blob: 64b2c16e155ec9ff7e54e5f48e5dc6ad2479ce17 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Test the tuner
"""
import logging
import time
import tvm
from tvm import te
from tvm import autotvm
from tvm.autotvm.tuner import RandomTuner
import tvm.testing
@autotvm.template("testing/conv2d_no_batching")
def conv2d_no_batching(N, H, W, CI, CO, KH, KW):
"""An example template for testing"""
assert N == 1, "Only consider batch_size = 1 in this template"
data = te.placeholder((N, CI, H, W), name="data")
kernel = te.placeholder((CO, CI, KH, KW), name="kernel")
rc = te.reduce_axis((0, CI), name="rc")
ry = te.reduce_axis((0, KH), name="ry")
rx = te.reduce_axis((0, KW), name="rx")
conv = te.compute(
(N, CO, H - KH + 1, W - KW + 1),
lambda nn, ff, yy, xx: te.sum(
data[nn, rc, yy + ry, xx + rx] * kernel[ff, rc, ry, rx], axis=[rc, ry, rx]
),
tag="conv2d_nchw",
)
s = te.create_schedule([conv.op])
output = conv
OL = s.cache_write(conv, "local")
# create cache stage
AA = s.cache_read(data, "shared", [OL])
WW = s.cache_read(kernel, "shared", [OL])
AL = s.cache_read(AA, "local", [OL])
WL = s.cache_read(WW, "local", [OL])
# tile and bind spatial axes
n, f, y, x = s[output].op.axis
cfg = autotvm.get_config()
cfg.define_split("tile_f", cfg.axis(f), num_outputs=4)
cfg.define_split("tile_y", cfg.axis(y), num_outputs=4)
cfg.define_split("tile_x", cfg.axis(x), num_outputs=4)
bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f)
by, vy, ty, yi = cfg["tile_y"].apply(s, output, y)
bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x)
kernel_scope = n # this is the scope to attach global config inside this kernel
s[output].bind(bf, te.thread_axis("blockIdx.z"))
s[output].bind(by, te.thread_axis("blockIdx.y"))
s[output].bind(bx, te.thread_axis("blockIdx.x"))
s[output].bind(vf, te.thread_axis("vthread"))
s[output].bind(vy, te.thread_axis("vthread"))
s[output].bind(vx, te.thread_axis("vthread"))
s[output].bind(tf, te.thread_axis("threadIdx.z"))
s[output].bind(ty, te.thread_axis("threadIdx.y"))
s[output].bind(tx, te.thread_axis("threadIdx.x"))
s[output].reorder(n, bf, by, bx, vf, vy, vx, tf, ty, tx, fi, yi, xi)
s[OL].compute_at(s[output], tx)
# tile and bind reduction axes
n, f, y, x = s[OL].op.axis
rc, ry, rx = s[OL].op.reduce_axis
cfg.define_split("tile_rc", cfg.axis(rc), num_outputs=3)
cfg.define_split("tile_ry", cfg.axis(ry), num_outputs=3)
cfg.define_split("tile_rx", cfg.axis(rx), num_outputs=3)
rco, rcm, rci = cfg["tile_rc"].apply(s, OL, rc)
ryo, rym, ryi = cfg["tile_rx"].apply(s, OL, ry)
rxo, rxm, rxi = cfg["tile_ry"].apply(s, OL, rx)
s[OL].reorder(rco, ryo, rxo, rcm, rym, rxm, rci, ryi, rxi, n, f, y, x)
s[AA].compute_at(s[OL], rxo)
s[WW].compute_at(s[OL], rxo)
s[AL].compute_at(s[OL], rxm)
s[WL].compute_at(s[OL], rxm)
# cooperative fetching
for load in [AA, WW]:
n, f, y, x = s[load].op.axis
fused = s[load].fuse(n, f, y, x)
tz, fused = s[load].split(fused, nparts=cfg["tile_f"].size[2])
ty, fused = s[load].split(fused, nparts=cfg["tile_y"].size[2])
tx, fused = s[load].split(fused, nparts=cfg["tile_x"].size[2])
s[load].bind(tz, te.thread_axis("threadIdx.z"))
s[load].bind(ty, te.thread_axis("threadIdx.y"))
s[load].bind(tx, te.thread_axis("threadIdx.x"))
# tune unroll
cfg.define_knob("auto_unroll_max_step", [0, 512, 1500])
cfg.define_knob("unroll_explicit", [0, 1])
s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val)
s[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val)
return s, [data, kernel, conv]
def get_sample_task(target=tvm.target.cuda(), target_host=None):
"""return a sample task for testing"""
task = autotvm.task.create(
"testing/conv2d_no_batching",
args=(1, 7, 7, 512, 512, 3, 3),
target=target,
target_host=target_host,
)
return task, target
@tvm.testing.parametrize_targets("cuda", "opencl")
def test_tuning(target, ctx):
# init task
task, target = get_sample_task(target, None)
logging.info("%s", task.config_space)
measure_option = autotvm.measure_option(autotvm.LocalBuilder(), autotvm.LocalRunner())
tuner = RandomTuner(task)
tuner.tune(n_trial=20, measure_option=measure_option)
if __name__ == "__main__":
# only print log when invoked from main
logging.basicConfig(level=logging.DEBUG)
test_tuning()