| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import numpy as np |
| |
| import tvm |
| import tvm.testing |
| from tvm.runtime import profiler_vm |
| from tvm import relay |
| from tvm.relay.testing import mlp |
| |
| |
| @tvm.testing.parametrize_targets |
| def test_basic(dev, target): |
| mod, params = mlp.get_workload(batch_size=1) |
| if not profiler_vm.enabled(): |
| return |
| |
| exe = relay.vm.compile(mod, target, params=params) |
| code, lib = exe.save() |
| des_exe = tvm.runtime.vm.Executable.load_exec(code, lib) |
| vm = profiler_vm.VirtualMachineProfiler(des_exe, dev) |
| |
| data = np.random.rand(1, 1, 28, 28).astype("float32") |
| res = vm.profile(tvm.nd.array(data), func_name="main") |
| assert "softmax" in str(res) |
| |
| |
| def test_vm_reshape_and_copy(): |
| target = "llvm" |
| dev = tvm.gpu() |
| x_np = np.random.uniform(size=(8, 16)).astype("float32") |
| x = relay.var("x", shape=(8, 16), dtype="float32") |
| y = relay.reshape(x, [-1, 4, 8]) |
| mod = tvm.IRModule() |
| mod["main"] = relay.Function([x], y) |
| with tvm.transform.PassContext(opt_level=3): |
| exec = relay.vm.compile(mod, "llvm") |
| assert "reshape_tensor" in exec.bytecode |
| vm = profiler_vm.VirtualMachineProfiler(exec, dev) |
| vm.profile(tvm.nd.array(x_np)) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |