| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import tvm |
| from tvm import te |
| import numpy as np |
| from tvm import relay |
| from tvm.contrib import graph_executor |
| import tvm.topi.testing |
| |
| |
| def test_same_io_qnn_params(): |
| data_dtype = "int32" |
| axis = 0 |
| x_data = np.arange(-32, 32, 1).reshape(1, 64).astype(data_dtype) |
| y_data = np.arange(-64, 64, 2).reshape(1, 64).astype(data_dtype) |
| x_scale = relay.const((62 + 64) / (np.power(2, 32) - 1.0), "float32") |
| y_scale = relay.const((62 + 64) / (np.power(2, 32) - 1.0), "float32") |
| zero = relay.const(0, "int32") |
| |
| x = relay.var("x", shape=(1, 64), dtype=data_dtype) |
| y = relay.var("y", shape=(1, 64), dtype=data_dtype) |
| z = relay.qnn.concatenate( |
| (x, y), |
| input_scales=(x_scale, y_scale), |
| input_zero_points=(zero, zero), |
| output_scale=y_scale, |
| output_zero_point=zero, |
| axis=axis, |
| ) |
| |
| func = relay.Function([x, y], z) |
| mod = tvm.IRModule.from_expr(func) |
| mod = relay.transform.InferType()(mod) |
| mod = relay.qnn.transform.CanonicalizeOps()(mod) |
| func = mod["main"] |
| |
| golden_output = np.concatenate((x_data, y_data), axis=axis) |
| |
| op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( |
| x_data, y_data |
| ) |
| np.testing.assert_equal(op_res.numpy(), golden_output) |
| |
| |
| def test_different_io_qnn_params(): |
| data_dtype = "int32" |
| axis = 0 |
| x_data = np.arange(-32, 32, 1).reshape(1, 64).astype(data_dtype) |
| y_data = np.arange(-64, 64, 2).reshape(1, 64).astype(data_dtype) |
| |
| x_scale = relay.const((62 + 64) / (np.power(2, 32) - 1.0), "float32") |
| y_scale = relay.const((62 + 64) / (np.power(2, 32) - 1.0), "float32") |
| x_zero_point = relay.const(3, "int32") |
| y_zero_point = relay.const(4, "int32") |
| |
| x = relay.var("x", shape=(1, 64), dtype=data_dtype) |
| y = relay.var("y", shape=(1, 64), dtype=data_dtype) |
| z = relay.qnn.concatenate( |
| (x, y), |
| input_scales=(x_scale, y_scale), |
| input_zero_points=(x_zero_point, y_zero_point), |
| output_scale=y_scale, |
| output_zero_point=relay.const(1, "int32"), |
| axis=axis, |
| ) |
| |
| func = relay.Function([x, y], z) |
| mod = tvm.IRModule.from_expr(func) |
| mod = relay.transform.InferType()(mod) |
| mod = relay.qnn.transform.CanonicalizeOps()(mod) |
| func = mod["main"] |
| |
| golden_output = np.concatenate((x_data - 2, y_data - 3), axis=axis) |
| |
| op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( |
| x_data, y_data |
| ) |
| np.testing.assert_equal(op_res.numpy(), golden_output) |
| |
| |
| def test_few_same_io_qnn_params(): |
| data_dtype = "int32" |
| axis = 0 |
| x_data = np.arange(-32, 32, 1).reshape(1, 64).astype(data_dtype) |
| y_data = np.arange(-64, 64, 2).reshape(1, 64).astype(data_dtype) |
| |
| x_scale = relay.const((62 + 64) / (np.power(2, 32) - 1.0), "float32") |
| y_scale = relay.const((62 + 64) / (np.power(2, 32) - 1.0), "float32") |
| x_zero_point = relay.const(0, "int32") |
| y_zero_point = relay.const(1, "int32") |
| |
| x = relay.var("x", shape=(1, 64), dtype=data_dtype) |
| y = relay.var("y", shape=(1, 64), dtype=data_dtype) |
| z = relay.qnn.concatenate( |
| (x, y), |
| input_scales=(x_scale, y_scale), |
| input_zero_points=(x_zero_point, y_zero_point), |
| output_scale=y_scale, |
| output_zero_point=relay.const(1, "int32"), |
| axis=axis, |
| ) |
| |
| func = relay.Function([x, y], z) |
| mod = tvm.IRModule.from_expr(func) |
| mod = relay.transform.InferType()(mod) |
| mod = relay.qnn.transform.CanonicalizeOps()(mod) |
| func = mod["main"] |
| |
| golden_output = np.concatenate((x_data + 1, y_data), axis=axis) |
| |
| op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( |
| x_data, y_data |
| ) |
| np.testing.assert_equal(op_res.numpy(), golden_output) |
| |
| |
| def test_same_i_qnn_params(): |
| data_dtype = "int32" |
| axis = 0 |
| x_data = np.arange(-32, 32, 1).reshape(1, 64).astype(data_dtype) |
| y_data = np.arange(-64, 64, 2).reshape(1, 64).astype(data_dtype) |
| |
| x_scale = relay.const((62 + 64) / (np.power(2, 32) - 1.0), "float32") |
| y_scale = relay.const((62 + 64) / (np.power(2, 32) - 1.0), "float32") |
| x_zero_point = relay.const(0, "int32") |
| y_zero_point = relay.const(0, "int32") |
| |
| x = relay.var("x", shape=(1, 64), dtype=data_dtype) |
| y = relay.var("y", shape=(1, 64), dtype=data_dtype) |
| z = relay.qnn.concatenate( |
| (x, y), |
| input_scales=(x_scale, y_scale), |
| input_zero_points=(x_zero_point, y_zero_point), |
| output_scale=y_scale, |
| output_zero_point=relay.const(1, "int32"), |
| axis=axis, |
| ) |
| |
| func = relay.Function([x, y], z) |
| mod = tvm.IRModule.from_expr(func) |
| mod = relay.transform.InferType()(mod) |
| mod = relay.qnn.transform.CanonicalizeOps()(mod) |
| func = mod["main"] |
| |
| golden_output = np.concatenate((x_data + 1, y_data + 1), axis=axis) |
| |
| op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( |
| x_data, y_data |
| ) |
| np.testing.assert_equal(op_res.numpy(), golden_output) |
| |
| |
| def test_call_input(): |
| # This tests the case where the input to concatenate is not explicitly a |
| # tuple node but is instead a call node. |
| x_data = np.ones(shape=(64,)).astype("uint8") |
| |
| x = relay.var("x", shape=(64,), dtype="uint8") |
| x_scale = relay.const(1, "float32") |
| y_scale = relay.const(1, "float32") |
| x_zero_point = relay.const(0, "int32") |
| y_zero_point = relay.const(0, "int32") |
| |
| tup = relay.split(x, 2, axis=0) |
| z = relay.qnn.concatenate( |
| tup, |
| input_scales=(x_scale, y_scale), |
| input_zero_points=(x_zero_point, y_zero_point), |
| output_scale=y_scale, |
| output_zero_point=relay.const(0, "int32"), |
| axis=0, |
| ) |
| func = relay.Function([x], z) |
| |
| op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)(x_data) |
| np.testing.assert_equal(op_res.numpy(), x_data) |
| |
| |
| if __name__ == "__main__": |
| test_call_input() |
| test_same_io_qnn_params() |
| test_different_io_qnn_params() |
| test_few_same_io_qnn_params() |
| test_same_i_qnn_params() |