blob: b9f4437110c85cb7ab13344ddfd3c6406db8da18 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""codegen related to bool types"""
import tvm
import tvm.testing
from tvm import te
import numpy as np
import tvm.testing
arr_size = tvm.testing.parameter(32)
@tvm.testing.fixture
def compute(arr_size):
A = te.placeholder((arr_size,), name="A")
B = te.placeholder((arr_size,), name="B")
C = te.compute(A.shape, lambda *i: A(*i) > B(*i), name="C")
D = te.compute(C.shape, lambda *i: tvm.tir.all(C(*i), A(*i) > 1).astype("float32"), name="D")
return [A, B, C, D]
@tvm.testing.fixture
def schedule(target, compute):
target = tvm.target.Target(target)
A, B, C, D = compute
if target.kind.name == "llvm":
s = te.create_schedule(D.op)
xo, xi = s[C].split(C.op.axis[0], factor=4)
xo1, xo2 = s[C].split(xo, factor=13)
s[C].parallel(xo2)
else:
s = te.create_schedule(D.op)
for stage in [C, D]:
xo, xi = s[stage].split(stage.op.axis[0], factor=4)
s[stage].bind(xo, te.thread_axis("blockIdx.x"))
s[stage].bind(xi, te.thread_axis("threadIdx.x"))
return s
@tvm.testing.uses_gpu
def test_cmp_load_store(target, dev, arr_size, compute, schedule):
A, B, _, D = compute
f = tvm.build(schedule, [A, B, D], target)
a_np = np.random.uniform(size=arr_size).astype(A.dtype)
b_np = np.random.uniform(size=arr_size).astype(B.dtype)
a = tvm.nd.array(a_np, dev)
b = tvm.nd.array(b_np, dev)
d = tvm.nd.array(np.zeros(arr_size, dtype=D.dtype), dev)
f(a, b, d)
np.testing.assert_equal(
d.numpy(),
np.logical_and(a_np > b_np, a_np > 1).astype("float32"),
)
if __name__ == "__main__":
tvm.testing.main()