blob: 4041013a13637f4df5bf046dc070524e83bbd431 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List
from itertools import count
class Op:
CNT = count(0)
class DType:
ANY = 'ANY'
INT32 = 'INT32'
INT64 = 'INT64'
FLOAT32 = 'FLOAT32'
FLOAT64 = 'FLOAT64'
BYTE = 'BYTE'
INT16 = 'INT16'
BOOL = 'BOOL'
def __init__(self, dType: DType, name=None, opType=None):
if name is None:
self.name = self.__class__.__name__
else:
self.name = name
self.fromList: List[Op] = []
self.dType = dType
self.opType = opType
def get_name(self):
return self.name
def get_dType(self):
return self.dType
def get_fromList(self):
return self.fromList
def with_ops(self, *ops):
assert not self.fromList
assert len(ops) == self.inputs_required()
for op in ops:
assert self.name != op.name
self.fromList.extend(ops)
return self
def inputs_required(self):
pass
def to_dict(self):
output = {}
output['op'] = self.name
output['opType'] = self.opType
output['dType'] = self.dType
output['fromList'] = list(map(lambda child: child.to_dict(),self.fromList))
output["dim"] = None
output["labels"] = None
output["inFeatures"] = None
output["outFeatures"] = None
output["bias"] = None
if hasattr(self, "dim"):
output["dim"] = self.dim
if hasattr(self, "labels"):
output["labels"] = self.labels
if hasattr(self, "inFeatures"):
output["inFeatures"] = self.inFeatures
if hasattr(self, "outFeatures"):
output["outFeatures"] = self.outFeatures
if hasattr(self, "bias"):
output["bias"] = self.bias
return output
class ArgMax(Op):
def __init__(self, dim, name=None):
super().__init__(Op.DType.INT32, name)
self.dim = dim
def get_dim(self):
return self.dim
def inputs_required(self):
return 1
class Cast(Op):
def __init__(self, dType, name=None):
super().__init__(dType, name)
def inputs_required(self):
return 1
class Eq(Op):
def __init__(self, name=None):
super().__init__(Op.DType.BOOL, name)
def inputs_required(self):
return 2
class Input(Op):
class Type:
FEATURES = "..FEATURES.."
LABEL = "..LABEL.."
PREDICTED = "..PREDICTED.."
def __init__(self, name):
self.name = name
def get_name(self):
return self.name
def __init__(self, opType=None, dType=Op.DType.FLOAT32, name=None):
if opType is not None:
super().__init__(dType=dType, opType=opType)
else:
super().__init__(dType=dType, name=name)
def inputs_required(self):
return 0
class Mean(Op):
def __init__(self, dim, name=None):
super().__init__(Op.DType.FLOAT32, name)
self.dim = dim
def get_dim(self):
return self.dim
def get_dType(self):
if self.fromList and self.fromList[0].get_dType() == Op.DType.FLOAT64:
return Op.DType.FLOAT64
return Op.DType.FLOAT32
def inputs_required(self):
return 1
class CrossEntropyLoss(Op):
def __init__(self, labels, name=None):
super().__init__(Op.DType.FLOAT32, name)
self.labels = labels
def get_labels(self):
return self.labels
def get_dType(self):
if self.fromList and self.fromList[0].get_dType() == Op.DType.FLOAT64:
return Op.DType.FLOAT64
return Op.DType.FLOAT32
def inputs_required(self):
return 2
class Linear(Op):
def __init__(self, inFeatures, outFeatures, bias, name=None, dType=Op.DType.FLOAT32):
super().__init__(dType, name)
self.inFeatures = inFeatures
self.outFeatures = outFeatures
self.bias = bias
def get_in_features(self):
return self.inFeatures
def get_out_features(self):
return self.outFeatures
def get_bias(self):
return self.bias
def inputs_required(self):
return 1
class ReLU(Op):
def __init__(self, name=None):
super().__init__(Op.DType.FLOAT32, name)
def get_dType(self):
if self.fromList:
return self.fromList[0].get_dType()
return Op.DType.FLOAT32
def inputs_required(self):
return 1
class Sigmoid(Op):
def __init__(self, name=None):
super().__init__(Op.DType.FLOAT32, name)
def get_dType(self):
if self.fromList and self.fromList[0].get_dType() == Op.DType.FLOAT64:
return Op.DType.FLOAT64
return Op.DType.FLOAT32
def inputs_required(self):
return 1
class Softmax(Op):
def __init__(self, name=None):
super().__init__(Op.DType.FLOAT32, name)
def get_dType(self):
if self.fromList and self.fromList[0].get_dType() == Op.DType.FLOAT64:
return Op.DType.FLOAT64
return Op.DType.FLOAT32
def inputs_required(self):
return 1