blob: b271d1a7f3bc3cec3e201edad914c19d81f50d2d [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Optional, Union
import tvm
import tvm.script
import tvm.testing
from tvm import IRModule, relax
from tvm.script import relax as R
def _check(
parsed: Union[relax.Function, IRModule],
expect: Optional[Union[relax.Function, IRModule]],
):
test = parsed.script(show_meta=True)
roundtrip_mod = tvm.script.from_source(test)
tvm.ir.assert_structural_equal(parsed, roundtrip_mod)
if expect:
tvm.ir.assert_structural_equal(parsed, expect)
def test_take():
@R.function
def foo(
x: R.Tensor((2, 3, 4), "float32"), indices: R.Tensor((3,), "int64")
) -> R.Tensor((2, 3, 3), "float32"):
gv: R.Tensor((2, 3, 3), "float32") = R.take(x, indices, axis=2)
return gv
x = relax.Var("x", R.Tensor((2, 3, 4), "float32"))
indices = relax.Var("indices", R.Tensor((3,), "int64"))
bb = relax.BlockBuilder()
with bb.function("foo", [x, indices]):
gv = bb.emit(relax.op.take(x, indices, axis=2))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_strided_slice():
@R.function
def foo(x: R.Tensor((8, 9, 10, 10), "float32")) -> R.Tensor((4, 9, 10, 3), "float32"):
gv: R.Tensor((4, 9, 10, 3), "float32") = R.strided_slice(
x,
axes=[0, 1, -1],
begin=[1, 0, 8],
end=[8, 9, 0],
strides=[2, 1, -3],
)
return gv
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((8, 9, 10, 10), "float32"))
with bb.function("foo", [x]):
gv = bb.emit(
relax.op.strided_slice(
x, axes=[0, 1, -1], begin=[1, 0, 8], end=[8, 9, 0], strides=[2, 1, -3]
)
)
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
if __name__ == "__main__":
tvm.testing.main()