| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| # pylint: disable=missing-docstring |
| |
| import tvm.testing |
| from tvm import dlight as dl |
| from tvm.script import tir as T |
| from tvm.target import Target |
| |
| |
| def test_batch_decode_gemv(): |
| # fmt: off |
| |
| @T.prim_func(private=True) |
| def before(lv429: T.Buffer((T.int64(4096), T.int64(3584)), "uint32"), lv430: T.Buffer((T.int64(4096), T.int64(896)), "float16"), p_lv807: T.handle, p_output0: T.handle): |
| T.func_attr({"tir.noalias": True, "tir.HoistIfThenElseExprWithBlock": 1}) |
| batch_size = T.int64() |
| lv807 = T.match_buffer(p_lv807, (batch_size, T.int64(1), T.int64(28672)), "float16") |
| NT_matmul_intermediate = T.match_buffer(p_output0, (batch_size, T.int64(1), T.int64(4096)), "float16") |
| # with T.block("root"): |
| compute = T.alloc_buffer((T.int64(4096), T.int64(28672)), "float16") |
| dequantize_intermediate_intermediate = T.alloc_buffer((T.int64(4096), T.int64(28672)), "float16") |
| for i0, i1 in T.grid(T.int64(4096), T.int64(28672)): |
| with T.block("compute"): |
| v_i0, v_i1 = T.axis.remap("SS", [i0, i1]) |
| T.reads(lv429[v_i0, v_i1 // T.int64(8)]) |
| T.writes(compute[v_i0, v_i1]) |
| compute[v_i0, v_i1] = T.Cast("float16", T.bitwise_and(T.shift_right(lv429[v_i0, v_i1 // T.int64(8)], T.Cast("uint32", v_i1 % T.int64(8) * T.int64(4))), T.uint32(15))) |
| for i0, i1 in T.grid(T.int64(4096), T.int64(28672)): |
| with T.block("dequantize"): |
| v_i0, v_i1 = T.axis.remap("SS", [i0, i1]) |
| T.reads(compute[v_i0, v_i1], lv430[v_i0, v_i1 // T.int64(32)]) |
| T.writes(dequantize_intermediate_intermediate[v_i0, v_i1]) |
| dequantize_intermediate_intermediate[v_i0, v_i1] = (compute[v_i0, v_i1] - T.float16(7)) * lv430[v_i0, v_i1 // T.int64(32)] |
| for i0, i1, i2, k in T.grid(batch_size, T.int64(1), T.int64(4096), T.int64(28672)): |
| with T.block("NT_matmul"): |
| v_i0, v_i1, v_i2, v_k = T.axis.remap("SSSR", [i0, i1, i2, k]) |
| T.reads(lv807[v_i0, v_i1, v_k], dequantize_intermediate_intermediate[v_i2, v_k]) |
| T.writes(NT_matmul_intermediate[v_i0, v_i1, v_i2]) |
| with T.init(): |
| NT_matmul_intermediate[v_i0, v_i1, v_i2] = T.float16(0) |
| NT_matmul_intermediate[v_i0, v_i1, v_i2] = NT_matmul_intermediate[v_i0, v_i1, v_i2] + lv807[v_i0, v_i1, v_k] * dequantize_intermediate_intermediate[v_i2, v_k] |
| |
| @T.prim_func(private=True) |
| def expected(lv429: T.Buffer((T.int64(4096), T.int64(3584)), "uint32"), lv430: T.Buffer((T.int64(4096), T.int64(896)), "float16"), p_lv807: T.handle, p_output0: T.handle): |
| T.func_attr({"tir.HoistIfThenElseExprWithBlock": 1, "tir.is_scheduled": True, "tir.noalias": True}) |
| batch_size = T.int64() |
| lv807 = T.match_buffer(p_lv807, (batch_size, T.int64(1), T.int64(28672)), "float16") |
| NT_matmul_intermediate = T.match_buffer(p_output0, (batch_size, T.int64(1), T.int64(4096)), "float16") |
| # with T.block("root"): |
| dequantize_intermediate_intermediate_local = T.alloc_buffer((T.int64(4096), T.int64(28672)), "float16", scope="local") |
| NT_matmul_intermediate_pad_local = T.alloc_buffer(((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), T.int64(1), T.int64(4096)), "float16", scope="local") |
| NT_matmul_intermediate_pad_rf_local = T.alloc_buffer((T.int64(128), (batch_size + T.int64(3)) // T.int64(4) * T.int64(4), T.int64(1), T.int64(4096)), "float16", scope="local") |
| NT_matmul_intermediate_pad_rf_local_1 = T.alloc_buffer((T.int64(32), (batch_size + T.int64(3)) // T.int64(4) * T.int64(4), T.int64(1), T.int64(4096)), "float16", scope="local") |
| for ax0_0 in T.thread_binding((batch_size + T.int64(3)) // T.int64(4), thread="blockIdx.y"): |
| for u_fused_ax1_fused_fused_0 in T.thread_binding(T.int64(256), thread="blockIdx.x"): |
| for u_fused_ax1_fused_fused_1 in T.thread_binding(T.int64(8), thread="threadIdx.x"): |
| for ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 in T.thread_binding(T.int64(32), thread="threadIdx.y"): |
| for ax0_1_init, u_fused_ax1_fused_fused_2_init in T.grid(T.int64(4), T.int64(2)): |
| for ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1_init in T.vectorized(T.int64(4)): |
| with T.block("NT_matmul_rf_init"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused = T.axis.spatial(T.int64(128), ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(4) + ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1_init) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax0_1_init) |
| v1 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + u_fused_ax1_fused_fused_1 * T.int64(2) + u_fused_ax1_fused_fused_2_init) |
| T.reads() |
| T.writes(NT_matmul_intermediate_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, T.int64(0), v1]) |
| NT_matmul_intermediate_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, T.int64(0), v1] = T.float16(0) |
| for ax2_fused_u_fused_0 in T.serial(T.int64(112), annotations={"pragma_auto_unroll_max_step": 8, "pragma_unroll_explicit": 1}): |
| for ax0_0_1, ax1 in T.grid(T.int64(2), T.int64(8)): |
| for ax0_1 in T.vectorized(T.int64(1)): |
| with T.block("dequantize"): |
| v0 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + u_fused_ax1_fused_fused_1 * T.int64(2) + ax0_0_1 + ax0_1) |
| v1 = T.axis.spatial(T.int64(28672), ax2_fused_u_fused_0 * T.int64(256) + ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(8) + ax1) |
| T.reads(lv429[v0, v1 // T.int64(8)], lv430[v0, v1 // T.int64(32)]) |
| T.writes(dequantize_intermediate_intermediate_local[v0, v1]) |
| dequantize_intermediate_intermediate_local[v0, v1] = (T.Cast("float16", T.bitwise_and(T.shift_right(lv429[v0, v1 // T.int64(8)], T.Cast("uint32", v1 % T.int64(8) * T.int64(4))), T.uint32(15))) - T.float16(7)) * lv430[v0, v1 // T.int64(32)] |
| for ax0_1, u_fused_ax1_fused_fused_2, ax2_fused_u_fused_2 in T.grid(T.int64(4), T.int64(2), T.int64(2)): |
| for ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1 in T.vectorized(T.int64(4)): |
| with T.block("NT_matmul_rf_update"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused = T.axis.spatial(T.int64(128), ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(4) + ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax0_1) |
| v1 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + u_fused_ax1_fused_fused_1 * T.int64(2) + u_fused_ax1_fused_fused_2) |
| vax2_fused_u_fused_0, vax2_fused_u_fused_2 = T.axis.remap("RR", [ax2_fused_u_fused_0, ax2_fused_u_fused_2]) |
| T.reads(NT_matmul_intermediate_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, T.int64(0), v1], lv807[v0, T.int64(0), vax2_fused_u_fused_0 * T.int64(256) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused // T.int64(4) * T.int64(8) + vax2_fused_u_fused_2 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused % T.int64(4)], dequantize_intermediate_intermediate_local[v1, vax2_fused_u_fused_0 * T.int64(256) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused // T.int64(4) * T.int64(8) + vax2_fused_u_fused_2 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused % T.int64(4)]) |
| T.writes(NT_matmul_intermediate_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, T.int64(0), v1]) |
| NT_matmul_intermediate_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, T.int64(0), v1] = NT_matmul_intermediate_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, T.int64(0), v1] + T.if_then_else(v0 < batch_size, lv807[v0, T.int64(0), vax2_fused_u_fused_0 * T.int64(256) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused // T.int64(4) * T.int64(8) + vax2_fused_u_fused_2 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused % T.int64(4)], T.float16(0)) * dequantize_intermediate_intermediate_local[v1, vax2_fused_u_fused_0 * T.int64(256) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused // T.int64(4) * T.int64(8) + vax2_fused_u_fused_2 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused % T.int64(4)] |
| for ax3_fused_0_ax3_fused_1_fused in T.thread_binding(T.int64(8), thread="threadIdx.x"): |
| for ax0 in T.thread_binding(T.int64(32), thread="threadIdx.y"): |
| for ax3_fused_2_0 in T.serial(T.int64(1), annotations={"pragma_auto_unroll_max_step": 8, "pragma_unroll_explicit": 1}): |
| for ax2 in range(T.int64(4)): |
| for ax3_fused_2_1 in T.vectorized(T.int64(2)): |
| with T.block("NT_matmul_rf_init"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 = T.axis.spatial(T.int64(32), ax0) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax2) |
| v1 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + ax3_fused_0_ax3_fused_1_fused * T.int64(2) + ax3_fused_2_0 * T.int64(2) + ax3_fused_2_1) |
| T.reads() |
| T.writes(NT_matmul_intermediate_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1]) |
| NT_matmul_intermediate_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1] = T.float16(0) |
| for ax1 in range(T.int64(4)): |
| with T.block("NT_matmul_rf_update"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1 = T.axis.remap("SR", [ax0, ax1]) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax2) |
| v1 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + ax3_fused_0_ax3_fused_1_fused * T.int64(2) + ax3_fused_2_0 * T.int64(2) + ax3_fused_2_1) |
| T.reads(NT_matmul_intermediate_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1], NT_matmul_intermediate_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1, v0, T.int64(0), v1]) |
| T.writes(NT_matmul_intermediate_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1]) |
| NT_matmul_intermediate_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1] = NT_matmul_intermediate_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1] + NT_matmul_intermediate_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1, v0, T.int64(0), v1] |
| for ax2_fused_2, ax1 in T.grid(T.int64(2), T.int64(4)): |
| for ax2_fused_0_ax2_fused_1_fused in T.thread_binding(T.int64(8), thread="threadIdx.x"): |
| for ax0 in T.thread_binding(T.int64(32), thread="threadIdx.y"): |
| with T.block("NT_matmul"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 = T.axis.reduce(T.int64(32), ax0) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax1) |
| v1 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + ax2_fused_0_ax2_fused_1_fused * T.int64(2) + ax2_fused_2) |
| T.reads(NT_matmul_intermediate_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1]) |
| T.writes(NT_matmul_intermediate_pad_local[v0, T.int64(0), v1]) |
| with T.init(): |
| NT_matmul_intermediate_pad_local[v0, T.int64(0), v1] = T.float16(0) |
| NT_matmul_intermediate_pad_local[v0, T.int64(0), v1] = NT_matmul_intermediate_pad_local[v0, T.int64(0), v1] + NT_matmul_intermediate_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1] |
| for ax0 in range(T.int64(4)): |
| for ax1_fused_0_ax1_fused_1_fused in T.thread_binding(T.int64(8), thread="threadIdx.x"): |
| for ax1_fused_2 in range(T.int64(2)): |
| with T.block("NT_matmul_intermediate_pad"): |
| v0 = T.axis.spatial(batch_size, ax0_0 * T.int64(4) + ax0) |
| v1 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + ax1_fused_0_ax1_fused_1_fused * T.int64(2) + ax1_fused_2) |
| T.where((ax0_0 - (batch_size + T.int64(3)) // T.int64(4) < T.int64(0) or ax0_0 * T.int64(4) + ax0 == T.int64(0)) and ax0_0 * T.int64(4) + ax0 < batch_size) |
| T.reads(NT_matmul_intermediate_pad_local[v0, T.int64(0), v1]) |
| T.writes(NT_matmul_intermediate[v0, T.int64(0), v1]) |
| NT_matmul_intermediate[v0, T.int64(0), v1] = NT_matmul_intermediate_pad_local[v0, T.int64(0), v1] |
| |
| # fmt: on |
| mod = tvm.IRModule({"main": before}) |
| with Target("metal"): |
| mod = dl.ApplyDefaultSchedule(dl.gpu.LowBatchGEMV(4))(mod) |
| tvm.ir.assert_structural_equal(mod["main"], expected) |
| |
| |
| def test_batch_gemv(): |
| N = 4096 |
| K = 4096 |
| # fmt: off |
| @T.prim_func(private=True) |
| def before(var_A: T.handle, B: T.Buffer((T.int64(N), T.int64(K)), "float16"), var_NT_matmul: T.handle): |
| T.func_attr({"tir.noalias": True, "tir.HoistIfThenElseExprWithBlock": 1}) |
| batch_size = T.int64() |
| A = T.match_buffer(var_A, (batch_size, T.int64(1), T.int64(K)), "float16") |
| NT_matmul = T.match_buffer(var_NT_matmul, (batch_size, T.int64(1), T.int64(N)), "float16") |
| # with T.block("root"): |
| for i0, i1, i2, k in T.grid(batch_size, T.int64(1), T.int64(N), T.int64(K)): |
| with T.block("NT_matmul"): |
| v_i0, v_i1, v_i2, v_k = T.axis.remap("SSSR", [i0, i1, i2, k]) |
| T.reads(A[v_i0, v_i1, v_k], B[v_i2, v_k]) |
| T.writes(NT_matmul[v_i0, v_i1, v_i2]) |
| with T.init(): |
| NT_matmul[v_i0, v_i1, v_i2] = T.float16(0) |
| NT_matmul[v_i0, v_i1, v_i2] = NT_matmul[v_i0, v_i1, v_i2] + A[v_i0, v_i1, v_k] * B[v_i2, v_k] |
| |
| @T.prim_func(private=True) |
| def expected(var_A: T.handle, B: T.Buffer((T.int64(4096), T.int64(4096)), "float16"), var_NT_matmul: T.handle): |
| T.func_attr({"tir.HoistIfThenElseExprWithBlock": 1, "tir.is_scheduled": True, "tir.noalias": True}) |
| batch_size = T.int64() |
| A = T.match_buffer(var_A, (batch_size, T.int64(1), T.int64(4096)), "float16") |
| NT_matmul = T.match_buffer(var_NT_matmul, (batch_size, T.int64(1), T.int64(4096)), "float16") |
| # with T.block("root"): |
| NT_matmul_pad_local = T.alloc_buffer(((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), T.int64(1), T.int64(4096)), "float16", scope="local") |
| NT_matmul_pad_rf_local = T.alloc_buffer((T.int64(128), (batch_size + T.int64(3)) // T.int64(4) * T.int64(4), T.int64(1), T.int64(4096)), "float16", scope="local") |
| NT_matmul_pad_rf_local_1 = T.alloc_buffer((T.int64(32), (batch_size + T.int64(3)) // T.int64(4) * T.int64(4), T.int64(1), T.int64(4096)), "float16", scope="local") |
| for ax0_0 in T.thread_binding((batch_size + T.int64(3)) // T.int64(4), thread="blockIdx.y"): |
| for u_fused_ax1_fused_fused_0 in T.thread_binding(T.int64(256), thread="blockIdx.x"): |
| for u_fused_ax1_fused_fused_1 in T.thread_binding(T.int64(8), thread="threadIdx.x"): |
| for ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 in T.thread_binding(T.int64(32), thread="threadIdx.y"): |
| for ax0_1_init, u_fused_ax1_fused_fused_2_init in T.grid(T.int64(4), T.int64(2)): |
| for ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1_init in T.vectorized(T.int64(4)): |
| with T.block("NT_matmul_rf_init"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused = T.axis.spatial(T.int64(128), ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(4) + ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1_init) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax0_1_init) |
| v1 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + u_fused_ax1_fused_fused_1 * T.int64(2) + u_fused_ax1_fused_fused_2_init) |
| T.reads() |
| T.writes(NT_matmul_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, T.int64(0), v1]) |
| NT_matmul_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, T.int64(0), v1] = T.float16(0) |
| for ax2_fused_u_fused_0 in T.serial(T.int64(16), annotations={"pragma_auto_unroll_max_step": 8, "pragma_unroll_explicit": 1}): |
| for ax0_1, u_fused_ax1_fused_fused_2, ax2_fused_u_fused_2 in T.grid(T.int64(4), T.int64(2), T.int64(2)): |
| for ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1 in T.vectorized(T.int64(4)): |
| with T.block("NT_matmul_rf_update"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused = T.axis.spatial(T.int64(128), ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(4) + ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax0_1) |
| v1 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + u_fused_ax1_fused_fused_1 * T.int64(2) + u_fused_ax1_fused_fused_2) |
| vax2_fused_u_fused_0, vax2_fused_u_fused_2 = T.axis.remap("RR", [ax2_fused_u_fused_0, ax2_fused_u_fused_2]) |
| T.reads(NT_matmul_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, T.int64(0), v1], A[v0, T.int64(0), vax2_fused_u_fused_0 * T.int64(256) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused // T.int64(4) * T.int64(8) + vax2_fused_u_fused_2 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused % T.int64(4)], B[v1, vax2_fused_u_fused_0 * T.int64(256) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused // T.int64(4) * T.int64(8) + vax2_fused_u_fused_2 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused % T.int64(4)]) |
| T.writes(NT_matmul_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, T.int64(0), v1]) |
| NT_matmul_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, T.int64(0), v1] = NT_matmul_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, T.int64(0), v1] + T.if_then_else(v0 < batch_size, A[v0, T.int64(0), vax2_fused_u_fused_0 * T.int64(256) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused // T.int64(4) * T.int64(8) + vax2_fused_u_fused_2 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused % T.int64(4)], T.float16(0)) * B[v1, vax2_fused_u_fused_0 * T.int64(256) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused // T.int64(4) * T.int64(8) + vax2_fused_u_fused_2 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused % T.int64(4)] |
| for ax3_fused_0_ax3_fused_1_fused in T.thread_binding(T.int64(8), thread="threadIdx.x"): |
| for ax0 in T.thread_binding(T.int64(32), thread="threadIdx.y"): |
| for ax3_fused_2_0 in T.serial(T.int64(1), annotations={"pragma_auto_unroll_max_step": 8, "pragma_unroll_explicit": 1}): |
| for ax2 in range(T.int64(4)): |
| for ax3_fused_2_1 in T.vectorized(T.int64(2)): |
| with T.block("NT_matmul_rf_init"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 = T.axis.spatial(T.int64(32), ax0) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax2) |
| v1 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + ax3_fused_0_ax3_fused_1_fused * T.int64(2) + ax3_fused_2_0 * T.int64(2) + ax3_fused_2_1) |
| T.reads() |
| T.writes(NT_matmul_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1]) |
| NT_matmul_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1] = T.float16(0) |
| for ax1 in range(T.int64(4)): |
| with T.block("NT_matmul_rf_update"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1 = T.axis.remap("SR", [ax0, ax1]) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax2) |
| v1 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + ax3_fused_0_ax3_fused_1_fused * T.int64(2) + ax3_fused_2_0 * T.int64(2) + ax3_fused_2_1) |
| T.reads(NT_matmul_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1], NT_matmul_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1, v0, T.int64(0), v1]) |
| T.writes(NT_matmul_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1]) |
| NT_matmul_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1] = NT_matmul_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1] + NT_matmul_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1, v0, T.int64(0), v1] |
| for ax2_fused_2, ax1 in T.grid(T.int64(2), T.int64(4)): |
| for ax2_fused_0_ax2_fused_1_fused in T.thread_binding(T.int64(8), thread="threadIdx.x"): |
| for ax0 in T.thread_binding(T.int64(32), thread="threadIdx.y"): |
| with T.block("NT_matmul"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 = T.axis.reduce(T.int64(32), ax0) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax1) |
| v1 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + ax2_fused_0_ax2_fused_1_fused * T.int64(2) + ax2_fused_2) |
| T.reads(NT_matmul_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1]) |
| T.writes(NT_matmul_pad_local[v0, T.int64(0), v1]) |
| with T.init(): |
| NT_matmul_pad_local[v0, T.int64(0), v1] = T.float16(0) |
| NT_matmul_pad_local[v0, T.int64(0), v1] = NT_matmul_pad_local[v0, T.int64(0), v1] + NT_matmul_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, T.int64(0), v1] |
| for ax0 in range(T.int64(4)): |
| for ax1_fused_0_ax1_fused_1_fused in T.thread_binding(T.int64(8), thread="threadIdx.x"): |
| for ax1_fused_2 in range(T.int64(2)): |
| with T.block("NT_matmul_pad"): |
| v0 = T.axis.spatial(batch_size, ax0_0 * T.int64(4) + ax0) |
| v1 = T.axis.spatial(T.int64(4096), u_fused_ax1_fused_fused_0 * T.int64(16) + ax1_fused_0_ax1_fused_1_fused * T.int64(2) + ax1_fused_2) |
| T.where((ax0_0 - (batch_size + T.int64(3)) // T.int64(4) < T.int64(0) or ax0_0 * T.int64(4) + ax0 == T.int64(0)) and ax0_0 * T.int64(4) + ax0 < batch_size) |
| T.reads(NT_matmul_pad_local[v0, T.int64(0), v1]) |
| T.writes(NT_matmul[v0, T.int64(0), v1]) |
| NT_matmul[v0, T.int64(0), v1] = NT_matmul_pad_local[v0, T.int64(0), v1] |
| # fmt: on |
| mod = tvm.IRModule({"main": before}) |
| with Target("metal"): |
| mod = dl.ApplyDefaultSchedule(dl.gpu.LowBatchGEMV(4))(mod) |
| tvm.ir.assert_structural_equal(mod["main"], expected) |
| |
| |
| def test_reduction_symbolic_var(): |
| # fmt: off |
| @T.prim_func(private=True) |
| def before(var_A: T.handle, var_B: T.handle, matmul: T.Buffer((T.int64(1), T.int64(32), T.int64(1), T.int64(128)), "float32")): |
| T.func_attr({"tir.noalias": True}) |
| kv_seq_len = T.int64() |
| A = T.match_buffer(var_A, (T.int64(1), T.int64(32), T.int64(1), kv_seq_len)) |
| B = T.match_buffer(var_B, (T.int64(1), T.int64(32), kv_seq_len, T.int64(128))) |
| # with T.block("root"): |
| for i0, i1, i2, i3, k in T.grid(T.int64(1), T.int64(32), T.int64(1), T.int64(128), kv_seq_len): |
| with T.block("matmul"): |
| v_i0, v_i1, v_i2, v_i3, v_k = T.axis.remap("SSSSR", [i0, i1, i2, i3, k]) |
| T.reads(A[v_i0, v_i1, v_i2, v_k], B[v_i0, v_i1, v_k, v_i3]) |
| T.writes(matmul[v_i0, v_i1, v_i2, v_i3]) |
| with T.init(): |
| matmul[v_i0, v_i1, v_i2, v_i3] = T.float32(0) |
| matmul[v_i0, v_i1, v_i2, v_i3] = matmul[v_i0, v_i1, v_i2, v_i3] + A[v_i0, v_i1, v_i2, v_k] * B[v_i0, v_i1, v_k, v_i3] |
| # fmt: on |
| mod = tvm.IRModule({"main": before}) |
| with Target("metal"): |
| mod = dl.ApplyDefaultSchedule(dl.gpu.LowBatchGEMV(4))(mod) |
| tvm.ir.assert_structural_equal(mod["main"], before) |
| |
| |
| def test_small_spatial_axis(): |
| @T.prim_func(private=True) |
| def func(var_A: T.handle, B: T.Buffer((T.int64(8), T.int64(4096)), "float16"), var_C: T.handle): |
| T.func_attr({"tir.noalias": True}) |
| batch_size = T.int64() |
| A = T.match_buffer(var_A, (batch_size, T.int64(4096)), "float16") |
| C = T.match_buffer(var_C, (batch_size, T.int64(8)), "float16") |
| for i0, i1, k in T.grid(batch_size, T.int64(8), T.int64(4096)): |
| with T.block("NT_matmul"): |
| v_i0, v_i1, v_k = T.axis.remap("SSR", [i0, i1, k]) |
| T.reads(A[v_i0, v_k], B[v_i1, v_k]) |
| T.writes(C[v_i0, v_i1]) |
| with T.init(): |
| C[v_i0, v_i1] = T.float16(0) |
| C[v_i0, v_i1] = C[v_i0, v_i1] + A[v_i0, v_k] * B[v_i1, v_k] |
| |
| # fmt: off |
| @T.prim_func(private=True) |
| def expected(var_A: T.handle, B: T.Buffer((T.int64(8), T.int64(4096)), "float16"), var_C: T.handle): |
| T.func_attr({"tir.is_scheduled": True, "tir.noalias": True}) |
| batch_size = T.int64() |
| A = T.match_buffer(var_A, (batch_size, T.int64(4096)), "float16") |
| C = T.match_buffer(var_C, (batch_size, T.int64(8)), "float16") |
| # with T.block("root"): |
| C_pad_local = T.alloc_buffer(((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), T.int64(8)), "float16", scope="local") |
| C_pad_rf_local = T.alloc_buffer((T.int64(128), (batch_size + T.int64(3)) // T.int64(4) * T.int64(4), T.int64(8)), "float16", scope="local") |
| C_pad_rf_local_1 = T.alloc_buffer((T.int64(32), (batch_size + T.int64(3)) // T.int64(4) * T.int64(4), T.int64(8)), "float16", scope="local") |
| for ax0_0 in T.thread_binding((batch_size + T.int64(3)) // T.int64(4), thread="blockIdx.y"): |
| for u_fused_ax1_fused_fused_0 in T.thread_binding(T.int64(1), thread="blockIdx.x"): |
| for u_fused_ax1_fused_fused_1 in T.thread_binding(T.int64(16), thread="threadIdx.y"): |
| for ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 in T.thread_binding(T.int64(32), thread="threadIdx.x"): |
| for ax0_1_init, u_fused_ax1_fused_fused_2_init in T.grid(T.int64(4), T.int64(2)): |
| for ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1_init in T.vectorized(T.int64(4)): |
| with T.block("NT_matmul_rf_init"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused = T.axis.spatial(T.int64(128), ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(4) + ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1_init) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax0_1_init) |
| v1 = T.axis.spatial(T.int64(8), u_fused_ax1_fused_fused_0 * T.int64(32) + u_fused_ax1_fused_fused_1 * T.int64(2) + u_fused_ax1_fused_fused_2_init) |
| T.where((u_fused_ax1_fused_fused_0 * T.int64(16) + u_fused_ax1_fused_fused_1) * T.int64(2) + u_fused_ax1_fused_fused_2_init < T.int64(8)) |
| T.reads() |
| T.writes(C_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, v1]) |
| C_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, v1] = T.float16(0) |
| for ax2_fused_u_fused_0 in T.serial(T.int64(16), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}): |
| for ax0_1, u_fused_ax1_fused_fused_2, ax2_fused_u_fused_2 in T.grid(T.int64(4), T.int64(2), T.int64(2)): |
| for ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1 in T.vectorized(T.int64(4)): |
| with T.block("NT_matmul_rf_update"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused = T.axis.spatial(T.int64(128), ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(4) + ax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax0_1) |
| v1 = T.axis.spatial(T.int64(8), u_fused_ax1_fused_fused_0 * T.int64(32) + u_fused_ax1_fused_fused_1 * T.int64(2) + u_fused_ax1_fused_fused_2) |
| vax2_fused_u_fused_0, vax2_fused_u_fused_2 = T.axis.remap("RR", [ax2_fused_u_fused_0, ax2_fused_u_fused_2]) |
| T.where((u_fused_ax1_fused_fused_0 * T.int64(16) + u_fused_ax1_fused_fused_1) * T.int64(2) + u_fused_ax1_fused_fused_2 < T.int64(8)) |
| T.reads(C_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, v1], A[v0, vax2_fused_u_fused_0 * T.int64(256) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused // T.int64(4) * T.int64(8) + vax2_fused_u_fused_2 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused % T.int64(4)], B[v1, vax2_fused_u_fused_0 * T.int64(256) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused // T.int64(4) * T.int64(8) + vax2_fused_u_fused_2 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused % T.int64(4)]) |
| T.writes(C_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, v1]) |
| C_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, v1] = C_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused, v0, v1] + T.if_then_else(v0 < batch_size, A[v0, vax2_fused_u_fused_0 * T.int64(256) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused // T.int64(4) * T.int64(8) + vax2_fused_u_fused_2 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused % T.int64(4)], T.float16(0)) * B[v1, vax2_fused_u_fused_0 * T.int64(256) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused // T.int64(4) * T.int64(8) + vax2_fused_u_fused_2 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused % T.int64(4)] |
| for ax3_fused_0_ax3_fused_1_fused in T.thread_binding(T.int64(16), thread="threadIdx.y"): |
| for ax0 in T.thread_binding(T.int64(32), thread="threadIdx.x"): |
| for ax3_fused_2_0 in T.serial(T.int64(1), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}): |
| for ax2 in range(T.int64(4)): |
| for ax3_fused_2_1 in T.vectorized(T.int64(2)): |
| with T.block("NT_matmul_rf_init"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 = T.axis.spatial(T.int64(32), ax0) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax2) |
| v1 = T.axis.spatial(T.int64(8), ax3_fused_0_ax3_fused_1_fused * T.int64(2) + ax3_fused_2_0 * T.int64(2) + ax3_fused_2_1) |
| T.where((T.Mul(T.int64(0), T.int64(16)) + ax3_fused_0_ax3_fused_1_fused % T.int64(16)) * T.int64(2) + (ax3_fused_2_0 * T.int64(2) + ax3_fused_2_1) < T.int64(8)) |
| T.reads() |
| T.writes(C_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, v1]) |
| C_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, v1] = T.float16(0) |
| for ax1 in range(T.int64(4)): |
| with T.block("NT_matmul_rf_update"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1 = T.axis.remap("SR", [ax0, ax1]) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax2) |
| v1 = T.axis.spatial(T.int64(8), ax3_fused_0_ax3_fused_1_fused * T.int64(2) + ax3_fused_2_0 * T.int64(2) + ax3_fused_2_1) |
| T.where((T.Mul(T.int64(0), T.int64(16)) + ax3_fused_0_ax3_fused_1_fused % T.int64(16)) * T.int64(2) + (ax3_fused_2_0 * T.int64(2) + ax3_fused_2_1) < T.int64(8)) |
| T.reads(C_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, v1], C_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1, v0, v1]) |
| T.writes(C_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, v1]) |
| C_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, v1] = C_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, v1] + C_pad_rf_local[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 * T.int64(4) + vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_1, v0, v1] |
| for ax2_fused_2, ax1 in T.grid(T.int64(2), T.int64(4)): |
| for ax2_fused_0_ax2_fused_1_fused in T.thread_binding(T.int64(16), thread="threadIdx.y"): |
| for ax0 in T.thread_binding(T.int64(32), thread="threadIdx.x"): |
| with T.block("NT_matmul"): |
| vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0 = T.axis.reduce(T.int64(32), ax0) |
| v0 = T.axis.spatial((batch_size + T.int64(3)) // T.int64(4) * T.int64(4), ax0_0 * T.int64(4) + ax1) |
| v1 = T.axis.spatial(T.int64(8), ax2_fused_0_ax2_fused_1_fused * T.int64(2) + ax2_fused_2) |
| T.where((T.Mul(T.int64(0), T.int64(16)) + ax2_fused_0_ax2_fused_1_fused % T.int64(16)) * T.int64(2) + ax2_fused_2 < T.int64(8)) |
| T.reads(C_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, v1]) |
| T.writes(C_pad_local[v0, v1]) |
| with T.init(): |
| C_pad_local[v0, v1] = T.float16(0) |
| C_pad_local[v0, v1] = C_pad_local[v0, v1] + C_pad_rf_local_1[vax2_fused_u_fused_1_ax2_fused_u_fused_3_fused_0, v0, v1] |
| for ax0 in range(T.int64(4)): |
| for ax1_fused_0_ax1_fused_1_fused in T.thread_binding(T.int64(16), thread="threadIdx.y"): |
| for ax1_fused_2 in range(T.int64(2)): |
| with T.block("C_pad"): |
| v0 = T.axis.spatial(batch_size, ax0_0 * T.int64(4) + ax0) |
| v1 = T.axis.spatial(T.int64(8), ax1_fused_0_ax1_fused_1_fused * T.int64(2) + ax1_fused_2) |
| T.where((ax0_0 - (batch_size + T.int64(3)) // T.int64(4) < T.int64(0) or ax0_0 * T.int64(4) + ax0 == T.int64(0)) and ax0_0 * T.int64(4) + ax0 < batch_size and (T.Mul(T.int64(0), T.int64(16)) + ax1_fused_0_ax1_fused_1_fused % T.int64(16)) * T.int64(2) + ax1_fused_2 < T.int64(8)) |
| T.reads(C_pad_local[v0, v1]) |
| T.writes(C[v0, v1]) |
| C[v0, v1] = C_pad_local[v0, v1] |
| # fmt: on |
| |
| mod = tvm.IRModule({"main": func}) |
| with Target("cuda"): |
| mod = dl.ApplyDefaultSchedule(dl.gpu.LowBatchGEMV(4))(mod) |
| tvm.ir.assert_structural_equal(mod["main"], expected) |
| |
| |
| def test_outer_reduction(): |
| # fmt: off |
| @T.prim_func(private=True) |
| def before( |
| B0: T.Buffer((512, 6144), "uint32"), |
| B1: T.Buffer((128, 6144), "float16"), |
| var_A: T.handle, |
| var_C: T.handle |
| ): |
| batch_size = T.int32() |
| A = T.match_buffer(var_A, (batch_size, 1, 4096), "float16") |
| C = T.match_buffer(var_C, (batch_size, 1, 6144), "float16") |
| compute = T.alloc_buffer((4096, 6144), "float16") |
| B = T.alloc_buffer((4096, 6144), "float16") |
| for i0, i1 in T.grid(4096, 6144): |
| with T.block("compute"): |
| v_i0, v_i1 = T.axis.remap("SS", [i0, i1]) |
| compute[v_i0, v_i1] = T.Cast("float16", T.bitwise_and(T.shift_right(B0[v_i0 // 8, v_i1], T.Cast("uint32", v_i0 % 8 * 4)), T.uint32(15))) |
| for i0, i1 in T.grid(4096, 6144): |
| with T.block("dequantize"): |
| v_i0, v_i1 = T.axis.remap("SS", [i0, i1]) |
| B[v_i0, v_i1] = (compute[v_i0, v_i1] - T.float16(7)) * B1[v_i0 // 32, v_i1] |
| for i0, i1, i2, k in T.grid(batch_size, 1, 6144, 4096): |
| with T.block("matmul"): |
| v_i0, v_i1, v_i2, v_k = T.axis.remap("SSSR", [i0, i1, i2, k]) |
| with T.init(): |
| C[v_i0, v_i1, v_i2] = T.float16(0) |
| C[v_i0, v_i1, v_i2] = C[v_i0, v_i1, v_i2] + A[v_i0, v_i1, v_k] * B[v_k, v_i2] |
| |
| @T.prim_func(private=True) |
| def expected(B0: T.Buffer((512, 6144), "uint32"), B1: T.Buffer((128, 6144), "float16"), var_A: T.handle, var_C: T.handle): |
| T.func_attr({"tir.is_scheduled": True}) |
| batch_size = T.int32() |
| A = T.match_buffer(var_A, (batch_size, 1, 4096), "float16") |
| C = T.match_buffer(var_C, (batch_size, 1, 6144), "float16") |
| # with T.block("root"): |
| B_local = T.alloc_buffer((4096, 6144), "float16", scope="local") |
| A_pad_shared = T.alloc_buffer(((batch_size + 3) // 4 * 4, 1, 4096), "float16", scope="shared") |
| C_pad_local = T.alloc_buffer(((batch_size + 3) // 4 * 4, 1, 6144), "float16", scope="local") |
| C_pad_rf_local = T.alloc_buffer((32, (batch_size + 3) // 4 * 4, 1, 6144), "float16", scope="local") |
| C_pad_rf_local_1 = T.alloc_buffer((4, (batch_size + 3) // 4 * 4, 1, 6144), "float16", scope="local") |
| B0_local = T.alloc_buffer((512, 6144), "uint32", scope="local") |
| B1_local = T.alloc_buffer((128, 6144), "float16", scope="local") |
| for ax0_0 in T.thread_binding((batch_size + 3) // 4, thread="blockIdx.y"): |
| for ax1_fused_0 in T.thread_binding(96, thread="blockIdx.x"): |
| for ax1_fused_1 in T.thread_binding(64, thread="threadIdx.x"): |
| for ax2_fused_1_ax2_fused_3_fused_0 in T.thread_binding(4, thread="threadIdx.y"): |
| for ax0_1_init, ax2_fused_1_ax2_fused_3_fused_1_0_init in T.grid(4, 2): |
| for ax2_fused_1_ax2_fused_3_fused_1_1_init in T.vectorized(4): |
| with T.block("matmul_rf_init"): |
| vax2_fused_1_ax2_fused_3_fused = T.axis.spatial(32, ax2_fused_1_ax2_fused_3_fused_0 * 8 + ax2_fused_1_ax2_fused_3_fused_1_0_init * 4 + ax2_fused_1_ax2_fused_3_fused_1_1_init) |
| v0 = T.axis.spatial((batch_size + 3) // 4 * 4, ax0_0 * 4 + ax0_1_init) |
| v1 = T.axis.spatial(6144, ax1_fused_0 * 64 + ax1_fused_1) |
| T.reads() |
| T.writes(C_pad_rf_local[vax2_fused_1_ax2_fused_3_fused, v0, 0, v1]) |
| C_pad_rf_local[vax2_fused_1_ax2_fused_3_fused, v0, 0, v1] = T.float16(0) |
| for ax2_fused_0 in range(32): |
| for ax0_ax1_fused in T.vectorized(4): |
| with T.block("B0_local"): |
| v0 = T.axis.spatial(512, ax2_fused_0 * 16 + ax2_fused_1_ax2_fused_3_fused_0 * 4 + ax0_ax1_fused) |
| v1 = T.axis.spatial(6144, ax1_fused_0 * 64 + ax1_fused_1) |
| T.reads(B0[v0, v1]) |
| T.writes(B0_local[v0, v1]) |
| B0_local[v0, v1] = B0[v0, v1] |
| for ax0_ax1_fused in T.vectorized(1): |
| with T.block("B1_local"): |
| v0 = T.axis.spatial(128, ax2_fused_0 * 4 + ax2_fused_1_ax2_fused_3_fused_0) |
| v1 = T.axis.spatial(6144, ax1_fused_0 * 64 + ax1_fused_1) |
| T.reads(B1[v0, v1]) |
| T.writes(B1_local[v0, v1]) |
| B1_local[v0, v1] = B1[v0, v1] |
| for ax0_ax1_fused_0 in T.thread_binding(4, thread="threadIdx.y"): |
| for ax0_ax1_fused_1 in T.thread_binding(64, thread="threadIdx.x"): |
| for ax0_ax1_fused_2 in T.vectorized(2): |
| with T.block("A_pad"): |
| v0 = T.axis.spatial((batch_size + 3) // 4 * 4, ax0_0 * 4 + (ax0_ax1_fused_0 * 128 + ax0_ax1_fused_1 * 2 + ax0_ax1_fused_2) // 128) |
| v1 = T.axis.spatial(4096, ax2_fused_0 * 128 + (ax0_ax1_fused_0 * 128 + ax0_ax1_fused_1 * 2 + ax0_ax1_fused_2) % 128) |
| T.reads(A[v0, 0, v1]) |
| T.writes(A_pad_shared[v0, 0, v1]) |
| T.block_attr({"buffer_dim_align": [[0, 1, 8, 1]]}) |
| A_pad_shared[v0, 0, v1] = T.if_then_else(v0 < batch_size, A[v0, 0, v1], T.float16(0)) |
| for ax2_fused_2 in range(4): |
| for ax0_ax1_fused_0 in range(2): |
| for ax0_ax1_fused_1 in T.vectorized(4): |
| with T.block("dequantize"): |
| v0 = T.axis.spatial(4096, ax2_fused_0 * 128 + ax2_fused_1_ax2_fused_3_fused_0 * 32 + ax2_fused_2 * 8 + ax0_ax1_fused_0 * 4 + ax0_ax1_fused_1) |
| v1 = T.axis.spatial(6144, ax1_fused_0 * 64 + ax1_fused_1) |
| T.reads(B0_local[v0 // 8, v1], B1_local[v0 // 32, v1]) |
| T.writes(B_local[v0, v1]) |
| B_local[v0, v1] = (T.Cast("float16", T.bitwise_and(T.shift_right(B0_local[v0 // 8, v1], T.Cast("uint32", v0 % 8 * 4)), T.uint32(15))) - T.float16(7)) * B1_local[v0 // 32, v1] |
| for ax0_1, ax2_fused_1_ax2_fused_3_fused_1_0 in T.grid(4, 2): |
| for ax2_fused_1_ax2_fused_3_fused_1_1 in T.vectorized(4): |
| with T.block("matmul_rf_update"): |
| vax2_fused_1_ax2_fused_3_fused = T.axis.spatial(32, ax2_fused_1_ax2_fused_3_fused_0 * 8 + ax2_fused_1_ax2_fused_3_fused_1_0 * 4 + ax2_fused_1_ax2_fused_3_fused_1_1) |
| v0 = T.axis.spatial((batch_size + 3) // 4 * 4, ax0_0 * 4 + ax0_1) |
| v1 = T.axis.spatial(6144, ax1_fused_0 * 64 + ax1_fused_1) |
| vax2_fused_0, vax2_fused_2 = T.axis.remap("RR", [ax2_fused_0, ax2_fused_2]) |
| T.reads(C_pad_rf_local[vax2_fused_1_ax2_fused_3_fused, v0, 0, v1], A_pad_shared[v0, 0, vax2_fused_0 * 128 + vax2_fused_1_ax2_fused_3_fused // 8 * 32 + vax2_fused_2 * 8 + vax2_fused_1_ax2_fused_3_fused % 8], B_local[vax2_fused_0 * 128 + vax2_fused_1_ax2_fused_3_fused // 8 * 32 + vax2_fused_2 * 8 + vax2_fused_1_ax2_fused_3_fused % 8, v1]) |
| T.writes(C_pad_rf_local[vax2_fused_1_ax2_fused_3_fused, v0, 0, v1]) |
| C_pad_rf_local[vax2_fused_1_ax2_fused_3_fused, v0, 0, v1] = C_pad_rf_local[vax2_fused_1_ax2_fused_3_fused, v0, 0, v1] + A_pad_shared[v0, 0, vax2_fused_0 * 128 + vax2_fused_1_ax2_fused_3_fused // 8 * 32 + vax2_fused_2 * 8 + vax2_fused_1_ax2_fused_3_fused % 8] * B_local[vax2_fused_0 * 128 + vax2_fused_1_ax2_fused_3_fused // 8 * 32 + vax2_fused_2 * 8 + vax2_fused_1_ax2_fused_3_fused % 8, v1] |
| for ax3 in T.thread_binding(64, thread="threadIdx.x"): |
| for ax0 in T.thread_binding(4, thread="threadIdx.y"): |
| for ax2_init in range(4): |
| with T.block("matmul_rf_init"): |
| vax2_fused_1_ax2_fused_3_fused_0 = T.axis.spatial(4, ax0) |
| v0 = T.axis.spatial((batch_size + 3) // 4 * 4, ax0_0 * 4 + ax2_init) |
| v1 = T.axis.spatial(6144, ax1_fused_0 * 64 + ax3) |
| T.reads() |
| T.writes(C_pad_rf_local_1[vax2_fused_1_ax2_fused_3_fused_0, v0, 0, v1]) |
| C_pad_rf_local_1[vax2_fused_1_ax2_fused_3_fused_0, v0, 0, v1] = T.float16(0) |
| for ax2, ax1 in T.grid(4, 8): |
| with T.block("matmul_rf_update"): |
| vax2_fused_1_ax2_fused_3_fused_0, vax2_fused_1_ax2_fused_3_fused_1 = T.axis.remap("SR", [ax0, ax1]) |
| v0 = T.axis.spatial((batch_size + 3) // 4 * 4, ax0_0 * 4 + ax2) |
| v1 = T.axis.spatial(6144, ax1_fused_0 * 64 + ax3) |
| T.reads(C_pad_rf_local_1[vax2_fused_1_ax2_fused_3_fused_0, v0, 0, v1], C_pad_rf_local[vax2_fused_1_ax2_fused_3_fused_0 * 8 + vax2_fused_1_ax2_fused_3_fused_1, v0, 0, v1]) |
| T.writes(C_pad_rf_local_1[vax2_fused_1_ax2_fused_3_fused_0, v0, 0, v1]) |
| C_pad_rf_local_1[vax2_fused_1_ax2_fused_3_fused_0, v0, 0, v1] = C_pad_rf_local_1[vax2_fused_1_ax2_fused_3_fused_0, v0, 0, v1] + C_pad_rf_local[vax2_fused_1_ax2_fused_3_fused_0 * 8 + vax2_fused_1_ax2_fused_3_fused_1, v0, 0, v1] |
| for ax1 in range(4): |
| for ax2 in T.thread_binding(64, thread="threadIdx.x"): |
| for ax0 in T.thread_binding(4, thread="threadIdx.y"): |
| with T.block("matmul"): |
| vax2_fused_1_ax2_fused_3_fused_0 = T.axis.reduce(4, ax0) |
| v0 = T.axis.spatial((batch_size + 3) // 4 * 4, ax0_0 * 4 + ax1) |
| v1 = T.axis.spatial(6144, ax1_fused_0 * 64 + ax2) |
| T.reads(C_pad_rf_local_1[vax2_fused_1_ax2_fused_3_fused_0, v0, 0, v1]) |
| T.writes(C_pad_local[v0, 0, v1]) |
| with T.init(): |
| C_pad_local[v0, 0, v1] = T.float16(0) |
| C_pad_local[v0, 0, v1] = C_pad_local[v0, 0, v1] + C_pad_rf_local_1[vax2_fused_1_ax2_fused_3_fused_0, v0, 0, v1] |
| for ax0 in range(4): |
| for ax1 in T.thread_binding(64, thread="threadIdx.x"): |
| with T.block("C_pad"): |
| v0 = T.axis.spatial(batch_size, ax0_0 * 4 + ax0) |
| v1 = T.axis.spatial(6144, ax1_fused_0 * 64 + ax1) |
| T.where((ax0_0 - (batch_size + 3) // 4 < 0 or ax0_0 * 4 + ax0 == 0) and ax0_0 * 4 + ax0 < batch_size) |
| T.reads(C_pad_local[v0, 0, v1]) |
| T.writes(C[v0, 0, v1]) |
| C[v0, 0, v1] = C_pad_local[v0, 0, v1] |
| # fmt: on |
| mod = tvm.IRModule({"main": before}) |
| with Target("metal"): |
| mod = dl.ApplyDefaultSchedule(dl.gpu.LowBatchGEMV(4))(mod) # pylint: disable=not-callable |
| tvm.ir.assert_structural_equal(mod["main"], expected) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |