blob: 875fa8878cd5decfefcc0f33a1729bcbc2627975 [file] [log] [blame]
"""
Auto-tuning a convolutional network for x86 CPU (NNVM)
======================================================
**Author**: `Yao Wang <https://github.com/kevinthesun>`_
This is a tutorial about how to tune convolution neural network
for x86 cpu.
"""
import os
import numpy as np
import nnvm.testing
import nnvm.compiler
import tvm
from tvm import autotvm
from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner
import tvm.contrib.graph_runtime as runtime
#################################################################
# Define network
# --------------
# First we need to define the network in nnvm symbol API.
# We can load some pre-defined network from :code:`nnvm.testing`.
# We can also load models from MXNet, ONNX and TensorFlow (see NNVM
# tutorials :ref:`tutorial-nnvm` for more details).
#
# In this tutorial, we choose resnet-18 as tuning example.
def get_network(name, batch_size):
"""Get the symbol definition and random weight of a network"""
input_shape = (batch_size, 3, 224, 224)
output_shape = (batch_size, 1000)
if "resnet" in name:
n_layer = int(name.split('-')[1])
net, params = nnvm.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size)
elif "vgg" in name:
n_layer = int(name.split('-')[1])
net, params = nnvm.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size)
elif name == 'mobilenet':
net, params = nnvm.testing.mobilenet.get_workload(batch_size=batch_size)
elif name == 'squeezenet_v1.1':
net, params = nnvm.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1')
elif name == 'inception_v3':
input_shape = (1, 3, 299, 299)
net, params = nnvm.testing.inception_v3.get_workload(batch_size=batch_size)
elif name == 'custom':
# an example for custom network
from nnvm.testing import utils
net = nnvm.sym.Variable('data')
net = nnvm.sym.conv2d(net, channels=4, kernel_size=(3,3), padding=(1,1))
net = nnvm.sym.flatten(net)
net = nnvm.sym.dense(net, units=1000)
net, params = utils.create_workload(net, batch_size, (3, 224, 224))
elif name == 'mxnet':
# an example for mxnet model
from mxnet.gluon.model_zoo.vision import get_model
block = get_model('resnet18_v1', pretrained=True)
net, params = nnvm.frontend.from_mxnet(block)
net = nnvm.sym.softmax(net)
else:
raise ValueError("Unsupported network: " + name)
return net, params, input_shape, output_shape
# Replace "llvm" with the correct target of your cpu.
# For example, for AWS EC2 c5 instance with Intel Xeon
# Platinum 8000 series, the target should be "llvm -mcpu=skylake-avx512".
# For AWS EC2 c4 instance with Intel Xeon E5-2666 v3, it should be
# "llvm -mcpu=core-avx2".
target = "llvm"
batch_size = 1
dtype = "float32"
model_name = "resnet-18"
log_file = "%s.log" % model_name
# Set number of threads used for tuning based on the number of
# physical cpu cores on your machine.
num_threads = 1
os.environ["TVM_NUM_THREADS"] = str(num_threads)
#################################################################
# Configure tensor tuning settings and create tasks
# -------------------------------------------------
# To get better kernel execution performance on x86 cpu,
# we need to change data layout of convolution kernel from
# "NCHW" to "NCHWc". To deal with this situation, we define
# conv2d_NCHWc operator in topi. We will tune this operator
# instead of plain conv2d.
#
# We will use local mode for tuning configuration. RPC tracker
# mode can be setup similarly to the approach in
# :ref:`tune_nnvm_arm` tutorial.
tuning_option = {
'log_filename': log_file,
'tuner': 'random',
'early_stopping': None,
'measure_option': autotvm.measure_option(
builder=autotvm.LocalBuilder(),
runner=autotvm.LocalRunner(number=10, repeat=1,
min_repeat_ms=1000),
),
}
# You can skip the implementation of this function for this tutorial.
def tune_kernels(tasks,
measure_option,
tuner='gridsearch',
early_stopping=None,
log_filename='tuning.log'):
for i, tsk in enumerate(tasks):
prefix = "[Task %2d/%2d] " % (i+1, len(tasks))
# converting conv2d tasks to conv2d_NCHWc tasks
op_name = tsk.workload[0]
if op_name == 'conv2d':
func_create = 'topi_x86_conv2d_NCHWc'
elif op_name == 'depthwise_conv2d_nchw':
func_create = 'topi_x86_depthwise_conv2d_NCHWc_from_nchw'
else:
raise ValueError("Tuning {} is not supported on x86".format(op_name))
task = autotvm.task.create(func_create, args=tsk.args,
target=target, template_key='direct')
task.workload = tsk.workload
# create tuner
if tuner == 'xgb' or tuner == 'xgb-rank':
tuner_obj = XGBTuner(task, loss_type='rank')
elif tuner == 'ga':
tuner_obj = GATuner(task, pop_size=50)
elif tuner == 'random':
tuner_obj = RandomTuner(task)
elif tuner == 'gridsearch':
tuner_obj = GridSearchTuner(task)
else:
raise ValueError("Invalid tuner: " + tuner)
# do tuning
n_trial=len(task.config_space)
tuner_obj.tune(n_trial=n_trial,
early_stopping=early_stopping,
measure_option=measure_option,
callbacks=[
autotvm.callback.progress_bar(n_trial, prefix=prefix),
autotvm.callback.log_to_file(log_filename)])
########################################################################
# Finally, we launch tuning jobs and evaluate the end-to-end performance.
def tune_and_evaluate(tuning_opt):
# extract workloads from nnvm graph
print("Extract tasks...")
net, params, data_shape, out_shape = get_network(model_name, batch_size)
tasks = autotvm.task.extract_from_graph(net, target=target,
shape={'data': data_shape}, dtype=dtype,
symbols=(nnvm.sym.conv2d,))
# run tuning tasks
print("Tuning...")
tune_kernels(tasks, **tuning_opt)
# compile kernels with history best records
with autotvm.apply_history_best(log_file):
print("Compile...")
with nnvm.compiler.build_config(opt_level=3):
graph, lib, params = nnvm.compiler.build(
net, target=target, shape={'data': data_shape}, params=params, dtype=dtype)
# upload parameters to device
ctx = tvm.cpu()
data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
module = runtime.create(graph, lib, ctx)
module.set_input('data', data_tvm)
module.set_input(**params)
# evaluate
print("Evaluate inference time cost...")
ftimer = module.module.time_evaluator("run", ctx, number=100, repeat=3)
prof_res = np.array(ftimer().results) * 1000 # convert to millisecond
print("Mean inference time (std dev): %.2f ms (%.2f ms)" %
(np.mean(prof_res), np.std(prof_res)))
# We do not run the tuning in our webpage server since it takes too long.
# Uncomment the following line to run it by yourself.
# tune_and_evaluate(tuning_option)
######################################################################
# Sample Output
# -------------
# The tuning needs to compile many programs and extract feature from them.
# So a high performance CPU is recommended.
# One sample output is listed below.
#
# .. code-block:: bash
#
# Extract tasks...
# Tuning...
# [Task 1/12] Current/Best: 598.05/2497.63 GFLOPS | Progress: (252/252) | 1357.95 s Done.
# [Task 2/12] Current/Best: 522.63/2279.24 GFLOPS | Progress: (784/784) | 3989.60 s Done.
# [Task 3/12] Current/Best: 447.33/1927.69 GFLOPS | Progress: (784/784) | 3869.14 s Done.
# [Task 4/12] Current/Best: 481.11/1912.34 GFLOPS | Progress: (672/672) | 3274.25 s Done.
# [Task 5/12] Current/Best: 414.09/1598.45 GFLOPS | Progress: (672/672) | 2720.78 s Done.
# [Task 6/12] Current/Best: 508.96/2273.20 GFLOPS | Progress: (768/768) | 3718.75 s Done.
# [Task 7/12] Current/Best: 469.14/1955.79 GFLOPS | Progress: (576/576) | 2665.67 s Done.
# [Task 8/12] Current/Best: 230.91/1658.97 GFLOPS | Progress: (576/576) | 2435.01 s Done.
# [Task 9/12] Current/Best: 487.75/2295.19 GFLOPS | Progress: (648/648) | 3009.95 s Done.
# [Task 10/12] Current/Best: 182.33/1734.45 GFLOPS | Progress: (360/360) | 1755.06 s Done.
# [Task 11/12] Current/Best: 372.18/1745.15 GFLOPS | Progress: (360/360) | 1684.50 s Done.
# [Task 12/12] Current/Best: 215.34/2271.11 GFLOPS | Progress: (400/400) | 2128.74 s Done.
# Compile...
# Evaluate inference time cost...
# Mean inference time (std dev): 3.16 ms (0.03 ms)