field a has incompatible types: int64 vs string"): |
| _ = pa.concat_tables([t1, t2], promote_options="permissive") |
| |
| |
| def test_concat_tables_invalid_option(): |
| t = pa.Table.from_arrays([list(range(10))], names=('a',)) |
| |
| with pytest.raises(ValueError, match="Invalid promote_options: invalid"): |
| pa.concat_tables([t, t], promote_options="invalid") |
| |
| |
| def test_concat_tables_none_table(): |
| # ARROW-11997 |
| with pytest.raises(AttributeError): |
| pa.concat_tables([None]) |
| |
| |
| @pytest.mark.pandas |
| def test_concat_tables_with_different_schema_metadata(): |
| import pandas as pd |
| |
| schema = pa.schema([ |
| pa.field('a', pa.string()), |
| pa.field('b', pa.string()), |
| ]) |
| |
| values = list('abcdefgh') |
| df1 = pd.DataFrame({'a': values, 'b': values}) |
| df2 = pd.DataFrame({'a': [np.nan] * 8, 'b': values}) |
| |
| table1 = pa.Table.from_pandas(df1, schema=schema, preserve_index=False) |
| table2 = pa.Table.from_pandas(df2, schema=schema, preserve_index=False) |
| assert table1.schema.equals(table2.schema) |
| assert not table1.schema.equals(table2.schema, check_metadata=True) |
| |
| table3 = pa.concat_tables([table1, table2]) |
| assert table1.schema.equals(table3.schema, check_metadata=True) |
| assert table2.schema.equals(table3.schema) |
| |
| |
| def test_concat_tables_with_promote_option(): |
| t1 = pa.Table.from_arrays( |
| [pa.array([1, 2], type=pa.int64())], ["int64_field"]) |
| t2 = pa.Table.from_arrays( |
| [pa.array([1.0, 2.0], type=pa.float32())], ["float_field"]) |
| |
| with pytest.warns(FutureWarning): |
| result = pa.concat_tables([t1, t2], promote=True) |
| |
| assert result.equals(pa.Table.from_arrays([ |
| pa.array([1, 2, None, None], type=pa.int64()), |
| pa.array([None, None, 1.0, 2.0], type=pa.float32()), |
| ], ["int64_field", "float_field"])) |
| |
| t1 = pa.Table.from_arrays( |
| [pa.array([1, 2], type=pa.int64())], ["f"]) |
| t2 = pa.Table.from_arrays( |
| [pa.array([1, 2], type=pa.float32())], ["f"]) |
| |
| with pytest.raises(pa.ArrowInvalid, match="Schema at index 1 was different:"): |
| with pytest.warns(FutureWarning): |
| pa.concat_tables([t1, t2], promote=False) |
| |
| |
| def test_concat_tables_with_promotion(): |
| t1 = pa.Table.from_arrays( |
| [pa.array([1, 2], type=pa.int64())], ["int64_field"]) |
| t2 = pa.Table.from_arrays( |
| [pa.array([1.0, 2.0], type=pa.float32())], ["float_field"]) |
| |
| result = pa.concat_tables([t1, t2], promote_options="default") |
| |
| assert result.equals(pa.Table.from_arrays([ |
| pa.array([1, 2, None, None], type=pa.int64()), |
| pa.array([None, None, 1.0, 2.0], type=pa.float32()), |
| ], ["int64_field", "float_field"])) |
| |
| t3 = pa.Table.from_arrays( |
| [pa.array([1, 2], type=pa.int32())], ["int64_field"]) |
| result = pa.concat_tables( |
| [t1, t3], promote_options="permissive") |
| assert result.equals(pa.Table.from_arrays([ |
| pa.array([1, 2, 1, 2], type=pa.int64()), |
| ], ["int64_field"])) |
| |
| |
| def test_concat_tables_with_promotion_error(): |
| t1 = pa.Table.from_arrays( |
| [pa.array([1, 2], type=pa.int64())], ["f"]) |
| t2 = pa.Table.from_arrays( |
| [pa.array([1, 2], type=pa.float32())], ["f"]) |
| |
| with pytest.raises(pa.ArrowTypeError, match="Unable to merge:"): |
| pa.concat_tables([t1, t2], promote_options="default") |
| |
| |
| def test_table_negative_indexing(): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]), |
| pa.array([1.0, 2.0, 3.0, 4.0, 5.0]), |
| pa.array(['ab', 'bc', 'cd', 'de', 'ef']), |
| ] |
| table = pa.Table.from_arrays(data, names=tuple('abcd')) |
| |
| assert table[-1].equals(table[3]) |
| assert table[-2].equals(table[2]) |
| assert table[-3].equals(table[1]) |
| assert table[-4].equals(table[0]) |
| |
| with pytest.raises(IndexError): |
| table[-5] |
| |
| with pytest.raises(IndexError): |
| table[4] |
| |
| |
| def test_concat_batches(): |
| data = [ |
| list(range(5)), |
| [-10., -5., 0., 5., 10.] |
| ] |
| data2 = [ |
| list(range(5, 10)), |
| [1., 2., 3., 4., 5.] |
| ] |
| |
| t1 = pa.RecordBatch.from_arrays([pa.array(x) for x in data], |
| names=('a', 'b')) |
| t2 = pa.RecordBatch.from_arrays([pa.array(x) for x in data2], |
| names=('a', 'b')) |
| |
| result = pa.concat_batches([t1, t2]) |
| result.validate() |
| assert len(result) == 10 |
| |
| expected = pa.RecordBatch.from_arrays([pa.array(x + y) |
| for x, y in zip(data, data2)], |
| names=('a', 'b')) |
| |
| assert result.equals(expected) |
| |
| |
| def test_concat_batches_different_schema(): |
| t1 = pa.RecordBatch.from_arrays( |
| [pa.array([1, 2], type=pa.int64())], ["f"]) |
| t2 = pa.RecordBatch.from_arrays( |
| [pa.array([1, 2], type=pa.float32())], ["f"]) |
| |
| with pytest.raises(pa.ArrowInvalid, |
| match="not match index 0 recordbatch schema"): |
| pa.concat_batches([t1, t2]) |
| |
| |
| def test_concat_batches_none_batches(): |
| # ARROW-11997 |
| with pytest.raises(AttributeError): |
| pa.concat_batches([None]) |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_cast_to_incompatible_schema(cls): |
| data = [ |
| pa.array(range(5)), |
| pa.array([-10, -5, 0, 5, 10]), |
| ] |
| table = cls.from_arrays(data, names=tuple('ab')) |
| |
| target_schema1 = pa.schema([ |
| pa.field('A', pa.int32()), |
| pa.field('b', pa.int16()), |
| ]) |
| target_schema2 = pa.schema([ |
| pa.field('a', pa.int32()), |
| ]) |
| |
| if cls is pa.Table: |
| cls_name = 'table' |
| else: |
| cls_name = 'record batch' |
| message = ("Target schema's field names are not matching the " |
| f"{cls_name}'s field names:.*") |
| |
| with pytest.raises(ValueError, match=message): |
| table.cast(target_schema1) |
| with pytest.raises(ValueError, match=message): |
| table.cast(target_schema2) |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_safe_casting(cls): |
| data = [ |
| pa.array(range(5), type=pa.int64()), |
| pa.array([-10, -5, 0, 5, 10], type=pa.int32()), |
| pa.array([1.0, 2.0, 3.0, 4.0, 5.0], type=pa.float64()), |
| pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string()) |
| ] |
| table = cls.from_arrays(data, names=tuple('abcd')) |
| |
| expected_data = [ |
| pa.array(range(5), type=pa.int32()), |
| pa.array([-10, -5, 0, 5, 10], type=pa.int16()), |
| pa.array([1, 2, 3, 4, 5], type=pa.int64()), |
| pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string()) |
| ] |
| expected_table = cls.from_arrays(expected_data, names=tuple('abcd')) |
| |
| target_schema = pa.schema([ |
| pa.field('a', pa.int32()), |
| pa.field('b', pa.int16()), |
| pa.field('c', pa.int64()), |
| pa.field('d', pa.string()) |
| ]) |
| casted_table = table.cast(target_schema) |
| |
| assert casted_table.equals(expected_table) |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_unsafe_casting(cls): |
| data = [ |
| pa.array(range(5), type=pa.int64()), |
| pa.array([-10, -5, 0, 5, 10], type=pa.int32()), |
| pa.array([1.1, 2.2, 3.3, 4.4, 5.5], type=pa.float64()), |
| pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string()) |
| ] |
| table = cls.from_arrays(data, names=tuple('abcd')) |
| |
| expected_data = [ |
| pa.array(range(5), type=pa.int32()), |
| pa.array([-10, -5, 0, 5, 10], type=pa.int16()), |
| pa.array([1, 2, 3, 4, 5], type=pa.int64()), |
| pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string()) |
| ] |
| expected_table = cls.from_arrays(expected_data, names=tuple('abcd')) |
| |
| target_schema = pa.schema([ |
| pa.field('a', pa.int32()), |
| pa.field('b', pa.int16()), |
| pa.field('c', pa.int64()), |
| pa.field('d', pa.string()) |
| ]) |
| |
| with pytest.raises(pa.ArrowInvalid, match='truncated'): |
| table.cast(target_schema) |
| |
| casted_table = table.cast(target_schema, safe=False) |
| assert casted_table.equals(expected_table) |
| |
| |
| @pytest.mark.numpy |
| def test_invalid_table_construct(): |
| array = np.array([0, 1], dtype=np.uint8) |
| u8 = pa.uint8() |
| arrays = [pa.array(array, type=u8), pa.array(array[1:], type=u8)] |
| |
| with pytest.raises(pa.lib.ArrowInvalid): |
| pa.Table.from_arrays(arrays, names=["a1", "a2"]) |
| |
| |
| @pytest.mark.parametrize('data, klass', [ |
| ((['', 'foo', 'bar'], [4.5, 5, None]), list), |
| ((['', 'foo', 'bar'], [4.5, 5, None]), pa.array), |
| (([[''], ['foo', 'bar']], [[4.5], [5., None]]), pa.chunked_array), |
| ]) |
| def test_from_arrays_schema(data, klass): |
| data = [klass(data[0]), klass(data[1])] |
| schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float32())]) |
| |
| table = pa.Table.from_arrays(data, schema=schema) |
| assert table.num_columns == 2 |
| assert table.num_rows == 3 |
| assert table.schema == schema |
| |
| # length of data and schema not matching |
| schema = pa.schema([('strs', pa.utf8())]) |
| with pytest.raises(ValueError): |
| pa.Table.from_arrays(data, schema=schema) |
| |
| # with different but compatible schema |
| schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float32())]) |
| table = pa.Table.from_arrays(data, schema=schema) |
| assert pa.types.is_float32(table.column('floats').type) |
| assert table.num_columns == 2 |
| assert table.num_rows == 3 |
| assert table.schema == schema |
| |
| # with different and incompatible schema |
| schema = pa.schema([('strs', pa.utf8()), ('floats', pa.timestamp('s'))]) |
| with pytest.raises((NotImplementedError, TypeError)): |
| pa.Table.from_pydict(data, schema=schema) |
| |
| # Cannot pass both schema and metadata / names |
| with pytest.raises(ValueError): |
| pa.Table.from_arrays(data, schema=schema, names=['strs', 'floats']) |
| |
| with pytest.raises(ValueError): |
| pa.Table.from_arrays(data, schema=schema, metadata={b'foo': b'bar'}) |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_from_pydict(cls): |
| table = cls.from_pydict({}) |
| assert table.num_columns == 0 |
| assert table.num_rows == 0 |
| assert table.schema == pa.schema([]) |
| assert table.to_pydict() == {} |
| |
| schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float64())]) |
| |
| # With lists as values |
| data = OrderedDict([('strs', ['', 'foo', 'bar']), |
| ('floats', [4.5, 5, None])]) |
| table = cls.from_pydict(data) |
| assert table.num_columns == 2 |
| assert table.num_rows == 3 |
| assert table.schema == schema |
| assert table.to_pydict() == data |
| |
| # With metadata and inferred schema |
| metadata = {b'foo': b'bar'} |
| schema = schema.with_metadata(metadata) |
| table = cls.from_pydict(data, metadata=metadata) |
| assert table.schema == schema |
| assert table.schema.metadata == metadata |
| assert table.to_pydict() == data |
| |
| # With explicit schema |
| table = cls.from_pydict(data, schema=schema) |
| assert table.schema == schema |
| assert table.schema.metadata == metadata |
| assert table.to_pydict() == data |
| |
| # Cannot pass both schema and metadata |
| with pytest.raises(ValueError): |
| cls.from_pydict(data, schema=schema, metadata=metadata) |
| |
| # Non-convertible values given schema |
| with pytest.raises(TypeError): |
| cls.from_pydict({'c0': [0, 1, 2]}, |
| schema=pa.schema([("c0", pa.string())])) |
| |
| # Missing schema fields from the passed mapping |
| with pytest.raises(KeyError, match="doesn\'t contain.* c, d"): |
| cls.from_pydict( |
| {'a': [1, 2, 3], 'b': [3, 4, 5]}, |
| schema=pa.schema([ |
| ('a', pa.int64()), |
| ('c', pa.int32()), |
| ('d', pa.int16()) |
| ]) |
| ) |
| |
| # Passed wrong schema type |
| with pytest.raises(TypeError): |
| cls.from_pydict({'a': [1, 2, 3]}, schema={}) |
| |
| |
| @pytest.mark.parametrize('data, klass', [ |
| ((['', 'foo', 'bar'], [4.5, 5, None]), pa.array), |
| (([[''], ['foo', 'bar']], [[4.5], [5., None]]), pa.chunked_array), |
| ]) |
| def test_table_from_pydict_arrow_arrays(data, klass): |
| data = OrderedDict([('strs', klass(data[0])), ('floats', klass(data[1]))]) |
| schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float64())]) |
| |
| # With arrays as values |
| table = pa.Table.from_pydict(data) |
| assert table.num_columns == 2 |
| assert table.num_rows == 3 |
| assert table.schema == schema |
| |
| # With explicit (matching) schema |
| table = pa.Table.from_pydict(data, schema=schema) |
| assert table.num_columns == 2 |
| assert table.num_rows == 3 |
| assert table.schema == schema |
| |
| # with different but compatible schema |
| schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float32())]) |
| table = pa.Table.from_pydict(data, schema=schema) |
| assert pa.types.is_float32(table.column('floats').type) |
| assert table.num_columns == 2 |
| assert table.num_rows == 3 |
| assert table.schema == schema |
| |
| # with different and incompatible schema |
| schema = pa.schema([('strs', pa.utf8()), ('floats', pa.timestamp('s'))]) |
| with pytest.raises((NotImplementedError, TypeError)): |
| pa.Table.from_pydict(data, schema=schema) |
| |
| |
| @pytest.mark.parametrize('data, klass', [ |
| ((['', 'foo', 'bar'], [4.5, 5, None]), list), |
| ((['', 'foo', 'bar'], [4.5, 5, None]), pa.array), |
| (([[''], ['foo', 'bar']], [[4.5], [5., None]]), pa.chunked_array), |
| ]) |
| def test_table_from_pydict_schema(data, klass): |
| # passed schema is source of truth for the columns |
| |
| data = OrderedDict([('strs', klass(data[0])), ('floats', klass(data[1]))]) |
| |
| # schema has columns not present in data -> error |
| schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float64()), |
| ('ints', pa.int64())]) |
| with pytest.raises(KeyError, match='ints'): |
| pa.Table.from_pydict(data, schema=schema) |
| |
| # data has columns not present in schema -> ignored |
| schema = pa.schema([('strs', pa.utf8())]) |
| table = pa.Table.from_pydict(data, schema=schema) |
| assert table.num_columns == 1 |
| assert table.schema == schema |
| assert table.column_names == ['strs'] |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_from_pylist(cls): |
| table = cls.from_pylist([]) |
| assert table.num_columns == 0 |
| assert table.num_rows == 0 |
| assert table.schema == pa.schema([]) |
| assert table.to_pylist() == [] |
| |
| schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float64())]) |
| |
| # With lists as values |
| data = [{'strs': '', 'floats': 4.5}, |
| {'strs': 'foo', 'floats': 5}, |
| {'strs': 'bar', 'floats': None}] |
| table = cls.from_pylist(data) |
| assert table.num_columns == 2 |
| assert table.num_rows == 3 |
| assert table.schema == schema |
| assert table.to_pylist() == data |
| |
| # With metadata and inferred schema |
| metadata = {b'foo': b'bar'} |
| schema = schema.with_metadata(metadata) |
| table = cls.from_pylist(data, metadata=metadata) |
| assert table.schema == schema |
| assert table.schema.metadata == metadata |
| assert table.to_pylist() == data |
| |
| # With explicit schema |
| table = cls.from_pylist(data, schema=schema) |
| assert table.schema == schema |
| assert table.schema.metadata == metadata |
| assert table.to_pylist() == data |
| |
| # Cannot pass both schema and metadata |
| with pytest.raises(ValueError): |
| cls.from_pylist(data, schema=schema, metadata=metadata) |
| |
| # Non-convertible values given schema |
| with pytest.raises(TypeError): |
| cls.from_pylist([{'c0': 0}, {'c0': 1}, {'c0': 2}], |
| schema=pa.schema([("c0", pa.string())])) |
| |
| # Missing schema fields in the passed mapping translate to None |
| schema = pa.schema([('a', pa.int64()), |
| ('c', pa.int32()), |
| ('d', pa.int16()) |
| ]) |
| table = cls.from_pylist( |
| [{'a': 1, 'b': 3}, {'a': 2, 'b': 4}, {'a': 3, 'b': 5}], |
| schema=schema |
| ) |
| data = [{'a': 1, 'c': None, 'd': None}, |
| {'a': 2, 'c': None, 'd': None}, |
| {'a': 3, 'c': None, 'd': None}] |
| assert table.schema == schema |
| assert table.to_pylist() == data |
| |
| # Passed wrong schema type |
| with pytest.raises(TypeError): |
| cls.from_pylist([{'a': 1}, {'a': 2}, {'a': 3}], schema={}) |
| |
| # If the dictionaries of rows are not same length |
| data = [{'strs': '', 'floats': 4.5}, |
| {'floats': 5}, |
| {'strs': 'bar'}] |
| data2 = [{'strs': '', 'floats': 4.5}, |
| {'strs': None, 'floats': 5}, |
| {'strs': 'bar', 'floats': None}] |
| table = cls.from_pylist(data) |
| assert table.num_columns == 2 |
| assert table.num_rows == 3 |
| assert table.to_pylist() == data2 |
| |
| data = [{'strs': ''}, |
| {'strs': 'foo', 'floats': 5}, |
| {'floats': None}] |
| data2 = [{'strs': ''}, |
| {'strs': 'foo'}, |
| {'strs': None}] |
| table = cls.from_pylist(data) |
| assert table.num_columns == 1 |
| assert table.num_rows == 3 |
| assert table.to_pylist() == data2 |
| |
| |
| @pytest.mark.pandas |
| def test_table_from_pandas_schema(): |
| # passed schema is source of truth for the columns |
| import pandas as pd |
| |
| df = pd.DataFrame(OrderedDict([('strs', ['', 'foo', 'bar']), |
| ('floats', [4.5, 5, None])])) |
| |
| # with different but compatible schema |
| schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float32())]) |
| table = pa.Table.from_pandas(df, schema=schema) |
| assert pa.types.is_float32(table.column('floats').type) |
| assert table.schema.remove_metadata() == schema |
| |
| # with different and incompatible schema |
| schema = pa.schema([('strs', pa.utf8()), ('floats', pa.timestamp('s'))]) |
| with pytest.raises((NotImplementedError, TypeError)): |
| pa.Table.from_pandas(df, schema=schema) |
| |
| # schema has columns not present in data -> error |
| schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float64()), |
| ('ints', pa.int64())]) |
| with pytest.raises(KeyError, match='ints'): |
| pa.Table.from_pandas(df, schema=schema) |
| |
| # data has columns not present in schema -> ignored |
| schema = pa.schema([('strs', pa.utf8())]) |
| table = pa.Table.from_pandas(df, schema=schema) |
| assert table.num_columns == 1 |
| assert table.schema.remove_metadata() == schema |
| assert table.column_names == ['strs'] |
| |
| |
| @pytest.mark.pandas |
| def test_table_factory_function(): |
| import pandas as pd |
| |
| # Put in wrong order to make sure that lines up with schema |
| d = OrderedDict([('b', ['a', 'b', 'c']), ('a', [1, 2, 3])]) |
| |
| d_explicit = {'b': pa.array(['a', 'b', 'c'], type='string'), |
| 'a': pa.array([1, 2, 3], type='int32')} |
| |
| schema = pa.schema([('a', pa.int32()), ('b', pa.string())]) |
| |
| df = pd.DataFrame(d) |
| table1 = pa.table(df) |
| table2 = pa.Table.from_pandas(df) |
| assert table1.equals(table2) |
| table1 = pa.table(df, schema=schema) |
| table2 = pa.Table.from_pandas(df, schema=schema) |
| assert table1.equals(table2) |
| |
| table1 = pa.table(d_explicit) |
| table2 = pa.Table.from_pydict(d_explicit) |
| assert table1.equals(table2) |
| |
| # schema coerces type |
| table1 = pa.table(d, schema=schema) |
| table2 = pa.Table.from_pydict(d, schema=schema) |
| assert table1.equals(table2) |
| |
| |
| def test_table_factory_function_args(): |
| # from_pydict not accepting names: |
| with pytest.raises(ValueError): |
| pa.table({'a': [1, 2, 3]}, names=['a']) |
| |
| # backwards compatibility for schema as first positional argument |
| schema = pa.schema([('a', pa.int32())]) |
| table = pa.table({'a': pa.array([1, 2, 3], type=pa.int64())}, schema) |
| assert table.column('a').type == pa.int32() |
| |
| # from_arrays: accept both names and schema as positional first argument |
| data = [pa.array([1, 2, 3], type='int64')] |
| names = ['a'] |
| table = pa.table(data, names) |
| assert table.column_names == names |
| schema = pa.schema([('a', pa.int64())]) |
| table = pa.table(data, schema) |
| assert table.column_names == names |
| |
| |
| @pytest.mark.pandas |
| def test_table_factory_function_args_pandas(): |
| import pandas as pd |
| |
| # from_pandas not accepting names or metadata: |
| with pytest.raises(ValueError): |
| pa.table(pd.DataFrame({'a': [1, 2, 3]}), names=['a']) |
| |
| with pytest.raises(ValueError): |
| pa.table(pd.DataFrame({'a': [1, 2, 3]}), metadata={b'foo': b'bar'}) |
| |
| # backwards compatibility for schema as first positional argument |
| schema = pa.schema([('a', pa.int32())]) |
| table = pa.table(pd.DataFrame({'a': [1, 2, 3]}), schema) |
| assert table.column('a').type == pa.int32() |
| |
| |
| def test_factory_functions_invalid_input(): |
| with pytest.raises(TypeError, match="Expected pandas DataFrame, python"): |
| pa.table("invalid input") |
| |
| with pytest.raises(TypeError, match="Expected pandas DataFrame"): |
| pa.record_batch("invalid input") |
| |
| |
| def test_table_repr_to_string(): |
| # Schema passed explicitly |
| schema = pa.schema([pa.field('c0', pa.int16(), |
| metadata={'key': 'value'}), |
| pa.field('c1', pa.int32())], |
| metadata={b'foo': b'bar'}) |
| |
| tab = pa.table([pa.array([1, 2, 3, 4], type='int16'), |
| pa.array([10, 20, 30, 40], type='int32')], schema=schema) |
| assert str(tab) == """pyarrow.Table |
| c0: int16 |
| c1: int32 |
| ---- |
| c0: [[1,2,3,4]] |
| c1: [[10,20,30,40]]""" |
| |
| assert tab.to_string(show_metadata=True) == """\ |
| pyarrow.Table |
| c0: int16 |
| -- field metadata -- |
| key: 'value' |
| c1: int32 |
| -- schema metadata -- |
| foo: 'bar'""" |
| |
| assert tab.to_string(preview_cols=5) == """\ |
| pyarrow.Table |
| c0: int16 |
| c1: int32 |
| ---- |
| c0: [[1,2,3,4]] |
| c1: [[10,20,30,40]]""" |
| |
| assert tab.to_string(preview_cols=1) == """\ |
| pyarrow.Table |
| c0: int16 |
| c1: int32 |
| ---- |
| c0: [[1,2,3,4]] |
| ...""" |
| |
| |
| def test_table_repr_to_string_ellipsis(): |
| # Schema passed explicitly |
| schema = pa.schema([pa.field('c0', pa.int16(), |
| metadata={'key': 'value'}), |
| pa.field('c1', pa.int32())], |
| metadata={b'foo': b'bar'}) |
| |
| tab = pa.table([pa.array([1, 2, 3, 4]*10, type='int16'), |
| pa.array([10, 20, 30, 40]*10, type='int32')], |
| schema=schema) |
| assert str(tab) == """pyarrow.Table |
| c0: int16 |
| c1: int32 |
| ---- |
| c0: [[1,2,3,4,1,...,4,1,2,3,4]] |
| c1: [[10,20,30,40,10,...,40,10,20,30,40]]""" |
| |
| |
| def test_record_batch_repr_to_string(): |
| # Schema passed explicitly |
| schema = pa.schema([pa.field('c0', pa.int16(), |
| metadata={'key': 'value'}), |
| pa.field('c1', pa.int32())], |
| metadata={b'foo': b'bar'}) |
| |
| batch = pa.record_batch([pa.array([1, 2, 3, 4], type='int16'), |
| pa.array([10, 20, 30, 40], type='int32')], |
| schema=schema) |
| assert str(batch) == """pyarrow.RecordBatch |
| c0: int16 |
| c1: int32 |
| ---- |
| c0: [1,2,3,4] |
| c1: [10,20,30,40]""" |
| |
| assert batch.to_string(show_metadata=True) == """\ |
| pyarrow.RecordBatch |
| c0: int16 |
| -- field metadata -- |
| key: 'value' |
| c1: int32 |
| -- schema metadata -- |
| foo: 'bar'""" |
| |
| assert batch.to_string(preview_cols=5) == """\ |
| pyarrow.RecordBatch |
| c0: int16 |
| c1: int32 |
| ---- |
| c0: [1,2,3,4] |
| c1: [10,20,30,40]""" |
| |
| assert batch.to_string(preview_cols=1) == """\ |
| pyarrow.RecordBatch |
| c0: int16 |
| c1: int32 |
| ---- |
| c0: [1,2,3,4] |
| ...""" |
| |
| |
| def test_record_batch_repr_to_string_ellipsis(): |
| # Schema passed explicitly |
| schema = pa.schema([pa.field('c0', pa.int16(), |
| metadata={'key': 'value'}), |
| pa.field('c1', pa.int32())], |
| metadata={b'foo': b'bar'}) |
| |
| batch = pa.record_batch([pa.array([1, 2, 3, 4]*10, type='int16'), |
| pa.array([10, 20, 30, 40]*10, type='int32')], |
| schema=schema) |
| assert str(batch) == """pyarrow.RecordBatch |
| c0: int16 |
| c1: int32 |
| ---- |
| c0: [1,2,3,4,1,2,3,4,1,2,...,3,4,1,2,3,4,1,2,3,4] |
| c1: [10,20,30,40,10,20,30,40,10,20,...,30,40,10,20,30,40,10,20,30,40]""" |
| |
| |
| def test_table_function_unicode_schema(): |
| col_a = "äääh" |
| col_b = "öööf" |
| |
| # Put in wrong order to make sure that lines up with schema |
| d = OrderedDict([(col_b, ['a', 'b', 'c']), (col_a, [1, 2, 3])]) |
| |
| schema = pa.schema([(col_a, pa.int32()), (col_b, pa.string())]) |
| |
| result = pa.table(d, schema=schema) |
| assert result[0].chunk(0).equals(pa.array([1, 2, 3], type='int32')) |
| assert result[1].chunk(0).equals(pa.array(['a', 'b', 'c'], type='string')) |
| |
| |
| def test_table_take_vanilla_functionality(): |
| table = pa.table( |
| [pa.array([1, 2, 3, None, 5]), |
| pa.array(['a', 'b', 'c', 'd', 'e'])], |
| ['f1', 'f2']) |
| |
| assert table.take(pa.array([2, 3])).equals(table.slice(2, 2)) |
| |
| |
| def test_table_take_null_index(): |
| table = pa.table( |
| [pa.array([1, 2, 3, None, 5]), |
| pa.array(['a', 'b', 'c', 'd', 'e'])], |
| ['f1', 'f2']) |
| |
| result_with_null_index = pa.table( |
| [pa.array([1, None]), |
| pa.array(['a', None])], |
| ['f1', 'f2']) |
| |
| assert table.take(pa.array([0, None])).equals(result_with_null_index) |
| |
| |
| def test_table_take_non_consecutive(): |
| table = pa.table( |
| [pa.array([1, 2, 3, None, 5]), |
| pa.array(['a', 'b', 'c', 'd', 'e'])], |
| ['f1', 'f2']) |
| |
| result_non_consecutive = pa.table( |
| [pa.array([2, None]), |
| pa.array(['b', 'd'])], |
| ['f1', 'f2']) |
| |
| assert table.take(pa.array([1, 3])).equals(result_non_consecutive) |
| |
| |
| def test_table_select(): |
| a1 = pa.array([1, 2, 3, None, 5]) |
| a2 = pa.array(['a', 'b', 'c', 'd', 'e']) |
| a3 = pa.array([[1, 2], [3, 4], [5, 6], None, [9, 10]]) |
| table = pa.table([a1, a2, a3], ['f1', 'f2', 'f3']) |
| |
| # selecting with string names |
| result = table.select(['f1']) |
| expected = pa.table([a1], ['f1']) |
| assert result.equals(expected) |
| |
| result = table.select(['f3', 'f2']) |
| expected = pa.table([a3, a2], ['f3', 'f2']) |
| assert result.equals(expected) |
| |
| # selecting with integer indices |
| result = table.select([0]) |
| expected = pa.table([a1], ['f1']) |
| assert result.equals(expected) |
| |
| result = table.select([2, 1]) |
| expected = pa.table([a3, a2], ['f3', 'f2']) |
| assert result.equals(expected) |
| |
| # preserve metadata |
| table2 = table.replace_schema_metadata({"a": "test"}) |
| result = table2.select(["f1", "f2"]) |
| assert b"a" in result.schema.metadata |
| |
| # selecting non-existing column raises |
| with pytest.raises(KeyError, match='Field "f5" does not exist'): |
| table.select(['f5']) |
| |
| with pytest.raises(IndexError, match="index out of bounds"): |
| table.select([5]) |
| |
| # duplicate selection gives duplicated names in resulting table |
| result = table.select(['f2', 'f2']) |
| expected = pa.table([a2, a2], ['f2', 'f2']) |
| assert result.equals(expected) |
| |
| # selection duplicated column raises |
| table = pa.table([a1, a2, a3], ['f1', 'f2', 'f1']) |
| with pytest.raises(KeyError, match='Field "f1" exists 2 times'): |
| table.select(['f1']) |
| |
| result = table.select(['f2']) |
| expected = pa.table([a2], ['f2']) |
| assert result.equals(expected) |
| |
| |
| @pytest.mark.acero |
| def test_table_group_by(): |
| def sorted_by_keys(d): |
| # Ensure a guaranteed order of keys for aggregation results. |
| if "keys2" in d: |
| keys = tuple(zip(d["keys"], d["keys2"])) |
| else: |
| keys = d["keys"] |
| sorted_keys = sorted(keys) |
| sorted_d = {"keys": sorted(d["keys"])} |
| for entry in d: |
| if entry == "keys": |
| continue |
| values = dict(zip(keys, d[entry])) |
| for k in sorted_keys: |
| sorted_d.setdefault(entry, []).append(values[k]) |
| return sorted_d |
| |
| table = pa.table([ |
| pa.array(["a", "a", "b", "b", "c"]), |
| pa.array(["X", "X", "Y", "Z", "Z"]), |
| pa.array([1, 2, 3, 4, 5]), |
| pa.array([10, 20, 30, 40, 50]) |
| ], names=["keys", "keys2", "values", "bigvalues"]) |
| |
| r = table.group_by("keys").aggregate([ |
| ("values", "hash_sum") |
| ]) |
| assert sorted_by_keys(r.to_pydict()) == { |
| "keys": ["a", "b", "c"], |
| "values_sum": [3, 7, 5] |
| } |
| |
| r = table.group_by("keys").aggregate([ |
| ("values", "hash_sum"), |
| ("values", "hash_count") |
| ]) |
| assert sorted_by_keys(r.to_pydict()) == { |
| "keys": ["a", "b", "c"], |
| "values_sum": [3, 7, 5], |
| "values_count": [2, 2, 1] |
| } |
| |
| # Test without hash_ prefix |
| r = table.group_by("keys").aggregate([ |
| ("values", "sum") |
| ]) |
| assert sorted_by_keys(r.to_pydict()) == { |
| "keys": ["a", "b", "c"], |
| "values_sum": [3, 7, 5] |
| } |
| |
| r = table.group_by("keys").aggregate([ |
| ("values", "max"), |
| ("bigvalues", "sum") |
| ]) |
| assert sorted_by_keys(r.to_pydict()) == { |
| "keys": ["a", "b", "c"], |
| "values_max": [2, 4, 5], |
| "bigvalues_sum": [30, 70, 50] |
| } |
| |
| r = table.group_by("keys").aggregate([ |
| ("bigvalues", "max"), |
| ("values", "sum") |
| ]) |
| assert sorted_by_keys(r.to_pydict()) == { |
| "keys": ["a", "b", "c"], |
| "values_sum": [3, 7, 5], |
| "bigvalues_max": [20, 40, 50] |
| } |
| |
| r = table.group_by(["keys", "keys2"]).aggregate([ |
| ("values", "sum") |
| ]) |
| assert sorted_by_keys(r.to_pydict()) == { |
| "keys": ["a", "b", "b", "c"], |
| "keys2": ["X", "Y", "Z", "Z"], |
| "values_sum": [3, 3, 4, 5] |
| } |
| |
| # Test many arguments |
| r = table.group_by("keys").aggregate([ |
| ("values", "max"), |
| ("bigvalues", "sum"), |
| ("bigvalues", "max"), |
| ([], "count_all"), |
| ("values", "sum") |
| ]) |
| assert sorted_by_keys(r.to_pydict()) == { |
| "keys": ["a", "b", "c"], |
| "values_max": [2, 4, 5], |
| "bigvalues_sum": [30, 70, 50], |
| "bigvalues_max": [20, 40, 50], |
| "count_all": [2, 2, 1], |
| "values_sum": [3, 7, 5] |
| } |
| |
| table_with_nulls = pa.table([ |
| pa.array(["a", "a", "a"]), |
| pa.array([1, None, None]) |
| ], names=["keys", "values"]) |
| |
| r = table_with_nulls.group_by(["keys"]).aggregate([ |
| ("values", "count", pc.CountOptions(mode="all")) |
| ]) |
| assert r.to_pydict() == { |
| "keys": ["a"], |
| "values_count": [3] |
| } |
| |
| r = table_with_nulls.group_by(["keys"]).aggregate([ |
| ("values", "count", pc.CountOptions(mode="only_null")) |
| ]) |
| assert r.to_pydict() == { |
| "keys": ["a"], |
| "values_count": [2] |
| } |
| |
| r = table_with_nulls.group_by(["keys"]).aggregate([ |
| ("values", "count", pc.CountOptions(mode="only_valid")) |
| ]) |
| assert r.to_pydict() == { |
| "keys": ["a"], |
| "values_count": [1] |
| } |
| |
| r = table_with_nulls.group_by(["keys"]).aggregate([ |
| ([], "count_all"), # nullary count that takes no parameters |
| ("values", "count", pc.CountOptions(mode="only_valid")) |
| ]) |
| assert r.to_pydict() == { |
| "keys": ["a"], |
| "count_all": [3], |
| "values_count": [1] |
| } |
| |
| r = table_with_nulls.group_by(["keys"]).aggregate([ |
| ([], "count_all") |
| ]) |
| assert r.to_pydict() == { |
| "keys": ["a"], |
| "count_all": [3] |
| } |
| |
| table = pa.table({ |
| 'keys': ['a', 'b', 'a', 'b', 'a', 'b'], |
| 'values': range(6)}) |
| table_with_chunks = pa.Table.from_batches( |
| table.to_batches(max_chunksize=3)) |
| r = table_with_chunks.group_by('keys').aggregate([('values', 'sum')]) |
| assert sorted_by_keys(r.to_pydict()) == { |
| "keys": ["a", "b"], |
| "values_sum": [6, 9] |
| } |
| |
| |
| @pytest.mark.acero |
| def test_table_group_by_first(): |
| # "first" is an ordered aggregation -> requires to specify use_threads=False |
| table1 = pa.table({'a': [1, 2, 3, 4], 'b': ['a', 'b'] * 2}) |
| table2 = pa.table({'a': [1, 2, 3, 4], 'b': ['b', 'a'] * 2}) |
| table = pa.concat_tables([table1, table2]) |
| |
| with pytest.raises(NotImplementedError): |
| table.group_by("b").aggregate([("a", "first")]) |
| |
| result = table.group_by("b", use_threads=False).aggregate([("a", "first")]) |
| expected = pa.table({"b": ["a", "b"], "a_first": [1, 2]}) |
| assert result.equals(expected) |
| |
| |
| @pytest.mark.acero |
| def test_table_group_by_pivot_wider(): |
| table = pa.table({'group': [1, 2, 3, 1, 2, 3], |
| 'key': ['h', 'h', 'h', 'w', 'w', 'w'], |
| 'value': [10, 20, 30, 40, 50, 60]}) |
| |
| with pytest.raises(ValueError, match='accepts 3 arguments but 2 passed'): |
| table.group_by("group").aggregate([("key", "pivot_wider")]) |
| |
| # GH-45739: calling hash_pivot_wider without options shouldn't crash |
| # (even though it's not very useful as key_names=[]) |
| result = table.group_by("group").aggregate([(("key", "value"), "pivot_wider")]) |
| expected = pa.table({'group': [1, 2, 3], |
| 'key_value_pivot_wider': [{}, {}, {}]}) |
| assert result.equals(expected) |
| |
| options = pc.PivotWiderOptions(key_names=('h', 'w')) |
| result = table.group_by("group").aggregate( |
| [(("key", "value"), "pivot_wider", options)]) |
| expected = pa.table( |
| {'group': [1, 2, 3], |
| 'key_value_pivot_wider': [ |
| {'h': 10, 'w': 40}, {'h': 20, 'w': 50}, {'h': 30, 'w': 60}]}) |
| assert result.equals(expected) |
| |
| |
| def test_table_to_recordbatchreader(): |
| table = pa.Table.from_pydict({'x': [1, 2, 3]}) |
| reader = table.to_reader() |
| assert table.schema == reader.schema |
| assert table == reader.read_all() |
| |
| reader = table.to_reader(max_chunksize=2) |
| assert reader.read_next_batch().num_rows == 2 |
| assert reader.read_next_batch().num_rows == 1 |
| |
| |
| @pytest.mark.acero |
| def test_table_join(): |
| t1 = pa.table({ |
| "colA": [1, 2, 6], |
| "col2": ["a", "b", "f"] |
| }) |
| |
| t2 = pa.table({ |
| "colB": [99, 2, 1], |
| "col3": ["Z", "B", "A"] |
| }) |
| |
| result = t1.join(t2, "colA", "colB") |
| assert result.combine_chunks() == pa.table({ |
| "colA": [1, 2, 6], |
| "col2": ["a", "b", "f"], |
| "col3": ["A", "B", None] |
| }) |
| |
| result = t1.join(t2, "colA", "colB", join_type="full outer") |
| assert result.combine_chunks().sort_by("colA") == pa.table({ |
| "colA": [1, 2, 6, 99], |
| "col2": ["a", "b", "f", None], |
| "col3": ["A", "B", None, "Z"] |
| }) |
| |
| |
| @pytest.mark.acero |
| def test_table_join_unique_key(): |
| t1 = pa.table({ |
| "colA": [1, 2, 6], |
| "col2": ["a", "b", "f"] |
| }) |
| |
| t2 = pa.table({ |
| "colA": [99, 2, 1], |
| "col3": ["Z", "B", "A"] |
| }) |
| |
| result = t1.join(t2, "colA") |
| assert result.combine_chunks() == pa.table({ |
| "colA": [1, 2, 6], |
| "col2": ["a", "b", "f"], |
| "col3": ["A", "B", None] |
| }) |
| |
| result = t1.join(t2, "colA", join_type="full outer", right_suffix="_r") |
| assert result.combine_chunks().sort_by("colA") == pa.table({ |
| "colA": [1, 2, 6, 99], |
| "col2": ["a", "b", "f", None], |
| "col3": ["A", "B", None, "Z"] |
| }) |
| |
| |
| @pytest.mark.acero |
| def test_table_join_collisions(): |
| t1 = pa.table({ |
| "colA": [1, 2, 6], |
| "colB": [10, 20, 60], |
| "colVals": ["a", "b", "f"] |
| }) |
| |
| t2 = pa.table({ |
| "colA": [99, 2, 1], |
| "colB": [99, 20, 10], |
| "colVals": ["Z", "B", "A"] |
| }) |
| |
| result = t1.join(t2, "colA", join_type="full outer") |
| assert result.combine_chunks().sort_by("colA") == pa.table([ |
| [1, 2, 6, 99], |
| [10, 20, 60, None], |
| ["a", "b", "f", None], |
| [10, 20, None, 99], |
| ["A", "B", None, "Z"], |
| ], names=["colA", "colB", "colVals", "colB", "colVals"]) |
| |
| |
| @pytest.mark.acero |
| @pytest.mark.parametrize('cls', [(pa.Table), (pa.RecordBatch)]) |
| def test_table_filter_expression(cls): |
| t1 = cls.from_pydict({ |
| "colA": [1, 2, 3, 6], |
| "colB": [10, 20, None, 60], |
| "colVals": ["a", "b", "c", "f"] |
| }) |
| |
| result = t1.filter(pc.field("colB") < 50) |
| assert result == cls.from_pydict({ |
| "colA": [1, 2], |
| "colB": [10, 20], |
| "colVals": ["a", "b"] |
| }) |
| |
| |
| @pytest.mark.acero |
| def test_table_filter_expression_chunks(): |
| t1 = pa.table({ |
| "colA": [1, 2, 6], |
| "colB": [10, 20, 60], |
| "colVals": ["a", "b", "f"] |
| }) |
| t2 = pa.table({ |
| "colA": [99, 2, 1], |
| "colB": [99, 20, 10], |
| "colVals": ["Z", "B", "A"] |
| }) |
| |
| t3 = pa.concat_tables([t1, t2]) |
| |
| result = t3.filter(pc.field("colA") < 10) |
| assert result.combine_chunks() == pa.table({ |
| "colA": [1, 2, 6, 2, 1], |
| "colB": [10, 20, 60, 20, 10], |
| "colVals": ["a", "b", "f", "B", "A"] |
| }) |
| |
| |
| @pytest.mark.acero |
| def test_table_join_many_columns(): |
| t1 = pa.table({ |
| "colA": [1, 2, 6], |
| "col2": ["a", "b", "f"] |
| }) |
| |
| t2 = pa.table({ |
| "colB": [99, 2, 1], |
| "col3": ["Z", "B", "A"], |
| "col4": ["Z", "B", "A"], |
| "col5": ["Z", "B", "A"], |
| "col6": ["Z", "B", "A"], |
| "col7": ["Z", "B", "A"] |
| }) |
| |
| result = t1.join(t2, "colA", "colB") |
| assert result.combine_chunks() == pa.table({ |
| "colA": [1, 2, 6], |
| "col2": ["a", "b", "f"], |
| "col3": ["A", "B", None], |
| "col4": ["A", "B", None], |
| "col5": ["A", "B", None], |
| "col6": ["A", "B", None], |
| "col7": ["A", "B", None] |
| }) |
| |
| result = t1.join(t2, "colA", "colB", join_type="full outer") |
| assert result.combine_chunks().sort_by("colA") == pa.table({ |
| "colA": [1, 2, 6, 99], |
| "col2": ["a", "b", "f", None], |
| "col3": ["A", "B", None, "Z"], |
| "col4": ["A", "B", None, "Z"], |
| "col5": ["A", "B", None, "Z"], |
| "col6": ["A", "B", None, "Z"], |
| "col7": ["A", "B", None, "Z"], |
| }) |
| |
| |
| @pytest.mark.dataset |
| def test_table_join_asof(): |
| t1 = pa.Table.from_pydict({ |
| "colA": [1, 1, 5, 6, 7], |
| "col2": ["a", "b", "a", "b", "f"] |
| }) |
| |
| t2 = pa.Table.from_pydict({ |
| "colB": [2, 9, 15], |
| "col3": ["a", "b", "g"], |
| "colC": [1., 3., 5.] |
| }) |
| |
| r = t1.join_asof( |
| t2, on="colA", by="col2", tolerance=1, |
| right_on="colB", right_by="col3", |
| ) |
| assert r.combine_chunks() == pa.table({ |
| "colA": [1, 1, 5, 6, 7], |
| "col2": ["a", "b", "a", "b", "f"], |
| "colC": [1., None, None, None, None], |
| }) |
| |
| |
| @pytest.mark.dataset |
| def test_table_join_asof_multiple_by(): |
| t1 = pa.table({ |
| "colA": [1, 2, 6], |
| "colB": [10, 20, 60], |
| "on": [1, 2, 3], |
| }) |
| |
| t2 = pa.table({ |
| "colB": [99, 20, 10], |
| "colVals": ["Z", "B", "A"], |
| "colA": [99, 2, 1], |
| "on": [2, 3, 4], |
| }) |
| |
| result = t1.join_asof( |
| t2, on="on", by=["colA", "colB"], tolerance=1 |
| ) |
| assert result.sort_by("colA") == pa.table({ |
| "colA": [1, 2, 6], |
| "colB": [10, 20, 60], |
| "on": [1, 2, 3], |
| "colVals": [None, "B", None], |
| }) |
| |
| |
| @pytest.mark.dataset |
| def test_table_join_asof_empty_by(): |
| t1 = pa.table({ |
| "on": [1, 2, 3], |
| }) |
| |
| t2 = pa.table({ |
| "colVals": ["Z", "B", "A"], |
| "on": [2, 3, 4], |
| }) |
| |
| result = t1.join_asof( |
| t2, on="on", by=[], tolerance=1 |
| ) |
| assert result == pa.table({ |
| "on": [1, 2, 3], |
| "colVals": ["Z", "Z", "B"], |
| }) |
| |
| |
| @pytest.mark.dataset |
| def test_table_join_asof_collisions(): |
| t1 = pa.table({ |
| "colA": [1, 2, 6], |
| "colB": [10, 20, 60], |
| "on": [1, 2, 3], |
| "colVals": ["a", "b", "f"] |
| }) |
| |
| t2 = pa.table({ |
| "colB": [99, 20, 10], |
| "colVals": ["Z", "B", "A"], |
| "colUniq": [100, 200, 300], |
| "colA": [99, 2, 1], |
| "on": [2, 3, 4], |
| }) |
| |
| msg = ( |
| "Columns {'colVals'} present in both tables. " |
| "AsofJoin does not support column collisions." |
| ) |
| with pytest.raises(ValueError, match=msg): |
| t1.join_asof( |
| t2, on="on", by=["colA", "colB"], tolerance=1, |
| right_on="on", right_by=["colA", "colB"], |
| ) |
| |
| |
| @pytest.mark.dataset |
| def test_table_join_asof_by_length_mismatch(): |
| t1 = pa.table({ |
| "colA": [1, 2, 6], |
| "colB": [10, 20, 60], |
| "on": [1, 2, 3], |
| }) |
| |
| t2 = pa.table({ |
| "colVals": ["Z", "B", "A"], |
| "colUniq": [100, 200, 300], |
| "colA": [99, 2, 1], |
| "on": [2, 3, 4], |
| }) |
| |
| msg = "inconsistent size of by-key across inputs" |
| with pytest.raises(pa.lib.ArrowInvalid, match=msg): |
| t1.join_asof( |
| t2, on="on", by=["colA", "colB"], tolerance=1, |
| right_on="on", right_by=["colA"], |
| ) |
| |
| |
| @pytest.mark.dataset |
| def test_table_join_asof_by_type_mismatch(): |
| t1 = pa.table({ |
| "colA": [1, 2, 6], |
| "on": [1, 2, 3], |
| }) |
| |
| t2 = pa.table({ |
| "colVals": ["Z", "B", "A"], |
| "colUniq": [100, 200, 300], |
| "colA": [99., 2., 1.], |
| "on": [2, 3, 4], |
| }) |
| |
| msg = "Expected by-key type int64 but got double for field colA in input 1" |
| with pytest.raises(pa.lib.ArrowInvalid, match=msg): |
| t1.join_asof( |
| t2, on="on", by=["colA"], tolerance=1, |
| right_on="on", right_by=["colA"], |
| ) |
| |
| |
| @pytest.mark.dataset |
| def test_table_join_asof_on_type_mismatch(): |
| t1 = pa.table({ |
| "colA": [1, 2, 6], |
| "on": [1, 2, 3], |
| }) |
| |
| t2 = pa.table({ |
| "colVals": ["Z", "B", "A"], |
| "colUniq": [100, 200, 300], |
| "colA": [99, 2, 1], |
| "on": [2., 3., 4.], |
| }) |
| |
| msg = "Expected on-key type int64 but got double for field on in input 1" |
| with pytest.raises(pa.lib.ArrowInvalid, match=msg): |
| t1.join_asof( |
| t2, on="on", by=["colA"], tolerance=1, |
| right_on="on", right_by=["colA"], |
| ) |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_cast_invalid(cls): |
| # Casting a nullable field to non-nullable should be invalid! |
| table = cls.from_pydict({'a': [None, 1], 'b': [None, True]}) |
| new_schema = pa.schema([pa.field("a", "int64", nullable=True), |
| pa.field("b", "bool", nullable=False)]) |
| with pytest.raises(ValueError): |
| table.cast(new_schema) |
| |
| table = cls.from_pydict({'a': [None, 1], 'b': [False, True]}) |
| assert table.cast(new_schema).schema == new_schema |
| |
| |
| @pytest.mark.parametrize( |
| ('cls'), |
| [ |
| (pa.Table), |
| (pa.RecordBatch) |
| ] |
| ) |
| def test_table_sort_by(cls): |
| table = cls.from_arrays([ |
| pa.array([3, 1, 4, 2, 5]), |
| pa.array(["b", "a", "b", "a", "c"]), |
| ], names=["values", "keys"]) |
| |
| assert table.sort_by("values").to_pydict() == { |
| "keys": ["a", "a", "b", "b", "c"], |
| "values": [1, 2, 3, 4, 5] |
| } |
| |
| assert table.sort_by([("values", "descending")]).to_pydict() == { |
| "keys": ["c", "b", "b", "a", "a"], |
| "values": [5, 4, 3, 2, 1] |
| } |
| |
| tab = cls.from_arrays([ |
| pa.array([5, 7, 7, 35], type=pa.int64()), |
| pa.array(["foo", "car", "bar", "foobar"]) |
| ], names=["a", "b"]) |
| |
| sorted_tab = tab.sort_by([("a", "descending")]) |
| sorted_tab_dict = sorted_tab.to_pydict() |
| assert sorted_tab_dict["a"] == [35, 7, 7, 5] |
| assert sorted_tab_dict["b"] == ["foobar", "car", "bar", "foo"] |
| |
| sorted_tab = tab.sort_by([("a", "ascending")]) |
| sorted_tab_dict = sorted_tab.to_pydict() |
| assert sorted_tab_dict["a"] == [5, 7, 7, 35] |
| assert sorted_tab_dict["b"] == ["foo", "car", "bar", "foobar"] |
| |
| |
| @pytest.mark.numpy |
| @pytest.mark.parametrize("constructor", [pa.table, pa.record_batch]) |
| def test_numpy_asarray(constructor): |
| table = constructor([[1, 2, 3], [4.0, 5.0, 6.0]], names=["a", "b"]) |
| result = np.asarray(table) |
| expected = np.array([[1, 4], [2, 5], [3, 6]], dtype="float64") |
| np.testing.assert_allclose(result, expected) |
| |
| result = np.asarray(table, dtype="int32") |
| np.testing.assert_allclose(result, expected) |
| assert result.dtype == "int32" |
| |
| # no columns |
| table2 = table.select([]) |
| result = np.asarray(table2) |
| expected = np.empty((3, 0)) |
| np.testing.assert_allclose(result, expected) |
| assert result.dtype == "float64" |
| result = np.asarray(table2, dtype="int32") |
| np.testing.assert_allclose(result, expected) |
| assert result.dtype == "int32" |
| |
| # no rows |
| table3 = table.slice(0, 0) |
| result = np.asarray(table3) |
| expected = np.empty((0, 2)) |
| np.testing.assert_allclose(result, expected) |
| assert result.dtype == "float64" |
| result = np.asarray(table3, dtype="int32") |
| np.testing.assert_allclose(result, expected) |
| assert result.dtype == "int32" |
| |
| |
| @pytest.mark.numpy |
| @pytest.mark.parametrize("constructor", [pa.table, pa.record_batch]) |
| def test_numpy_array_protocol(constructor): |
| table = constructor([[1, 2, 3], [4.0, 5.0, 6.0]], names=["a", "b"]) |
| expected = np.array([[1, 4], [2, 5], [3, 6]], dtype="float64") |
| |
| if Version(np.__version__) < Version("2.0.0.dev0"): |
| # copy keyword is not strict and not passed down to __array__ |
| result = np.array(table, copy=False) |
| np.testing.assert_array_equal(result, expected) |
| else: |
| # starting with numpy 2.0, the copy=False keyword is assumed to be strict |
| with pytest.raises(ValueError, match="Unable to avoid a copy"): |
| np.array(table, copy=False) |
| |
| |
| @pytest.mark.acero |
| def test_invalid_non_join_column(): |
| NUM_ITEMS = 30 |
| t1 = pa.Table.from_pydict({ |
| 'id': range(NUM_ITEMS), |
| 'array_column': [[z for z in range(3)] for x in range(NUM_ITEMS)], |
| }) |
| t2 = pa.Table.from_pydict({ |
| 'id': range(NUM_ITEMS), |
| 'value': [x for x in range(NUM_ITEMS)] |
| }) |
| |
| # check as left table |
| with pytest.raises(pa.lib.ArrowInvalid) as excinfo: |
| t1.join(t2, 'id', join_type='inner') |
| exp_error_msg = "Data type list<item: int64> is not supported " \ |
| + "in join non-key field array_column" |
| assert exp_error_msg in str(excinfo.value) |
| |
| # check as right table |
| with pytest.raises(pa.lib.ArrowInvalid) as excinfo: |
| t2.join(t1, 'id', join_type='inner') |
| assert exp_error_msg in str(excinfo.value) |
| |
| |
| @pytest.fixture |
| def cuda_context(): |
| cuda = pytest.importorskip("pyarrow.cuda") |
| return cuda.Context(0) |
| |
| |
| @pytest.fixture |
| def schema(): |
| return pa.schema([pa.field('c0', pa.int32()), pa.field('c1', pa.int32())]) |
| |
| |
| @pytest.fixture |
| def cpu_arrays(schema): |
| return [pa.array([1, 2, 3, 4, 5], schema.field(0).type), |
| pa.array([-10, -5, 0, None, 10], schema.field(1).type)] |
| |
| |
| @pytest.fixture |
| def cuda_arrays(cuda_context, cpu_arrays): |
| return [arr.copy_to(cuda_context.memory_manager) for arr in cpu_arrays] |
| |
| |
| @pytest.fixture |
| def cpu_chunked_array(cpu_arrays): |
| chunked_array = pa.chunked_array(cpu_arrays) |
| assert chunked_array.is_cpu is True |
| return chunked_array |
| |
| |
| @pytest.fixture |
| def cuda_chunked_array(cuda_arrays): |
| chunked_array = pa.chunked_array(cuda_arrays) |
| assert chunked_array.is_cpu is False |
| return chunked_array |
| |
| |
| @pytest.fixture |
| def cpu_and_cuda_chunked_array(cpu_arrays, cuda_arrays): |
| chunked_array = pa.chunked_array(cpu_arrays + cuda_arrays) |
| assert chunked_array.is_cpu is False |
| return chunked_array |
| |
| |
| @pytest.fixture |
| def cpu_recordbatch(cpu_arrays, schema): |
| return pa.record_batch(cpu_arrays, schema=schema) |
| |
| |
| @pytest.fixture |
| def cuda_recordbatch(cuda_context, cpu_recordbatch): |
| return cpu_recordbatch.copy_to(cuda_context.memory_manager) |
| |
| |
| @pytest.fixture |
| def cpu_table(schema, cpu_chunked_array): |
| return pa.table([cpu_chunked_array, cpu_chunked_array], schema=schema) |
| |
| |
| @pytest.fixture |
| def cuda_table(schema, cuda_chunked_array): |
| return pa.table([cuda_chunked_array, cuda_chunked_array], schema=schema) |
| |
| |
| @pytest.fixture |
| def cpu_and_cuda_table(schema, cpu_chunked_array, cuda_chunked_array): |
| return pa.table([cpu_chunked_array, cuda_chunked_array], schema=schema) |
| |
| |
| def test_chunked_array_non_cpu(cuda_context, cpu_chunked_array, cuda_chunked_array, |
| cpu_and_cuda_chunked_array): |
| # type test |
| assert cuda_chunked_array.type == cpu_chunked_array.type |
| |
| # length() test |
| assert cuda_chunked_array.length() == cpu_chunked_array.length() |
| |
| # str() test |
| assert str(cuda_chunked_array) == str(cpu_chunked_array) |
| |
| # repr() test |
| assert str(cuda_chunked_array) in repr(cuda_chunked_array) |
| |
| # validate() test |
| cuda_chunked_array.validate() |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.validate(full=True) |
| |
| # null_count test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.null_count |
| |
| # nbytes() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.nbytes |
| |
| # get_total_buffer_size() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.get_total_buffer_size() |
| |
| # getitem() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array[0] |
| |
| # is_null() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.is_null() |
| |
| # is_nan() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.is_nan() |
| |
| # is_valid() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.is_valid() |
| |
| # fill_null() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.fill_null(0) |
| |
| # equals() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array == cuda_chunked_array |
| |
| # to_pandas() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.to_pandas() |
| |
| # to_numpy() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.to_numpy() |
| |
| # __array__() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.__array__() |
| |
| # cast() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.cast() |
| |
| # dictionary_encode() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.dictionary_encode() |
| |
| # flatten() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.flatten() |
| |
| # combine_chunks() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.combine_chunks() |
| |
| # unique() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.unique() |
| |
| # value_counts() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.value_counts() |
| |
| # filter() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.filter([True, False, True, False, True]) |
| |
| # index() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.index(5) |
| |
| # slice() test |
| cuda_chunked_array.slice(2, 2) |
| |
| # take() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.take([1]) |
| |
| # drop_null() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.drop_null() |
| |
| # sort() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.sort() |
| |
| # unify_dictionaries() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.unify_dictionaries() |
| |
| # num_chunks test |
| assert cuda_chunked_array.num_chunks == cpu_chunked_array.num_chunks |
| |
| # chunks test |
| assert len(cuda_chunked_array.chunks) == len(cpu_chunked_array.chunks) |
| |
| # chunk() test |
| chunk = cuda_chunked_array.chunk(0) |
| assert chunk.device_type == pa.DeviceAllocationType.CUDA |
| |
| # to_pylist() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.to_pylist() |
| |
| # __arrow_c_stream__() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.__arrow_c_stream__() |
| |
| # __reduce__() test |
| with pytest.raises(NotImplementedError): |
| cuda_chunked_array.__reduce__() |
| |
| |
| def verify_cuda_recordbatch(batch, expected_schema): |
| batch.validate() |
| assert batch.device_type == pa.DeviceAllocationType.CUDA |
| assert batch.is_cpu is False |
| assert batch.num_columns == len(expected_schema.names) |
| assert batch.column_names == expected_schema.names |
| assert str(batch) in repr(batch) |
| for c in batch.columns: |
| assert c.device_type == pa.DeviceAllocationType.CUDA |
| assert batch.schema == expected_schema |
| |
| |
| def test_recordbatch_non_cpu(cuda_context, cpu_recordbatch, cuda_recordbatch, |
| cuda_arrays, schema): |
| verify_cuda_recordbatch(cuda_recordbatch, expected_schema=schema) |
| N = cuda_recordbatch.num_rows |
| |
| # shape test |
| assert cuda_recordbatch.shape == (5, 2) |
| |
| # columns() test |
| assert len(cuda_recordbatch.columns) == 2 |
| |
| # add_column(), set_column() test |
| for fn in [cuda_recordbatch.add_column, cuda_recordbatch.set_column]: |
| col = pa.array([-2, -1, 0, 1, 2], pa.int8() |
| ).copy_to(cuda_context.memory_manager) |
| new_batch = fn(2, 'c2', col) |
| verify_cuda_recordbatch( |
| new_batch, expected_schema=schema.append(pa.field('c2', pa.int8()))) |
| err_msg = ("Got column on device <DeviceAllocationType.CPU: 1>, " |
| "but expected <DeviceAllocationType.CUDA: 2>.") |
| with pytest.raises(TypeError, match=err_msg): |
| fn(2, 'c2', [1] * N) |
| |
| # remove_column() test |
| new_batch = cuda_recordbatch.remove_column(1) |
| verify_cuda_recordbatch(new_batch, expected_schema=schema.remove(1)) |
| |
| # drop_columns() test |
| new_batch = cuda_recordbatch.drop_columns(['c1']) |
| verify_cuda_recordbatch(new_batch, expected_schema=schema.remove(1)) |
| empty_batch = cuda_recordbatch.drop_columns(['c0', 'c1']) |
| assert len(empty_batch.columns) == 0 |
| assert empty_batch.device_type == pa.DeviceAllocationType.CUDA |
| |
| # select() test |
| new_batch = cuda_recordbatch.select(['c0']) |
| verify_cuda_recordbatch(new_batch, expected_schema=schema.remove(1)) |
| |
| # cast() test |
| new_schema = pa.schema([pa.field('c0', pa.int64()), pa.field('c1', pa.int64())]) |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.cast(new_schema) |
| |
| # drop_null() test |
| null_col = pa.array([1] * N, mask=[True, False, True, False, True]).copy_to( |
| cuda_context.memory_manager) |
| cuda_recordbatch_with_nulls = cuda_recordbatch.add_column(2, 'c2', null_col) |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch_with_nulls.drop_null() |
| |
| # filter() test |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.filter([True] * N) |
| |
| # take() test |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.take([0]) |
| |
| # sort_by() test |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.sort_by('c0') |
| |
| # field() test |
| assert cuda_recordbatch.field(0) == schema.field(0) |
| assert cuda_recordbatch.field(1) == schema.field(1) |
| |
| # equals() test |
| new_batch = cpu_recordbatch.copy_to(cuda_context.memory_manager) |
| with pytest.raises(NotImplementedError): |
| assert cuda_recordbatch.equals(new_batch) is True |
| |
| # from_arrays() test |
| new_batch = pa.RecordBatch.from_arrays(cuda_arrays, ['c0', 'c1']) |
| verify_cuda_recordbatch(new_batch, expected_schema=schema) |
| assert new_batch.copy_to(pa.default_cpu_memory_manager()).equals(cpu_recordbatch) |
| |
| # from_pydict() test |
| new_batch = pa.RecordBatch.from_pydict({'c0': cuda_arrays[0], 'c1': cuda_arrays[1]}) |
| verify_cuda_recordbatch(new_batch, expected_schema=schema) |
| assert new_batch.copy_to(pa.default_cpu_memory_manager()).equals(cpu_recordbatch) |
| |
| # from_struct_array() test |
| fields = [schema.field(i) for i in range(len(schema.names))] |
| struct_array = pa.StructArray.from_arrays(cuda_arrays, fields=fields) |
| with pytest.raises(NotImplementedError): |
| pa.RecordBatch.from_struct_array(struct_array) |
| |
| # nbytes test |
| with pytest.raises(NotImplementedError): |
| assert cuda_recordbatch.nbytes |
| |
| # get_total_buffer_size() test |
| with pytest.raises(NotImplementedError): |
| assert cuda_recordbatch.get_total_buffer_size() |
| |
| # to_pydict() test |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.to_pydict() |
| |
| # to_pylist() test |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.to_pylist() |
| |
| # to_pandas() test |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.to_pandas() |
| |
| # to_tensor() test |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.to_tensor() |
| |
| # to_struct_array() test |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.to_struct_array() |
| |
| # serialize() test |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.serialize() |
| |
| # slice() test |
| new_batch = cuda_recordbatch.slice(1, 3) |
| verify_cuda_recordbatch(new_batch, expected_schema=schema) |
| assert new_batch.num_rows == 3 |
| cpu_batch = new_batch.copy_to(pa.default_cpu_memory_manager()) |
| assert cpu_batch == cpu_recordbatch.slice(1, 3) |
| |
| # replace_schema_metadata() test |
| new_batch = cuda_recordbatch.replace_schema_metadata({b'key': b'value'}) |
| verify_cuda_recordbatch(new_batch, expected_schema=schema) |
| assert new_batch.schema.metadata == {b'key': b'value'} |
| |
| # rename_columns() test |
| new_batch = cuda_recordbatch.rename_columns(['col0', 'col1']) |
| expected_schema = pa.schema( |
| [pa.field('col0', schema.field(0).type), |
| pa.field('col1', schema.field(1).type)]) |
| verify_cuda_recordbatch(new_batch, expected_schema=expected_schema) |
| |
| # validate() test |
| cuda_recordbatch.validate() |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.validate(full=True) |
| |
| # __array__() test |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.__array__() |
| |
| # __arrow_c_array__() test |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.__arrow_c_array__() |
| |
| # __arrow_c_stream__() test |
| with pytest.raises(NotImplementedError): |
| cuda_recordbatch.__arrow_c_stream__() |
| |
| # __dataframe__() test |
| with pytest.raises(NotImplementedError): |
| from_dataframe(cuda_recordbatch.__dataframe__()) |
| |
| |
| def verify_cuda_table(table, expected_schema): |
| table.validate() |
| assert table.is_cpu is False |
| assert table.num_columns == len(expected_schema.names) |
| assert table.column_names == expected_schema.names |
| assert str(table) in repr(table) |
| for c in table.columns: |
| assert c.is_cpu is False |
| for chunk in c.iterchunks(): |
| assert chunk.is_cpu is False |
| assert chunk.device_type == pa.DeviceAllocationType.CUDA |
| assert table.schema == expected_schema |
| |
| |
| def test_table_non_cpu(cuda_context, cpu_table, cuda_table, |
| cuda_arrays, cuda_recordbatch, schema): |
| verify_cuda_table(cuda_table, expected_schema=schema) |
| N = cuda_table.num_rows |
| |
| # shape test |
| assert cuda_table.shape == (10, 2) |
| |
| # columns() test |
| assert len(cuda_table.columns) == 2 |
| |
| # add_column(), set_column() test |
| for fn in [cuda_table.add_column, cuda_table.set_column]: |
| cpu_col = pa.array([1] * N, pa.int8()) |
| cuda_col = cpu_col.copy_to(cuda_context.memory_manager) |
| new_table = fn(2, 'c2', cuda_col) |
| verify_cuda_table(new_table, expected_schema=schema.append( |
| pa.field('c2', pa.int8()))) |
| new_table = fn(2, 'c2', cpu_col) |
| assert new_table.is_cpu is False |
| assert new_table.column(0).is_cpu is False |
| assert new_table.column(1).is_cpu is False |
| assert new_table.column(2).is_cpu is True |
| |
| # remove_column() test |
| new_table = cuda_table.remove_column(1) |
| verify_cuda_table(new_table, expected_schema=schema.remove(1)) |
| |
| # drop_columns() test |
| new_table = cuda_table.drop_columns(['c1']) |
| verify_cuda_table(new_table, expected_schema=schema.remove(1)) |
| new_table = cuda_table.drop_columns(['c0', 'c1']) |
| assert len(new_table.columns) == 0 |
| assert new_table.is_cpu |
| |
| # select() test |
| new_table = cuda_table.select(['c0']) |
| verify_cuda_table(new_table, expected_schema=schema.remove(1)) |
| |
| # cast() test |
| new_schema = pa.schema([pa.field('c0', pa.int64()), pa.field('c1', pa.int64())]) |
| with pytest.raises(NotImplementedError): |
| cuda_table.cast(new_schema) |
| |
| # drop_null() test |
| null_col = pa.array([1] * N, mask=[True] * N).copy_to(cuda_context.memory_manager) |
| cuda_table_with_nulls = cuda_table.add_column(2, 'c2', null_col) |
| with pytest.raises(NotImplementedError): |
| cuda_table_with_nulls.drop_null() |
| |
| # filter() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.filter([True] * N) |
| |
| # take() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.take([0]) |
| |
| # sort_by() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.sort_by('c0') |
| |
| # field() test |
| assert cuda_table.field(0) == schema.field(0) |
| assert cuda_table.field(1) == schema.field(1) |
| |
| # equals() test |
| with pytest.raises(NotImplementedError): |
| assert cuda_table.equals(cpu_table) |
| |
| # from_arrays() test |
| new_table = pa.Table.from_arrays(cuda_arrays, ['c0', 'c1']) |
| verify_cuda_table(new_table, expected_schema=schema) |
| |
| # from_pydict() test |
| new_table = pa.Table.from_pydict({'c0': cuda_arrays[0], 'c1': cuda_arrays[1]}) |
| verify_cuda_table(new_table, expected_schema=schema) |
| |
| # from_struct_array() test |
| fields = [schema.field(i) for i in range(len(schema.names))] |
| struct_array = pa.StructArray.from_arrays(cuda_arrays, fields=fields) |
| with pytest.raises(NotImplementedError): |
| pa.Table.from_struct_array(struct_array) |
| |
| # from_batches() test |
| new_table = pa.Table.from_batches([cuda_recordbatch, cuda_recordbatch], schema) |
| verify_cuda_table(new_table, expected_schema=schema) |
| |
| # nbytes test |
| with pytest.raises(NotImplementedError): |
| assert cuda_table.nbytes |
| |
| # get_total_buffer_size() test |
| with pytest.raises(NotImplementedError): |
| assert cuda_table.get_total_buffer_size() |
| |
| # to_pydict() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.to_pydict() |
| |
| # to_pylist() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.to_pylist() |
| |
| # to_pandas() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.to_pandas() |
| |
| # to_struct_array() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.to_struct_array() |
| |
| # to_batches() test |
| batches = cuda_table.to_batches(max_chunksize=5) |
| for batch in batches: |
| # GH-44049 |
| with pytest.raises(AssertionError): |
| verify_cuda_recordbatch(batch, expected_schema=schema) |
| |
| # to_reader() test |
| reader = cuda_table.to_reader(max_chunksize=5) |
| for batch in reader: |
| # GH-44049 |
| with pytest.raises(AssertionError): |
| verify_cuda_recordbatch(batch, expected_schema=schema) |
| |
| # slice() test |
| new_table = cuda_table.slice(1, 3) |
| verify_cuda_table(new_table, expected_schema=schema) |
| assert new_table.num_rows == 3 |
| |
| # replace_schema_metadata() test |
| new_table = cuda_table.replace_schema_metadata({b'key': b'value'}) |
| verify_cuda_table(new_table, expected_schema=schema) |
| assert new_table.schema.metadata == {b'key': b'value'} |
| |
| # rename_columns() test |
| new_table = cuda_table.rename_columns(['col0', 'col1']) |
| expected_schema = pa.schema( |
| [pa.field('col0', schema.field(0).type), |
| pa.field('col1', schema.field(1).type)]) |
| verify_cuda_table(new_table, expected_schema=expected_schema) |
| |
| # validate() test |
| cuda_table.validate() |
| with pytest.raises(NotImplementedError): |
| cuda_table.validate(full=True) |
| |
| # flatten() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.flatten() |
| |
| # combine_chunks() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.flatten() |
| |
| # unify_dictionaries() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.unify_dictionaries() |
| |
| # group_by() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.group_by('c0') |
| |
| # join() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.join(cuda_table, 'c0') |
| |
| # join_asof() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.join_asof(cuda_table, 'c0', 'c0', 0) |
| |
| # __array__() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.__array__() |
| |
| # __arrow_c_stream__() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.__arrow_c_stream__() |
| |
| # __dataframe__() test |
| with pytest.raises(NotImplementedError): |
| from_dataframe(cuda_table.__dataframe__()) |
| |
| # __reduce__() test |
| with pytest.raises(NotImplementedError): |
| cuda_table.__reduce__() |