blob: 347aa4207c9b53cd0133a5dedd81b989f602876d [file] [log] [blame]
"""
Tuning High Performance Convolution on NVIDIA GPUs
=========================================================================
**Author**: `Lianmin Zheng <https://https://github.com/merrymercy>`_
This is an advanced tutorial for writing high performance tunable template for
NVIDIA GPU. By running auto-tuner on this template, we can outperform the
vendor provided library CuDNN in many cases.
"""
######################################################################
# Install dependencies
# --------------------
# To use autotvm package in tvm, we need to install some extra dependencies.
# (change "3" to "2" if you use python2):
#
# .. code-block:: bash
#
# pip3 install --user psutil xgboost tornado
#
# To make tvm run faster in tuning, it is recommended to use cython
# as FFI of tvm. In the root directory of tvm, execute
#
# .. code-block:: bash
#
# pip3 install --user cython
# sudo make cython3
#
# Now return to python code. Import packages.
import logging
import sys
import numpy as np
import tvm
import topi
from topi.testing import conv2d_nchw_python
from tvm import autotvm
######################################################################
# Step 1: Define the search space
# --------------------------------
# There are plenty of useful schedule primitives in tvm. You can also find
# some tutorials that describe them in more details, such as
# (1). :ref:`opt-conv-gpu`
# (2). `Optimizing DepthwiseConv on NVIDIA GPU <https://tvm.ai/2017/08/22/Optimize-Deep-Learning-GPU-Operators-with-TVM-A-Depthwise-Convolution-Example.html>`_
#
# However, their implementations are manually tuned for some special input
# shapes. In this section, we build a large enough space to cover
# the techniques used in these tutorials. Then we rely on the efficient auto-tuner
# to search through this space and pick some good configurations.
#
# If you are familiar with writing cuda schedule, you can find the following
# template is very general. Actually this template can be easily modified
# to tune other operators such as depthwise convolution and gemm.
# In order to fully understand this template, you should be familiar with
# the schedule primitives and auto tuning API. You can refer to the above
# tutorials and :doc:`autotvm tutorial <tune_simple_template>`
#
# It is worth noting that the search space for a conv2d operator
# can be very large (at the level of 10^9 for some input shapes)
#
@autotvm.template
def conv2d_no_batching(N, H, W, CO, CI, KH, KW, stride, padding):
assert N == 1, "Only consider batch_size = 1 in this template"
data = tvm.placeholder((N, CI, H, W), name='data')
kernel = tvm.placeholder((CO, CI, KH, KW), name='kernel')
conv = topi.nn.conv2d_nchw(data, kernel, stride, padding, dilation=1, out_dtype='float32')
s = tvm.create_schedule([conv.op])
##### space definition begin #####
n, f, y, x = s[conv].op.axis
rc, ry, rx = s[conv].op.reduce_axis
cfg = autotvm.get_config()
cfg.define_split("tile_f", f, num_outputs=4)
cfg.define_split("tile_y", y, num_outputs=4)
cfg.define_split("tile_x", x, num_outputs=4)
cfg.define_split("tile_rc", rc, num_outputs=3)
cfg.define_split("tile_ry", ry, num_outputs=3)
cfg.define_split("tile_rx", rx, num_outputs=3)
cfg.define_knob("auto_unroll_max_step", [0, 512, 1500])
cfg.define_knob("unroll_explicit", [0, 1])
##### space definition end #####
# inline padding
pad_data = s[conv].op.input_tensors[0]
s[pad_data].compute_inline()
data, raw_data = pad_data, data
output = conv
OL = s.cache_write(conv, 'local')
# create cache stage
AA = s.cache_read(data, 'shared', [OL])
WW = s.cache_read(kernel, 'shared', [OL])
AL = s.cache_read(AA, 'local', [OL])
WL = s.cache_read(WW, 'local', [OL])
# tile and bind spatial axes
n, f, y, x = s[output].op.axis
bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f)
by, vy, ty, yi = cfg["tile_y"].apply(s, output, y)
bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x)
kernel_scope = n # this is the scope to attach global config inside this kernel
s[output].bind(bf, tvm.thread_axis("blockIdx.z"))
s[output].bind(by, tvm.thread_axis("blockIdx.y"))
s[output].bind(bx, tvm.thread_axis("blockIdx.x"))
s[output].bind(vf, tvm.thread_axis("vthread"))
s[output].bind(vy, tvm.thread_axis("vthread"))
s[output].bind(vx, tvm.thread_axis("vthread"))
s[output].bind(tf, tvm.thread_axis("threadIdx.z"))
s[output].bind(ty, tvm.thread_axis("threadIdx.y"))
s[output].bind(tx, tvm.thread_axis("threadIdx.x"))
s[output].reorder(n, bf, by, bx, vf, vy, vx, tf, ty, tx, fi, yi, xi)
s[OL].compute_at(s[output], tx)
# tile reduction axes
n, f, y, x = s[OL].op.axis
rc, ry, rx = s[OL].op.reduce_axis
rco, rcm, rci = cfg['tile_rc'].apply(s, OL, rc)
ryo, rym, ryi = cfg['tile_rx'].apply(s, OL, ry)
rxo, rxm, rxi = cfg['tile_ry'].apply(s, OL, rx)
s[OL].reorder(rco, ryo, rxo, rcm, rym, rxm, rci, ryi, rxi, n, f, y, x)
s[AA].compute_at(s[OL], rxo)
s[WW].compute_at(s[OL], rxo)
s[AL].compute_at(s[OL], rxm)
s[WL].compute_at(s[OL], rxm)
# cooperative fetching
for load in [AA, WW]:
n, f, y, x = s[load].op.axis
fused = s[load].fuse(n, f, y, x)
tz, fused = s[load].split(fused, nparts=cfg["tile_f"].size[2])
ty, fused = s[load].split(fused, nparts=cfg["tile_y"].size[2])
tx, fused = s[load].split(fused, nparts=cfg["tile_x"].size[2])
s[load].bind(tz, tvm.thread_axis("threadIdx.z"))
s[load].bind(ty, tvm.thread_axis("threadIdx.y"))
s[load].bind(tx, tvm.thread_axis("threadIdx.x"))
# tune unroll
s[output].pragma(kernel_scope, 'auto_unroll_max_step', cfg['auto_unroll_max_step'].val)
s[output].pragma(kernel_scope, 'unroll_explicit', cfg['unroll_explicit'].val)
return s, [raw_data, kernel, conv]
######################################################################
# Step 2: Search through the space
# ---------------------------------
# We pick the last layer on resnet as test case.
# Since our space is very large, :code:`XGBoostTuner` is most suitable
# for our case. Here we only do 20 trials for demonstration.
# In practice, making 1000 trials usually can find some good kernels
# for this template
# logging config (for printing tuning log to screen)
logging.getLogger('autotvm').setLevel(logging.DEBUG)
logging.getLogger('autotvm').addHandler(logging.StreamHandler(sys.stdout))
# the last layer in resnet
N, H, W, CO, CI, KH, KW, strides, padding = 1, 7, 7, 512, 512, 3, 3, (1, 1), (1, 1)
task = autotvm.task.create(conv2d_no_batching,
args=(N, H, W, CO, CI, KH, KW, strides, padding),
target='cuda')
print(task.config_space)
# Use local gpu, measure 10 times for every config to reduce variance
# The timeout of compiling a program is 10 seconds, the timeout for running is 4 seconds
measure_option = autotvm.measure_option(
builder=autotvm.LocalBuilder(),
runner=autotvm.LocalRunner(repeat=3, min_repeat_ms=100, timeout=4)
)
# Begin tuning, log records to file `conv2d.log`
# During tuning we will also try many invalid configs, so you are expected to
# see many error reports. As long as you can see non-zero GFLOPS, it is okay.
tuner = autotvm.tuner.XGBTuner(task)
tuner.tune(n_trial=20,
measure_option=measure_option,
callbacks=[autotvm.callback.log_to_file('conv2d.log')])
#########################################################################
# Finally we can inspect the best config from log file, check correctness,
# and measure running time.
# inspect the best config
dispatch_context = autotvm.apply_history_best("conv2d.log")
best_config = dispatch_context.query(task.target, task.workload)
print("\nBest config:")
print(best_config)
# apply history best from log file
with autotvm.apply_history_best('conv2d.log'):
with tvm.target.create("cuda"):
s, arg_bufs = conv2d_no_batching(N, H, W, CO, CI, KH, KW, strides, padding)
func = tvm.build(s, arg_bufs)
# check correctness
a_np = np.random.uniform(size=(N, CI, H, W)).astype(np.float32)
w_np = np.random.uniform(size=(CO, CI, KH, KW)).astype(np.float32)
c_np = conv2d_nchw_python(a_np, w_np, strides, padding)
ctx = tvm.gpu()
a_tvm = tvm.nd.array(a_np, ctx=ctx)
w_tvm = tvm.nd.array(w_np, ctx=ctx)
c_tvm = tvm.nd.empty(c_np.shape, ctx=ctx)
func(a_tvm, w_tvm, c_tvm)
tvm.testing.assert_allclose(c_np, c_tvm.asnumpy(), rtol=1e-2)
# Evaluate running time. Here we choose a large repeat number (400) to reduce the noise
# and the overhead of kernel launch. You can also use nvprof to validate the result.
evaluator = func.time_evaluator(func.entry_name, ctx, number=400)
print('Time cost of this operator: %f' % evaluator(a_tvm, w_tvm, c_tvm).mean)