| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| from typing import List |
| from itertools import count |
| |
| |
| class Op: |
| CNT = count(0) |
| |
| class DType: |
| ANY = 'ANY' |
| INT32 = 'INT32' |
| INT64 = 'INT64' |
| FLOAT32 = 'FLOAT32' |
| FLOAT64 = 'FLOAT64' |
| BYTE = 'BYTE' |
| INT16 = 'INT16' |
| BOOL = 'BOOL' |
| |
| def __init__(self, dType: DType, name=None, opType=None): |
| if name is None: |
| self.name = self.__class__.__name__ |
| else: |
| self.name = name |
| self.fromList: List[Op] = [] |
| self.dType = dType |
| self.opType = opType |
| |
| def get_name(self): |
| return self.name |
| |
| def get_dType(self): |
| return self.dType |
| |
| def get_fromList(self): |
| return self.fromList |
| |
| def with_ops(self, *ops): |
| assert not self.fromList |
| assert len(ops) == self.inputs_required() |
| for op in ops: |
| assert self.name != op.name |
| self.fromList.extend(ops) |
| return self |
| |
| def inputs_required(self): |
| pass |
| |
| def to_dict(self): |
| output = {} |
| output['op'] = self.name |
| output['opType'] = self.opType |
| output['dType'] = self.dType |
| output['fromList'] = list(map(lambda child: child.to_dict(),self.fromList)) |
| output["dim"] = None |
| output["labels"] = None |
| output["inFeatures"] = None |
| output["outFeatures"] = None |
| output["bias"] = None |
| |
| if hasattr(self, "dim"): |
| output["dim"] = self.dim |
| |
| if hasattr(self, "labels"): |
| output["labels"] = self.labels |
| |
| if hasattr(self, "inFeatures"): |
| output["inFeatures"] = self.inFeatures |
| |
| if hasattr(self, "outFeatures"): |
| output["outFeatures"] = self.outFeatures |
| |
| if hasattr(self, "bias"): |
| output["bias"] = self.bias |
| |
| return output |
| |
| |
| |
| class ArgMax(Op): |
| def __init__(self, dim, name=None): |
| super().__init__(Op.DType.INT32, name) |
| self.dim = dim |
| |
| def get_dim(self): |
| return self.dim |
| |
| def inputs_required(self): |
| return 1 |
| |
| |
| class Cast(Op): |
| def __init__(self, dType, name=None): |
| super().__init__(dType, name) |
| |
| def inputs_required(self): |
| return 1 |
| |
| |
| class Eq(Op): |
| def __init__(self, name=None): |
| super().__init__(Op.DType.BOOL, name) |
| |
| def inputs_required(self): |
| return 2 |
| |
| |
| class Input(Op): |
| class Type: |
| FEATURES = "..FEATURES.." |
| LABEL = "..LABEL.." |
| PREDICTED = "..PREDICTED.." |
| |
| def __init__(self, name): |
| self.name = name |
| |
| def get_name(self): |
| return self.name |
| |
| def __init__(self, opType=None, dType=Op.DType.FLOAT32, name=None): |
| if opType is not None: |
| super().__init__(dType=dType, opType=opType) |
| else: |
| super().__init__(dType=dType, name=name) |
| |
| def inputs_required(self): |
| return 0 |
| |
| |
| class Mean(Op): |
| def __init__(self, dim, name=None): |
| super().__init__(Op.DType.FLOAT32, name) |
| self.dim = dim |
| |
| def get_dim(self): |
| return self.dim |
| |
| def get_dType(self): |
| if self.fromList and self.fromList[0].get_dType() == Op.DType.FLOAT64: |
| return Op.DType.FLOAT64 |
| return Op.DType.FLOAT32 |
| |
| def inputs_required(self): |
| return 1 |
| |
| |
| class CrossEntropyLoss(Op): |
| def __init__(self, labels, name=None): |
| super().__init__(Op.DType.FLOAT32, name) |
| self.labels = labels |
| |
| def get_labels(self): |
| return self.labels |
| |
| def get_dType(self): |
| if self.fromList and self.fromList[0].get_dType() == Op.DType.FLOAT64: |
| return Op.DType.FLOAT64 |
| return Op.DType.FLOAT32 |
| |
| def inputs_required(self): |
| return 2 |
| |
| |
| class Linear(Op): |
| def __init__(self, inFeatures, outFeatures, bias, name=None, dType=Op.DType.FLOAT32): |
| super().__init__(dType, name) |
| self.inFeatures = inFeatures |
| self.outFeatures = outFeatures |
| self.bias = bias |
| |
| def get_in_features(self): |
| return self.inFeatures |
| |
| def get_out_features(self): |
| return self.outFeatures |
| |
| def get_bias(self): |
| return self.bias |
| |
| def inputs_required(self): |
| return 1 |
| |
| |
| class ReLU(Op): |
| def __init__(self, name=None): |
| super().__init__(Op.DType.FLOAT32, name) |
| |
| def get_dType(self): |
| if self.fromList: |
| return self.fromList[0].get_dType() |
| return Op.DType.FLOAT32 |
| |
| def inputs_required(self): |
| return 1 |
| |
| |
| class Sigmoid(Op): |
| def __init__(self, name=None): |
| super().__init__(Op.DType.FLOAT32, name) |
| |
| def get_dType(self): |
| if self.fromList and self.fromList[0].get_dType() == Op.DType.FLOAT64: |
| return Op.DType.FLOAT64 |
| return Op.DType.FLOAT32 |
| |
| def inputs_required(self): |
| return 1 |
| |
| |
| class Softmax(Op): |
| def __init__(self, name=None): |
| super().__init__(Op.DType.FLOAT32, name) |
| |
| def get_dType(self): |
| if self.fromList and self.fromList[0].get_dType() == Op.DType.FLOAT64: |
| return Op.DType.FLOAT64 |
| return Op.DType.FLOAT32 |
| |
| def inputs_required(self): |
| return 1 |