blob: 657ebdbec13459c0cace8b4086073f9f64156a9f [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file arg_binder.h
* \brief Helper utility to match and bind arguments.
*/
#ifndef TVM_TIR_TRANSFORMS_ARG_BINDER_H_
#define TVM_TIR_TRANSFORMS_ARG_BINDER_H_
#include <tvm/arith/analyzer.h>
#include <tvm/tir/buffer.h>
#include <tvm/tir/expr.h>
#include <string>
#include <unordered_map>
#include <vector>
namespace tvm {
namespace tir {
/*!
* \brief Helper utility to generate match and bind of arguments.
*
* \note There is many places in TVM IR where we need argument bindings.
*
* Consider a function f(tA(shape=var(n)), tB(shape=3), tC(shape=(n+2)).
* Here n is a undefined variable that is decided by the outside, tB imposes
* a constraint such that it can only take tensor with shape 3, tC imposes
* another constraint that it's shape must equals n + 2.
* So if we call it with f(bufferA, bufferB, bufferC), we need to generate
* the following binding sequence:
* - define n = bufferA.shape[0]
* - assert bufferB.shape[0] == 3
* - assert bufferB.shape[1] == n + 3
*
* In general, this is a constraint solving problem. We have simplified assumption
* over the binding declaration, such that we require the variable occurred in
* constraint must be declared in argument list. So it is illegal to have signature
* f(tA(shape=(n+3))) without any argument variable corresponds to n, even though
* it is already enough to derive n from the input argument.
*/
class ArgBinder {
public:
/*!
* \brief Constructor
* \param def_map A definition map that contains definition of known variables.
* ArgBinder will update this def_map when adding new definitions.
*/
explicit ArgBinder(std::unordered_map<const VarNode*, PrimExpr>* def_map) : def_map_(def_map) {}
/*!
* \brief Try to bind arg to value, generate constraint if necessary.
* \param arg The argument to be binded.
* \param value The target expression value
* \param arg_name argument name.
* \param with_let Whether add lets during bind
*/
void Bind(const PrimExpr& arg, const PrimExpr& value, const std::string& arg_name,
bool with_let = false);
/*!
* \brief Bind array to array
* \param arg The argument to be binded.
* \param value The target expression value
* \param arg_name argument name.
*/
void BindArray(const Array<PrimExpr>& arg, const Array<PrimExpr>& value,
const std::string& arg_name);
/*!
* \brief Bind symbolic buffer to another symbolic buffer
* \param arg The argument to be binded.
* \param value The target expression value
* \param arg_name argument name.
* \param fuzzy_match If enabled, we allow value's dimension to be smaller than arg, as long as
* arg's higher dimensions are of 1.
*/
void BindBuffer(const Buffer& arg, const Buffer& value, const std::string& arg_name,
bool fuzzy_match);
/*!
* \brief Bind symbolic buffer to a DLTensor handle.
* \param buffer The argument buffer to be binded.
* \param device_type The device id to be binded.
* \param device_id The device id to be binded.
* \param handle The DLTensor handle.
* \param arg_name argument name.
*/
void BindDLTensor(const Buffer& buffer, const PrimExpr& device_type, const PrimExpr& device_id,
const Var& handle, const std::string& arg_name);
/*! \return The defs generated in binding. */
const std::vector<Var>& defs() const { return defs_; }
/*! \return The asserts generated in binding */
const std::vector<Stmt>& asserts() const { return asserts_; }
/*!
* \brief Initialization nest generated
* This is only non-empty when BindDLTensor is called.
*
* \note The binder may choose to generate a let statement
* and simply put def_map to map Variable to itself,
* or update def_map to directly map to new value and not generate let statement.
*
* Let statement is usually generated when bind to DLTensor and memory load is involved.
* \return The initialization nest generated during binding.
*/
const std::vector<Stmt>& init_nest() const { return init_nest_; }
/*! \return Handle data type of the data */
const Map<Var, PrimExpr>& def_handle_dtype() const { return def_handle_dtype_; }
private:
// Internal bind function
bool Bind_(const PrimExpr& arg, const PrimExpr& value, const std::string& arg_name,
bool with_lets);
/*! \brief The definition map, can be uses to substitute */
std::unordered_map<const VarNode*, PrimExpr>* def_map_;
/*! \brief defs generated in the current binder */
std::vector<Var> defs_;
/*! \brief Initialize nest */
std::vector<Stmt> init_nest_;
/*! \brief handle data type in the defintiions */
Map<Var, PrimExpr> def_handle_dtype_;
/*! \brief asserts generated */
std::vector<Stmt> asserts_;
/*! \brief internal analyzer. */
arith::Analyzer analyzer_;
};
} // namespace tir
} // namespace tvm
#endif // TVM_TIR_TRANSFORMS_ARG_BINDER_H_