| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import tempfile |
| import tvm |
| import tvm.testing |
| from tvm import te, runtime |
| import numpy as np |
| import json |
| from tvm import rpc |
| from tvm import relay |
| from tvm.contrib import utils, graph_executor |
| |
| |
| @tvm.testing.requires_llvm |
| def test_graph_simple(): |
| n = 4 |
| A = te.placeholder((n,), name="A") |
| B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B") |
| s = te.create_schedule(B.op) |
| |
| node0 = {"op": "null", "name": "x", "inputs": []} |
| node1 = { |
| "op": "tvm_op", |
| "name": "add", |
| "inputs": [[0, 0, 0]], |
| "attrs": {"func_name": "myadd", "flatten_data": "1", "num_inputs": "1", "num_outputs": "1"}, |
| } |
| nodes = [node0, node1] |
| arg_nodes = [0] |
| node_row_ptr = [0, 1, 2] |
| outputs = [[1, 0, 0]] |
| shape = (4,) |
| attrs = { |
| "shape": ["list_shape", [shape, shape]], |
| "dltype": ["list_str", ["float32", "float32"]], |
| "storage_id": ["list_int", [0, 1]], |
| } |
| graph = { |
| "nodes": nodes, |
| "arg_nodes": arg_nodes, |
| "node_row_ptr": node_row_ptr, |
| "heads": outputs, |
| "attrs": attrs, |
| } |
| graph = json.dumps(graph) |
| |
| def check_verify(): |
| mlib = tvm.build(s, [A, B], "llvm", name="myadd") |
| mod = graph_executor.create(graph, mlib, tvm.cpu(0)) |
| a = np.random.uniform(size=(n,)).astype(A.dtype) |
| mod.run(x=a) |
| out = mod.get_output(0, tvm.nd.empty((n,))) |
| np.testing.assert_equal(out.numpy(), a + 1) |
| |
| def check_remote(server): |
| mlib = tvm.build(s, [A, B], "llvm", name="myadd") |
| remote = rpc.connect(server.host, server.port) |
| temp = utils.tempdir() |
| dev = remote.cpu(0) |
| path_dso = temp.relpath("dev_lib.so") |
| mlib.export_library(path_dso) |
| remote.upload(path_dso) |
| mlib = remote.load_module("dev_lib.so") |
| mod = graph_executor.create(graph, mlib, remote.cpu(0)) |
| a = np.random.uniform(size=(n,)).astype(A.dtype) |
| mod.run(x=tvm.nd.array(a, dev)) |
| out = tvm.nd.empty((n,), device=dev) |
| out = mod.get_output(0, out) |
| np.testing.assert_equal(out.numpy(), a + 1) |
| |
| def check_sharing(): |
| x = relay.var("x", shape=(1, 10)) |
| y = relay.var("y", shape=(1, 10)) |
| z = relay.add(x, y) |
| func = relay.Function([x, y], z) |
| |
| x_in = np.ones((1, 10)).astype("float32") |
| params = {"x": x_in} |
| graph, lib, params = relay.build(func, target="llvm", params=params) |
| |
| mod_shared = graph_executor.create(graph, lib, tvm.cpu(0)) |
| mod_shared.load_params(runtime.save_param_dict(params)) |
| num_mods = 10 |
| mods = [graph_executor.create(graph, lib, tvm.cpu(0)) for _ in range(num_mods)] |
| |
| for mod in mods: |
| mod.share_params(mod_shared, runtime.save_param_dict(params)) |
| |
| a = np.random.uniform(size=(1, 10)).astype("float32") |
| for mod in mods: |
| mod.run(y=a) |
| out = mod.get_output(0, tvm.nd.empty((1, 10))) |
| np.testing.assert_equal(out.numpy(), x_in + a) |
| |
| # Explicitly delete the shared module and verify correctness. |
| del mod_shared |
| for mod in mods: |
| mod.run(y=a) |
| out = mod.get_output(0, tvm.nd.empty((1, 10))) |
| np.testing.assert_equal(out.numpy(), x_in + a) |
| del mod |
| |
| check_verify() |
| check_remote(rpc.Server("127.0.0.1")) |
| check_sharing() |
| |
| |
| def test_load_unexpected_params(): |
| # Test whether graph_executor.load_params works if parameters |
| # are provided that are not an expected input. |
| mod = tvm.IRModule() |
| params = {} |
| x = relay.var("x", shape=(1, 10)) |
| y = relay.var("y", shape=(1, 10)) |
| z = relay.add(x, y) |
| mod["main"] = relay.Function([x, y], z) |
| |
| graph_module = relay.build(mod, target="llvm", params=params) |
| rt_mod = tvm.contrib.graph_executor.create( |
| graph_module.get_graph_json(), graph_module.get_lib(), tvm.cpu(0) |
| ) |
| |
| new_params = graph_module.get_params() |
| new_params.update({"y_unknown": np.ones((1,)).astype("float32")}) |
| rt_mod.load_params(runtime.save_param_dict(new_params)) |
| |
| |
| def test_save_load_file(): |
| p = np.random.randn(10) |
| params = {"x": p} |
| |
| with tempfile.NamedTemporaryFile() as fp: |
| tvm.runtime.save_param_dict_to_file(params, fp.name) |
| params_loaded = tvm.runtime.load_param_dict_from_file(fp.name) |
| |
| assert "x" in params_loaded |
| np.testing.assert_equal(p, params_loaded["x"].numpy()) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |