blob: 16f26e77e768f18ecfbfbb7415618662d04ca3d8 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
import numpy as np
from tvm import relay
def qnn_subtract_driver(x_datas, y_datas, golden_outputs, scale_and_zp, data_dtype="uint8"):
# all x, y and golden outputs should be of the same length
assert len(x_datas) == len(y_datas)
assert len(y_datas) == len(golden_outputs)
x = relay.var("x", shape=(1, 4), dtype=data_dtype)
y = relay.var("y", shape=(1, 4), dtype=data_dtype)
lhs_scale = relay.const(scale_and_zp["lhs_scale"], "float32")
lhs_zp = relay.const(scale_and_zp["lhs_zp"], "int32")
rhs_scale = relay.const(scale_and_zp["rhs_scale"], "float32")
rhs_zp = relay.const(scale_and_zp["rhs_zp"], "int32")
output_scale = relay.const(scale_and_zp["output_scale"], "float32")
output_zp = relay.const(scale_and_zp["output_zp"], "int32")
z = relay.qnn.subtract(
lhs=x,
rhs=y,
lhs_scale=lhs_scale,
lhs_zero_point=lhs_zp,
rhs_scale=rhs_scale,
rhs_zero_point=rhs_zp,
output_scale=output_scale,
output_zero_point=output_zp,
)
func = relay.Function([x, y], z)
mod = tvm.IRModule.from_expr(func)
mod = relay.transform.InferType()(mod)
mod = relay.qnn.transform.CanonicalizeOps()(mod)
func = mod["main"]
for i in range(0, len(x_datas)):
x_data = x_datas[i]
y_data = y_datas[i]
golden_output = golden_outputs[i]
op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)(
x_data, y_data
)
np.testing.assert_equal(op_res.numpy(), golden_output)
def test_tflite_same_io_qnn_params():
scale_and_zp = {
"lhs_scale": 0.00784314,
"lhs_zp": 127,
"rhs_scale": 0.00784314,
"rhs_zp": 127,
"output_scale": 0.00784314,
"output_zp": 127,
}
x_datas = [
np.array((140, 153, 165, 178)).reshape((1, 4)),
np.array((25, 153, 178, 216)).reshape((1, 4)),
np.array((25, 153, 216, 165)).reshape((1, 4)),
]
y_datas = [
np.array((204, 178, 165, 140)).reshape((1, 4)),
np.array((204, 178, 191, 25)).reshape((1, 4)),
np.array((204, 178, 25, 191)).reshape((1, 4)),
]
golden_outputs = [
np.array((63, 102, 127, 165)).reshape((1, 4)),
np.array((0, 102, 114, 255)).reshape((1, 4)),
np.array((0, 102, 255, 101)).reshape((1, 4)),
]
qnn_subtract_driver(x_datas, y_datas, golden_outputs, scale_and_zp)
def test_tflite_different_io_qnn_params():
scale_and_zp = {
"lhs_scale": 0.0156863,
"lhs_zp": 127,
"rhs_scale": 0.0117647,
"rhs_zp": 85,
"output_scale": 0.0235294,
"output_zp": 128,
}
x_datas = [
np.array((76, 140, 153, 172)).reshape((1, 4)),
np.array((133, 140, 146, 153)).reshape((1, 4)),
np.array((76, 140, 172, 146)).reshape((1, 4)),
]
y_datas = [
np.array((136, 119, 128, 17)).reshape((1, 4)),
np.array((136, 119, 111, 94)).reshape((1, 4)),
np.array((136, 119, 17, 128)).reshape((1, 4)),
]
golden_outputs = [
np.array((68, 120, 123, 192)).reshape((1, 4)),
np.array((106, 120, 128, 140)).reshape((1, 4)),
np.array((68, 120, 192, 119)).reshape((1, 4)),
]
qnn_subtract_driver(x_datas, y_datas, golden_outputs, scale_and_zp)
def test_saturation():
# Same params
scale_and_zp = {
"lhs_scale": 0.125,
"lhs_zp": 0,
"rhs_scale": 0.125,
"rhs_zp": 0,
"output_scale": 0.125,
"output_zp": 0,
}
x_data = [np.array((255, 1, 1, 0)).reshape((1, 4))]
y_data = [np.array((255, 255, 128, 0)).reshape((1, 4))]
golden_output = [np.array((0, 0, 0, 0)).reshape((1, 4))]
qnn_subtract_driver(x_data, y_data, golden_output, scale_and_zp)
# Same params, different scale
scale_and_zp = {
"lhs_scale": 0.125,
"lhs_zp": 0,
"rhs_scale": 0.125,
"rhs_zp": 0,
"output_scale": 0.25,
"output_zp": 0,
}
x_data = [np.array((255, 1, 200, 0)).reshape((1, 4))]
y_data = [np.array((255, 255, 127, 0)).reshape((1, 4))]
golden_output = [np.array((0, 0, 36, 0)).reshape((1, 4))]
qnn_subtract_driver(x_data, y_data, golden_output, scale_and_zp)
# All params different
scale_and_zp = {
"lhs_scale": 0.5,
"lhs_zp": 0,
"rhs_scale": 0.25,
"rhs_zp": 0,
"output_scale": 0.125,
"output_zp": 0,
}
x_data = [np.array((255, 0, 1, 0)).reshape((1, 4))]
y_data = [np.array((0, 128, 64, 0)).reshape((1, 4))]
golden_output = [np.array((255, 0, 0, 0)).reshape((1, 4))]
qnn_subtract_driver(x_data, y_data, golden_output, scale_and_zp)
if __name__ == "__main__":
test_tflite_same_io_qnn_params()
test_tflite_different_io_qnn_params()
test_saturation()