| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import tvm |
| import tvm.testing |
| from tvm import te |
| import numpy as np |
| |
| |
| @tvm.testing.requires_package("torch") |
| def test_from_dlpack_shape_one(): |
| # A test case for the issue https://github.com/pytorch/pytorch/issues/99803 |
| import torch |
| from torch.utils.dlpack import to_dlpack |
| |
| tgt = tvm.target.Target(target="llvm", host="llvm") |
| |
| rows = 1 |
| a = tvm.runtime.from_dlpack(to_dlpack(torch.randn(rows, 16))) |
| |
| A = te.placeholder((rows, 16), name="A") |
| B = te.placeholder((rows, 16), name="B") |
| C = te.compute(A.shape, lambda i, j: A[i, j] + B[i, j], name="C") |
| |
| fadd = tvm.compile(te.create_prim_func([A, B, C]), target=tgt) |
| |
| dev = tvm.device(tgt.kind.name, 0) |
| |
| b = tvm.runtime.tensor(np.random.uniform(size=(rows, 16)).astype(B.dtype), dev) |
| c = tvm.runtime.tensor(np.zeros((rows, 16), dtype=C.dtype), dev) |
| fadd(a, b, c) |
| |
| tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy()) |
| |
| |
| @tvm.testing.requires_package("torch") |
| def test_from_dlpack_strided(): |
| import torch |
| from torch.utils.dlpack import to_dlpack |
| |
| rows = 1 |
| inp = torch.randn(rows, 16) |
| a = tvm.runtime.from_dlpack(to_dlpack(inp)) |
| view = a._create_view((2, 8)) |
| |
| np.testing.assert_equal(inp.numpy().reshape(2, 8), view.numpy()) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |