| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import itertools |
| |
| import numpy as np |
| import scipy.sparse as sp |
| |
| |
| import tvm |
| from tvm.ir import IRModule |
| from tvm import relay |
| |
| |
| def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype="float32"): |
| Y = np.zeros((M, N), dtype=dtype) |
| assert M % BS_R == 0 |
| assert N % BS_C == 0 |
| nnz = int(density * M * N) |
| num_blocks = int(nnz / (BS_R * BS_C)) + 1 |
| candidate_blocks = np.asarray(list(itertools.product(range(0, M, BS_R), range(0, N, BS_C)))) |
| assert candidate_blocks.shape[0] == M // BS_R * N // BS_C |
| chosen_blocks = candidate_blocks[ |
| np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False) |
| ] |
| for i in range(len(chosen_blocks)): |
| r, c = chosen_blocks[i] |
| Y[r : r + BS_R, c : c + BS_C] = np.random.randn(BS_R, BS_C) |
| s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C)) |
| assert s.data.shape == (num_blocks, BS_R, BS_C) |
| assert s.data.size >= nnz |
| assert s.indices.shape == (num_blocks,) |
| assert s.indptr.shape == (M // BS_R + 1,) |
| return s |
| |
| |
| def run_func(func, params, x): |
| with tvm.transform.PassContext(opt_level=3): |
| graph, lib, new_params = relay.build(func, "llvm", params=params) |
| |
| from tvm.contrib import graph_executor |
| |
| dev = tvm.cpu(0) |
| dtype = "float32" |
| m = graph_executor.create(graph, lib, dev) |
| # set inputs |
| m.set_input("data", tvm.nd.array(x.astype(dtype))) |
| m.set_input(**new_params) |
| # execute |
| m.run() |
| # get outputs |
| tvm_output = m.get_output(0) |
| return tvm_output.numpy() |
| |
| |
| def test_bsr_sparse_dense(): |
| data = relay.var("data", shape=(1, 128), dtype="float32") |
| x = relay.nn.relu(data) |
| w = relay.var("weight", shape=(768, 128), dtype="float32") |
| y = relay.nn.dense(x, w) |
| z = relay.nn.relu(y) |
| func = relay.Function(relay.analysis.free_vars(z), z) |
| |
| params = {"weight": tvm.nd.array(random_bsr_matrix(768, 128, 32, 1, 0.1).todense())} |
| |
| x_np = np.random.randn(1, 128).astype("float32") |
| # dense output |
| dense_output = run_func(func, params, x_np) |
| # sparse |
| sparse_func, params = relay.data_dep_optimization.bsr_dense.convert(func, params, (32, 1), 0.2) |
| sparse_output = run_func(sparse_func, params, x_np) |
| np.testing.assert_allclose(sparse_output, dense_output, atol=1e-5, rtol=1e-5) |
| |
| |
| if __name__ == "__main__": |
| test_bsr_sparse_dense() |