blob: aafe76f900e48c9b14e4e111fca2cec1fc813af0 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=missing-docstring
import tvm
import tvm.testing
from tvm import dlight as dl
from tvm.ir import IRModule, assert_structural_equal
from tvm.script import ir as I
from tvm.script import tir as T
from tvm.target import Target
def _check(mod_before: IRModule, mod_after: IRModule):
target = Target("nvidia/geforce-rtx-3090-ti")
with target:
mod = dl.ApplyDefaultSchedule( # pylint: disable=not-callable
dl.gpu.GeneralReduction(),
)(mod_before)
assert_structural_equal(mod, mod_after)
def test_softmax_1():
# fmt: off
@I.ir_module
class Before:
@T.prim_func
def main(p_lv44: T.handle, p_output0: T.handle):
T.func_attr({"tir.noalias": True})
n, m = T.int64(), T.int64()
lv44 = T.match_buffer(p_lv44, (T.int64(1), T.int64(32), n, m))
var_compute_intermediate = T.match_buffer(p_output0, (T.int64(1), T.int64(32), n, m), "float16")
# with T.block("root"):
T_softmax_maxelem = T.alloc_buffer((T.int64(1), T.int64(32), n))
T_softmax_exp = T.alloc_buffer((T.int64(1), T.int64(32), n, m))
T_softmax_expsum = T.alloc_buffer((T.int64(1), T.int64(32), n))
var_T_softmax_norm_intermediate = T.alloc_buffer((T.int64(1), T.int64(32), n, m))
for i0, i1, i2, k in T.grid(T.int64(1), T.int64(32), n, m):
with T.block("T_softmax_maxelem"):
v_i0, v_i1, v_i2, v_k = T.axis.remap("SSSR", [i0, i1, i2, k])
T.reads(lv44[v_i0, v_i1, v_i2, v_k])
T.writes(T_softmax_maxelem[v_i0, v_i1, v_i2])
with T.init():
T_softmax_maxelem[v_i0, v_i1, v_i2] = T.float32(-3.4028234663852886e+38)
T_softmax_maxelem[v_i0, v_i1, v_i2] = T.max(T_softmax_maxelem[v_i0, v_i1, v_i2], lv44[v_i0, v_i1, v_i2, v_k])
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(32), n, m):
with T.block("T_softmax_exp"):
v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(lv44[v_i0, v_i1, v_i2, v_i3], T_softmax_maxelem[v_i0, v_i1, v_i2])
T.writes(T_softmax_exp[v_i0, v_i1, v_i2, v_i3])
T_softmax_exp[v_i0, v_i1, v_i2, v_i3] = T.exp(lv44[v_i0, v_i1, v_i2, v_i3] - T_softmax_maxelem[v_i0, v_i1, v_i2])
for i0, i1, i2, k in T.grid(T.int64(1), T.int64(32), n, m):
with T.block("T_softmax_expsum"):
v_i0, v_i1, v_i2, v_k = T.axis.remap("SSSR", [i0, i1, i2, k])
T.reads(T_softmax_exp[v_i0, v_i1, v_i2, v_k])
T.writes(T_softmax_expsum[v_i0, v_i1, v_i2])
with T.init():
T_softmax_expsum[v_i0, v_i1, v_i2] = T.float32(0)
T_softmax_expsum[v_i0, v_i1, v_i2] = T_softmax_expsum[v_i0, v_i1, v_i2] + T_softmax_exp[v_i0, v_i1, v_i2, v_k]
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(32), n, m):
with T.block("T_softmax_norm"):
v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_softmax_exp[v_i0, v_i1, v_i2, v_i3], T_softmax_expsum[v_i0, v_i1, v_i2])
T.writes(var_T_softmax_norm_intermediate[v_i0, v_i1, v_i2, v_i3])
T.block_attr({"axis": 3})
var_T_softmax_norm_intermediate[v_i0, v_i1, v_i2, v_i3] = T_softmax_exp[v_i0, v_i1, v_i2, v_i3] / T_softmax_expsum[v_i0, v_i1, v_i2]
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(32), n, m):
with T.block("compute"):
v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(var_T_softmax_norm_intermediate[v_i0, v_i1, v_i2, v_i3])
T.writes(var_compute_intermediate[v_i0, v_i1, v_i2, v_i3])
var_compute_intermediate[v_i0, v_i1, v_i2, v_i3] = T.Cast("float16", var_T_softmax_norm_intermediate[v_i0, v_i1, v_i2, v_i3])
@I.ir_module
class After:
@T.prim_func
def main(p_lv44: T.handle, p_output0: T.handle):
T.func_attr({"tir.is_scheduled": True, "tir.noalias": True})
n, m = T.int64(), T.int64()
lv44 = T.match_buffer(p_lv44, (T.int64(1), T.int64(32), n, m))
var_compute_intermediate = T.match_buffer(p_output0, (T.int64(1), T.int64(32), n, m), "float16")
# with T.block("root"):
T_softmax_maxelem_shared = T.alloc_buffer((T.int64(1), T.int64(32), n), scope="shared")
T_softmax_expsum_shared = T.alloc_buffer((T.int64(1), T.int64(32), n), scope="shared")
for ax0_ax1_fused in T.thread_binding(n * T.int64(32), thread="blockIdx.x"):
for ax0, ax1 in T.grid(T.int64(1), T.int64(1)):
for ax2_fused_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax2_fused_0 in T.serial((m + T.int64(255)) // T.int64(256), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("T_softmax_maxelem"):
v0 = T.axis.spatial(T.int64(32), ax0_ax1_fused // n + ax0)
v1 = T.axis.spatial(n, ax0_ax1_fused % n + ax1)
v2 = T.axis.reduce(m, ax2_fused_0 * T.int64(256) + ax2_fused_1)
T.where(ax2_fused_0 * T.int64(256) + ax2_fused_1 < m)
T.reads(lv44[T.int64(0), v0, v1, v2])
T.writes(T_softmax_maxelem_shared[T.int64(0), v0, v1])
with T.init():
T_softmax_maxelem_shared[T.int64(0), v0, v1] = T.float32(-3.4028234663852886e+38)
T_softmax_maxelem_shared[T.int64(0), v0, v1] = T.max(T_softmax_maxelem_shared[T.int64(0), v0, v1], lv44[T.int64(0), v0, v1, v2])
for ax0, ax1 in T.grid(T.int64(1), T.int64(1)):
for ax2_fused_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax2_fused_0 in T.serial((m + T.int64(255)) // T.int64(256), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("T_softmax_expsum"):
v0 = T.axis.spatial(T.int64(32), ax0_ax1_fused // n + ax0)
v1 = T.axis.spatial(n, ax0_ax1_fused % n + ax1)
v2 = T.axis.reduce(m, ax2_fused_0 * T.int64(256) + ax2_fused_1)
T.where(ax2_fused_0 * T.int64(256) + ax2_fused_1 < m)
T.reads(lv44[T.int64(0), v0, v1, v2], T_softmax_maxelem_shared[T.int64(0), v0, v1])
T.writes(T_softmax_expsum_shared[T.int64(0), v0, v1])
with T.init():
T_softmax_expsum_shared[T.int64(0), v0, v1] = T.float32(0)
T_softmax_expsum_shared[T.int64(0), v0, v1] = T_softmax_expsum_shared[T.int64(0), v0, v1] + T.exp(lv44[T.int64(0), v0, v1, v2] - T_softmax_maxelem_shared[T.int64(0), v0, v1])
for ax2_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax2_0 in T.serial((m + T.int64(255)) // T.int64(256), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("compute"):
v0 = T.axis.spatial(T.int64(32), ax0_ax1_fused // n)
v1 = T.axis.spatial(n, ax0_ax1_fused % n)
v2 = T.axis.spatial(m, ax2_0 * T.int64(256) + ax2_1)
T.where(ax2_0 * T.int64(256) + ax2_1 < m)
T.reads(lv44[T.int64(0), v0, v1, v2], T_softmax_maxelem_shared[T.int64(0), v0, v1], T_softmax_expsum_shared[T.int64(0), v0, v1])
T.writes(var_compute_intermediate[T.int64(0), v0, v1, v2])
var_compute_intermediate[T.int64(0), v0, v1, v2] = T.Cast("float16", T.exp(lv44[T.int64(0), v0, v1, v2] - T_softmax_maxelem_shared[T.int64(0), v0, v1]) / T_softmax_expsum_shared[T.int64(0), v0, v1])
# fmt: on
_check(Before, After)
def test_softmax_2():
# fmt: off
@I.ir_module
class Before:
@T.prim_func
def main(A: T.Buffer((T.int64(1), T.int64(1), T.int64(32000)), "float32"), T_softmax_norm: T.Buffer((T.int64(1), T.int64(1), T.int64(32000)), "float32")):
# with T.block("root"):
T_softmax_maxelem = T.alloc_buffer((T.int64(1), T.int64(1)))
T_softmax_exp = T.alloc_buffer((T.int64(1), T.int64(1), T.int64(32000)))
T_softmax_expsum = T.alloc_buffer((T.int64(1), T.int64(1)))
for i0, i1, k in T.grid(T.int64(1), T.int64(1), T.int64(32000)):
with T.block("T_softmax_maxelem"):
v_i0, v_i1, v_k = T.axis.remap("SSR", [i0, i1, k])
T.reads(A[v_i0, v_i1, v_k])
T.writes(T_softmax_maxelem[v_i0, v_i1])
with T.init():
T_softmax_maxelem[v_i0, v_i1] = T.float32(-3.4028234663852886e+38)
T_softmax_maxelem[v_i0, v_i1] = T.max(T_softmax_maxelem[v_i0, v_i1], A[v_i0, v_i1, v_k])
for i0, i1, i2 in T.grid(T.int64(1), T.int64(1), T.int64(32000)):
with T.block("T_softmax_exp"):
v_i0, v_i1, v_i2 = T.axis.remap("SSS", [i0, i1, i2])
T.reads(A[v_i0, v_i1, v_i2], T_softmax_maxelem[v_i0, v_i1])
T.writes(T_softmax_exp[v_i0, v_i1, v_i2])
T_softmax_exp[v_i0, v_i1, v_i2] = T.exp(A[v_i0, v_i1, v_i2] - T_softmax_maxelem[v_i0, v_i1])
for i0, i1, k in T.grid(T.int64(1), T.int64(1), T.int64(32000)):
with T.block("T_softmax_expsum"):
v_i0, v_i1, v_k = T.axis.remap("SSR", [i0, i1, k])
T.reads(T_softmax_exp[v_i0, v_i1, v_k])
T.writes(T_softmax_expsum[v_i0, v_i1])
with T.init():
T_softmax_expsum[v_i0, v_i1] = T.float32(0)
T_softmax_expsum[v_i0, v_i1] = T_softmax_expsum[v_i0, v_i1] + T_softmax_exp[v_i0, v_i1, v_k]
for i0, i1, i2 in T.grid(T.int64(1), T.int64(1), T.int64(32000)):
with T.block("T_softmax_norm"):
v_i0, v_i1, v_i2 = T.axis.remap("SSS", [i0, i1, i2])
T.reads(T_softmax_exp[v_i0, v_i1, v_i2], T_softmax_expsum[v_i0, v_i1])
T.writes(T_softmax_norm[v_i0, v_i1, v_i2])
T.block_attr({"axis": 2})
T_softmax_norm[v_i0, v_i1, v_i2] = T_softmax_exp[v_i0, v_i1, v_i2] / T_softmax_expsum[v_i0, v_i1]
@I.ir_module
class After:
@T.prim_func
def main(A: T.Buffer((T.int64(1), T.int64(1), T.int64(32000)), "float32"), T_softmax_norm: T.Buffer((T.int64(1), T.int64(1), T.int64(32000)), "float32")):
T.func_attr({"tir.is_scheduled": True})
# with T.block("root"):
T_softmax_maxelem_shared = T.alloc_buffer((T.int64(1), T.int64(1)), scope="shared")
T_softmax_expsum_shared = T.alloc_buffer((T.int64(1), T.int64(1)), scope="shared")
for ax0_fused in T.thread_binding(T.int64(1), thread="blockIdx.x"):
for ax0 in range(T.int64(1)):
for ax1_fused_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax1_fused_0 in T.serial(T.int64(125), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("T_softmax_maxelem"):
v0 = T.axis.spatial(T.int64(1), ax0)
v1 = T.axis.reduce(T.int64(32000), ax1_fused_0 * T.int64(256) + ax1_fused_1)
T.reads(A[T.int64(0), T.int64(0), v1])
T.writes(T_softmax_maxelem_shared[T.int64(0), T.int64(0)])
with T.init():
T_softmax_maxelem_shared[T.int64(0), T.int64(0)] = T.float32(-3.4028234663852886e+38)
T_softmax_maxelem_shared[T.int64(0), T.int64(0)] = T.max(T_softmax_maxelem_shared[T.int64(0), T.int64(0)], A[T.int64(0), T.int64(0), v1])
for ax0 in range(T.int64(1)):
for ax1_fused_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax1_fused_0 in T.serial(T.int64(125), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("T_softmax_expsum"):
v0 = T.axis.spatial(T.int64(1), ax0)
v1 = T.axis.reduce(T.int64(32000), ax1_fused_0 * T.int64(256) + ax1_fused_1)
T.reads(A[T.int64(0), T.int64(0), v1], T_softmax_maxelem_shared[T.int64(0), T.int64(0)])
T.writes(T_softmax_expsum_shared[T.int64(0), T.int64(0)])
with T.init():
T_softmax_expsum_shared[T.int64(0), T.int64(0)] = T.float32(0)
T_softmax_expsum_shared[T.int64(0), T.int64(0)] = T_softmax_expsum_shared[T.int64(0), T.int64(0)] + T.exp(A[T.int64(0), T.int64(0), v1] - T_softmax_maxelem_shared[T.int64(0), T.int64(0)])
for ax1_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax1_0 in T.serial(T.int64(125), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("T_softmax_norm"):
v0 = T.axis.spatial(T.int64(1), T.int64(0))
v1 = T.axis.spatial(T.int64(32000), ax1_0 * T.int64(256) + ax1_1)
T.reads(A[T.int64(0), T.int64(0), v1], T_softmax_maxelem_shared[T.int64(0), T.int64(0)], T_softmax_expsum_shared[T.int64(0), T.int64(0)])
T.writes(T_softmax_norm[T.int64(0), T.int64(0), v1])
T.block_attr({"axis": 2})
T_softmax_norm[T.int64(0), T.int64(0), v1] = T.exp(A[T.int64(0), T.int64(0), v1] - T_softmax_maxelem_shared[T.int64(0), T.int64(0)]) / T_softmax_expsum_shared[T.int64(0), T.int64(0)]
# fmt: on
_check(Before, After)
def test_softmax_3():
# fmt: off
@I.ir_module
class Before:
@T.prim_func
def main(input: T.Buffer((T.int64(1), T.int64(4), T.int64(32), T.int64(8192)), "float32"), T_softmax_norm: T.Buffer((T.int64(1), T.int64(4), T.int64(32), T.int64(8192)), "float32")):
# with T.block("root"):
T_softmax_maxelem = T.alloc_buffer((T.int64(1), T.int64(4), T.int64(8192)))
T_softmax_exp = T.alloc_buffer((T.int64(1), T.int64(4), T.int64(32), T.int64(8192)))
T_softmax_expsum = T.alloc_buffer((T.int64(1), T.int64(4), T.int64(8192)))
for i0, i1, i2, k in T.grid(T.int64(1), T.int64(4), T.int64(8192), T.int64(32)):
with T.block("T_softmax_maxelem"):
v_i0, v_i1, v_i2, v_k = T.axis.remap("SSSR", [i0, i1, i2, k])
T.reads(input[v_i0, v_i1, v_k, v_i2])
T.writes(T_softmax_maxelem[v_i0, v_i1, v_i2])
with T.init():
T_softmax_maxelem[v_i0, v_i1, v_i2] = T.float32(-340282346638528859811704183484516925440.0)
T_softmax_maxelem[v_i0, v_i1, v_i2] = T.max(T_softmax_maxelem[v_i0, v_i1, v_i2], input[v_i0, v_i1, v_k, v_i2])
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(4), T.int64(32), T.int64(8192)):
with T.block("T_softmax_exp"):
v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(input[v_i0, v_i1, v_i2, v_i3], T_softmax_maxelem[v_i0, v_i1, v_i3])
T.writes(T_softmax_exp[v_i0, v_i1, v_i2, v_i3])
T_softmax_exp[v_i0, v_i1, v_i2, v_i3] = T.exp(input[v_i0, v_i1, v_i2, v_i3] - T_softmax_maxelem[v_i0, v_i1, v_i3])
for i0, i1, i2, k in T.grid(T.int64(1), T.int64(4), T.int64(8192), T.int64(32)):
with T.block("T_softmax_expsum"):
v_i0, v_i1, v_i2, v_k = T.axis.remap("SSSR", [i0, i1, i2, k])
T.reads(T_softmax_exp[v_i0, v_i1, v_k, v_i2])
T.writes(T_softmax_expsum[v_i0, v_i1, v_i2])
with T.init():
T_softmax_expsum[v_i0, v_i1, v_i2] = T.float32(0.0)
T_softmax_expsum[v_i0, v_i1, v_i2] = T_softmax_expsum[v_i0, v_i1, v_i2] + T_softmax_exp[v_i0, v_i1, v_k, v_i2]
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(4), T.int64(32), T.int64(8192)):
with T.block("T_softmax_norm"):
v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_softmax_exp[v_i0, v_i1, v_i2, v_i3], T_softmax_expsum[v_i0, v_i1, v_i3])
T.writes(T_softmax_norm[v_i0, v_i1, v_i2, v_i3])
T.block_attr({"axis": 2})
T_softmax_norm[v_i0, v_i1, v_i2, v_i3] = T_softmax_exp[v_i0, v_i1, v_i2, v_i3] / T_softmax_expsum[v_i0, v_i1, v_i3]
@I.ir_module
class After:
@T.prim_func
def main(input: T.Buffer((T.int64(1), T.int64(4), T.int64(32), T.int64(8192)), "float32"), T_softmax_norm: T.Buffer((T.int64(1), T.int64(4), T.int64(32), T.int64(8192)), "float32")):
T.func_attr({"tir.is_scheduled": True})
# with T.block("root"):
T_softmax_maxelem_shared = T.alloc_buffer((T.int64(1), T.int64(4), T.int64(8192)), scope="shared")
T_softmax_expsum_shared = T.alloc_buffer((T.int64(1), T.int64(4), T.int64(8192)), scope="shared")
for ax0_ax2_fused in T.thread_binding(T.int64(32768), thread="blockIdx.x"):
for ax0, ax1 in T.grid(T.int64(1), T.int64(1)):
for ax2_fused_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax2_fused_0 in T.serial(T.int64(1), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("T_softmax_maxelem"):
v0 = T.axis.spatial(T.int64(4), ax0_ax2_fused // T.int64(8192) + ax0)
v1 = T.axis.spatial(T.int64(8192), ax0_ax2_fused % T.int64(8192) + ax1)
v2 = T.axis.reduce(T.int64(32), ax2_fused_0 * T.int64(256) + ax2_fused_1)
T.where(ax2_fused_0 * T.int64(256) + ax2_fused_1 < T.int64(32))
T.reads(input[T.int64(0), v0, v2, v1])
T.writes(T_softmax_maxelem_shared[T.int64(0), v0, v1])
with T.init():
T_softmax_maxelem_shared[T.int64(0), v0, v1] = T.float32(-340282346638528859811704183484516925440.0)
T_softmax_maxelem_shared[T.int64(0), v0, v1] = T.max(T_softmax_maxelem_shared[T.int64(0), v0, v1], input[T.int64(0), v0, v2, v1])
for ax0, ax1 in T.grid(T.int64(1), T.int64(1)):
for ax2_fused_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax2_fused_0 in T.serial(T.int64(1), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("T_softmax_expsum"):
v0 = T.axis.spatial(T.int64(4), ax0_ax2_fused // T.int64(8192) + ax0)
v1 = T.axis.spatial(T.int64(8192), ax0_ax2_fused % T.int64(8192) + ax1)
v2 = T.axis.reduce(T.int64(32), ax2_fused_0 * T.int64(256) + ax2_fused_1)
T.where(ax2_fused_0 * T.int64(256) + ax2_fused_1 < T.int64(32))
T.reads(input[T.int64(0), v0, v2, v1], T_softmax_maxelem_shared[T.int64(0), v0, v1])
T.writes(T_softmax_expsum_shared[T.int64(0), v0, v1])
with T.init():
T_softmax_expsum_shared[T.int64(0), v0, v1] = T.float32(0.0)
T_softmax_expsum_shared[T.int64(0), v0, v1] = T_softmax_expsum_shared[T.int64(0), v0, v1] + T.exp(input[T.int64(0), v0, v2, v1] - T_softmax_maxelem_shared[T.int64(0), v0, v1])
for ax1_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax1_0 in T.serial(T.int64(1), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("T_softmax_norm"):
v0 = T.axis.spatial(T.int64(4), ax0_ax2_fused // T.int64(8192))
v1 = T.axis.spatial(T.int64(32), ax1_0 * T.int64(256) + ax1_1)
v2 = T.axis.spatial(T.int64(8192), ax0_ax2_fused % T.int64(8192))
T.where(ax1_0 * T.int64(256) + ax1_1 < T.int64(32))
T.reads(input[T.int64(0), v0, v1, v2], T_softmax_maxelem_shared[T.int64(0), v0, v2], T_softmax_expsum_shared[T.int64(0), v0, v2])
T.writes(T_softmax_norm[T.int64(0), v0, v1, v2])
T.block_attr({"axis": 2})
T_softmax_norm[T.int64(0), v0, v1, v2] = T.exp(input[T.int64(0), v0, v1, v2] - T_softmax_maxelem_shared[T.int64(0), v0, v2]) / T_softmax_expsum_shared[T.int64(0), v0, v2]
# fmt: on
_check(Before, After)
def test_layer_norm():
# fmt: off
@I.ir_module
class Before:
@T.prim_func
def main(p_lv6: T.handle, weight1: T.Buffer((T.int64(2560),), "float32"), bias: T.Buffer((T.int64(2560),), "float32"), p_output0: T.handle):
T.func_attr({"tir.noalias": True})
n = T.int64()
lv6 = T.match_buffer(p_lv6, (T.int64(1), n, T.int64(2560)))
var_compute_intermediate = T.match_buffer(p_output0, (T.int64(1), n, T.int64(2560)), "float16")
# with T.block("root"):
A_red_temp_v0 = T.alloc_buffer((T.int64(1), n))
A_red_temp_v1 = T.alloc_buffer((T.int64(1), n))
var_T_layer_norm_intermediate = T.alloc_buffer((T.int64(1), n, T.int64(2560)))
for ax0, ax1, k2 in T.grid(T.int64(1), n, T.int64(2560)):
with T.block("A_red_temp"):
v_ax0, v_ax1, v_k2 = T.axis.remap("SSR", [ax0, ax1, k2])
T.reads(lv6[v_ax0, v_ax1, v_k2])
T.writes(A_red_temp_v0[v_ax0, v_ax1], A_red_temp_v1[v_ax0, v_ax1])
with T.init():
A_red_temp_v0[v_ax0, v_ax1] = T.float32(0)
A_red_temp_v1[v_ax0, v_ax1] = T.float32(0)
v_A_red_temp_v0: T.float32 = A_red_temp_v0[v_ax0, v_ax1] + lv6[v_ax0, v_ax1, v_k2]
v_A_red_temp_v1: T.float32 = A_red_temp_v1[v_ax0, v_ax1] + lv6[v_ax0, v_ax1, v_k2] * lv6[v_ax0, v_ax1, v_k2]
A_red_temp_v0[v_ax0, v_ax1] = v_A_red_temp_v0
A_red_temp_v1[v_ax0, v_ax1] = v_A_red_temp_v1
for ax0, ax1, ax2 in T.grid(T.int64(1), n, T.int64(2560)):
with T.block("T_layer_norm"):
v_ax0, v_ax1, v_ax2 = T.axis.remap("SSS", [ax0, ax1, ax2])
T.reads(lv6[v_ax0, v_ax1, v_ax2], A_red_temp_v0[v_ax0, v_ax1], A_red_temp_v1[v_ax0, v_ax1], weight1[v_ax2], bias[v_ax2])
T.writes(var_T_layer_norm_intermediate[v_ax0, v_ax1, v_ax2])
var_T_layer_norm_intermediate[v_ax0, v_ax1, v_ax2] = (lv6[v_ax0, v_ax1, v_ax2] - A_red_temp_v0[v_ax0, v_ax1] * T.float32(0.00039062500000000002)) * T.rsqrt(A_red_temp_v1[v_ax0, v_ax1] * T.float32(0.00039062500000000002) - A_red_temp_v0[v_ax0, v_ax1] * T.float32(0.00039062500000000002) * (A_red_temp_v0[v_ax0, v_ax1] * T.float32(0.00039062500000000002)) + T.float32(1.0000000000000001e-05)) * weight1[v_ax2] + bias[v_ax2]
for i0, i1, i2 in T.grid(T.int64(1), n, T.int64(2560)):
with T.block("compute"):
v_i0, v_i1, v_i2 = T.axis.remap("SSS", [i0, i1, i2])
T.reads(var_T_layer_norm_intermediate[v_i0, v_i1, v_i2])
T.writes(var_compute_intermediate[v_i0, v_i1, v_i2])
var_compute_intermediate[v_i0, v_i1, v_i2] = T.Cast("float16", var_T_layer_norm_intermediate[v_i0, v_i1, v_i2])
@I.ir_module
class After:
@T.prim_func
def main(p_lv6: T.handle, weight1: T.Buffer((T.int64(2560),), "float32"), bias: T.Buffer((T.int64(2560),), "float32"), p_output0: T.handle):
T.func_attr({"tir.is_scheduled": True, "tir.noalias": True})
n = T.int64()
lv6 = T.match_buffer(p_lv6, (T.int64(1), n, T.int64(2560)))
var_compute_intermediate = T.match_buffer(p_output0, (T.int64(1), n, T.int64(2560)), "float16")
# with T.block("root"):
A_red_temp_v0_shared = T.alloc_buffer((T.int64(1), n), scope="shared")
A_red_temp_v1_shared = T.alloc_buffer((T.int64(1), n), scope="shared")
for ax0_fused in T.thread_binding(n, thread="blockIdx.x"):
for ax0 in range(T.int64(1)):
for ax1_fused_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax1_fused_0 in T.serial(T.int64(10), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("A_red_temp"):
v0 = T.axis.spatial(n, ax0_fused + ax0)
v1 = T.axis.reduce(T.int64(2560), ax1_fused_0 * T.int64(256) + ax1_fused_1)
T.reads(lv6[T.int64(0), v0, v1])
T.writes(A_red_temp_v0_shared[T.int64(0), v0], A_red_temp_v1_shared[T.int64(0), v0])
with T.init():
A_red_temp_v0_shared[T.int64(0), v0] = T.float32(0)
A_red_temp_v1_shared[T.int64(0), v0] = T.float32(0)
v_A_red_temp_v0: T.float32 = A_red_temp_v0_shared[T.int64(0), v0] + lv6[T.int64(0), v0, v1]
v_A_red_temp_v1: T.float32 = A_red_temp_v1_shared[T.int64(0), v0] + lv6[T.int64(0), v0, v1] * lv6[T.int64(0), v0, v1]
A_red_temp_v0_shared[T.int64(0), v0] = v_A_red_temp_v0
A_red_temp_v1_shared[T.int64(0), v0] = v_A_red_temp_v1
for ax1_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax1_0 in T.serial(T.int64(10), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("compute"):
v0 = T.axis.spatial(n, ax0_fused)
v1 = T.axis.spatial(T.int64(2560), ax1_0 * T.int64(256) + ax1_1)
T.reads(lv6[T.int64(0), v0, v1], A_red_temp_v0_shared[T.int64(0), v0], A_red_temp_v1_shared[T.int64(0), v0], weight1[v1], bias[v1])
T.writes(var_compute_intermediate[T.int64(0), v0, v1])
var_compute_intermediate[T.int64(0), v0, v1] = T.Cast("float16", (lv6[T.int64(0), v0, v1] - A_red_temp_v0_shared[T.int64(0), v0] * T.float32(0.00039062500000000002)) * T.rsqrt(A_red_temp_v1_shared[T.int64(0), v0] * T.float32(0.00039062500000000002) - A_red_temp_v0_shared[T.int64(0), v0] * T.float32(0.00039062500000000002) * (A_red_temp_v0_shared[T.int64(0), v0] * T.float32(0.00039062500000000002)) + T.float32(1.0000000000000001e-05)) * weight1[v1] + bias[v1])
# fmt: on
_check(Before, After)
def test_rms_norm():
# fmt: off
@I.ir_module
class Before:
@T.prim_func
def main(var_A: T.handle, B: T.Buffer((T.int64(4096),), "float16"), var_rms_norm: T.handle):
T.func_attr({"op_pattern": 4, "tir.noalias": True})
n = T.int64()
A = T.match_buffer(var_A, (T.int64(1), n, T.int64(4096)), "float16")
rms_norm_1 = T.match_buffer(var_rms_norm, (T.int64(1), n, T.int64(4096)), "float16")
# with T.block("root"):
Ared_temp = T.alloc_buffer((T.int64(1), n))
for bsz, i, k in T.grid(T.int64(1), n, T.int64(4096)):
with T.block("Ared_temp"):
v_bsz, v_i, v_k = T.axis.remap("SSR", [bsz, i, k])
T.reads(A[v_bsz, v_i, v_k])
T.writes(Ared_temp[v_bsz, v_i])
with T.init():
Ared_temp[v_bsz, v_i] = T.float32(0)
Ared_temp[v_bsz, v_i] = Ared_temp[v_bsz, v_i] + T.Cast("float32", A[v_bsz, v_i, v_k]) * T.Cast("float32", A[v_bsz, v_i, v_k])
for bsz, i, k in T.grid(T.int64(1), n, T.int64(4096)):
with T.block("rms_norm"):
v_bsz, v_i, v_k = T.axis.remap("SSS", [bsz, i, k])
T.reads(B[v_k], A[v_bsz, v_i, v_k], Ared_temp[v_bsz, v_i])
T.writes(rms_norm_1[v_bsz, v_i, v_k])
rms_norm_1[v_bsz, v_i, v_k] = T.Cast("float16", T.Cast("float32", B[v_k]) * (T.Cast("float32", A[v_bsz, v_i, v_k]) / T.sqrt(Ared_temp[v_bsz, v_i] * T.float32(0.000244140625) + T.float32(9.9999999999999995e-07))))
@I.ir_module
class After:
@T.prim_func
def main(var_A: T.handle, B: T.Buffer((T.int64(4096),), "float16"), var_rms_norm: T.handle):
T.func_attr({"op_pattern": 4, "tir.is_scheduled": True, "tir.noalias": True})
n = T.int64()
A = T.match_buffer(var_A, (T.int64(1), n, T.int64(4096)), "float16")
rms_norm_1 = T.match_buffer(var_rms_norm, (T.int64(1), n, T.int64(4096)), "float16")
# with T.block("root"):
Ared_temp_shared = T.alloc_buffer((T.int64(1), n), scope="shared")
for ax0_fused in T.thread_binding(n, thread="blockIdx.x"):
for ax0 in range(T.int64(1)):
for ax1_fused_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax1_fused_0 in T.serial(T.int64(16), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("Ared_temp"):
v0 = T.axis.spatial(n, ax0_fused + ax0)
v1 = T.axis.reduce(T.int64(4096), ax1_fused_0 * T.int64(256) + ax1_fused_1)
T.reads(A[T.int64(0), v0, v1])
T.writes(Ared_temp_shared[T.int64(0), v0])
with T.init():
Ared_temp_shared[T.int64(0), v0] = T.float32(0)
Ared_temp_shared[T.int64(0), v0] = Ared_temp_shared[T.int64(0), v0] + T.Cast("float32", A[T.int64(0), v0, v1]) * T.Cast("float32", A[T.int64(0), v0, v1])
for ax1_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax1_0 in T.serial(T.int64(16), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("rms_norm"):
v0 = T.axis.spatial(n, ax0_fused)
v1 = T.axis.spatial(T.int64(4096), ax1_0 * T.int64(256) + ax1_1)
T.reads(B[v1], A[T.int64(0), v0, v1], Ared_temp_shared[T.int64(0), v0])
T.writes(rms_norm_1[T.int64(0), v0, v1])
rms_norm_1[T.int64(0), v0, v1] = T.Cast("float16", T.Cast("float32", B[v1]) * (T.Cast("float32", A[T.int64(0), v0, v1]) / T.sqrt(Ared_temp_shared[T.int64(0), v0] * T.float32(0.000244140625) + T.float32(9.9999999999999995e-07))))
# fmt: on
_check(Before, After)
def test_group_norm():
# fmt: off
@I.ir_module
class Before:
@T.prim_func
def main(A: T.Buffer((1, 2048), "float32"), B: T.Buffer((2048,), "float32"), C: T.Buffer((2048,), "float32"), T_reshape: T.Buffer((1, 2048), "float32")):
T.func_attr({"tir.noalias": True})
T_reshape_1 = T.alloc_buffer((1, 32, 64))
A_red_temp_v0 = T.alloc_buffer((1, 32))
A_red_temp_v1 = T.alloc_buffer((1, 32))
T_reshape_2 = T.alloc_buffer((32, 64))
T_reshape_3 = T.alloc_buffer((32, 64))
T_group_norm = T.alloc_buffer((1, 32, 64))
for ax0, ax1, ax2 in T.grid(1, 32, 64):
with T.block("T_reshape"):
v_ax0, v_ax1, v_ax2 = T.axis.remap("SSS", [ax0, ax1, ax2])
T.reads(A[0, (v_ax1 * 64 + v_ax2) % 2048])
T.writes(T_reshape_1[v_ax0, v_ax1, v_ax2])
T_reshape_1[v_ax0, v_ax1, v_ax2] = A[0, (v_ax1 * 64 + v_ax2) % 2048]
for ax0, ax1, k2 in T.grid(1, 32, 64):
with T.block("A_red_temp"):
v_ax0, v_ax1, v_k2 = T.axis.remap("SSR", [ax0, ax1, k2])
T.reads(T_reshape_1[v_ax0, v_ax1, v_k2])
T.writes(A_red_temp_v0[v_ax0, v_ax1], A_red_temp_v1[v_ax0, v_ax1])
with T.init():
A_red_temp_v0[v_ax0, v_ax1] = T.float32(0)
A_red_temp_v1[v_ax0, v_ax1] = T.float32(0)
v_A_red_temp_v0: T.float32 = A_red_temp_v0[v_ax0, v_ax1] + T_reshape_1[v_ax0, v_ax1, v_k2]
v_A_red_temp_v1: T.float32 = A_red_temp_v1[v_ax0, v_ax1] + T_reshape_1[v_ax0, v_ax1, v_k2] * T_reshape_1[v_ax0, v_ax1, v_k2]
A_red_temp_v0[v_ax0, v_ax1] = v_A_red_temp_v0
A_red_temp_v1[v_ax0, v_ax1] = v_A_red_temp_v1
for ax0, ax1 in T.grid(32, 64):
with T.block("T_reshape_1"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(B[(v_ax0 * 64 + v_ax1) % 2048])
T.writes(T_reshape_2[v_ax0, v_ax1])
T_reshape_2[v_ax0, v_ax1] = B[(v_ax0 * 64 + v_ax1) % 2048]
for ax0, ax1 in T.grid(32, 64):
with T.block("T_reshape_2"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(C[(v_ax0 * 64 + v_ax1) % 2048])
T.writes(T_reshape_3[v_ax0, v_ax1])
T_reshape_3[v_ax0, v_ax1] = C[(v_ax0 * 64 + v_ax1) % 2048]
for ax0, ax1, ax2 in T.grid(1, 32, 64):
with T.block("T_group_norm"):
v_ax0, v_ax1, v_ax2 = T.axis.remap("SSS", [ax0, ax1, ax2])
T.reads(T_reshape_1[v_ax0, v_ax1, v_ax2], A_red_temp_v0[v_ax0, v_ax1], A_red_temp_v1[v_ax0, v_ax1], T_reshape_2[v_ax1, v_ax2], T_reshape_3[v_ax1, v_ax2])
T.writes(T_group_norm[v_ax0, v_ax1, v_ax2])
T_group_norm[v_ax0, v_ax1, v_ax2] = (T_reshape_1[v_ax0, v_ax1, v_ax2] - A_red_temp_v0[v_ax0, v_ax1] * T.float32(0.015625)) * T.rsqrt(A_red_temp_v1[v_ax0, v_ax1] * T.float32(0.015625) - A_red_temp_v0[v_ax0, v_ax1] * T.float32(0.015625) * (A_red_temp_v0[v_ax0, v_ax1] * T.float32(0.015625)) + T.float32(1.0000000000000001e-05)) * T_reshape_2[v_ax1, v_ax2] + T_reshape_3[v_ax1, v_ax2]
for ax0, ax1 in T.grid(1, 2048):
with T.block("T_reshape_3"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(T_group_norm[0, v_ax1 % 2048 // 64, v_ax1 % 64])
T.writes(T_reshape[v_ax0, v_ax1])
T_reshape[v_ax0, v_ax1] = T_group_norm[0, v_ax1 % 2048 // 64, v_ax1 % 64]
@I.ir_module
class After:
@T.prim_func
def main(A: T.Buffer((1, 2048), "float32"), B: T.Buffer((2048,), "float32"), C: T.Buffer((2048,), "float32"), T_reshape: T.Buffer((1, 2048), "float32")):
T.func_attr({"tir.is_scheduled": True, "tir.noalias": True})
# with T.block("root"):
A_red_temp_v0_shared = T.alloc_buffer((1, 32), scope="shared")
A_red_temp_v1_shared = T.alloc_buffer((1, 32), scope="shared")
for ax0_fused in T.thread_binding(T.int64(1), thread="blockIdx.x"):
for ax0 in range(32):
for ax1_fused_1 in T.thread_binding(256, thread="threadIdx.x"):
for ax1_fused_0 in T.serial(1, annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("A_red_temp"):
v0 = T.axis.spatial(32, ax0)
v1 = T.axis.reduce(64, ax1_fused_0 * 256 + ax1_fused_1)
T.where(ax1_fused_0 * 256 + ax1_fused_1 < 64)
T.reads(A[0, v0 * 64 + v1])
T.writes(A_red_temp_v0_shared[0, v0], A_red_temp_v1_shared[0, v0])
with T.init():
A_red_temp_v0_shared[0, v0] = T.float32(0)
A_red_temp_v1_shared[0, v0] = T.float32(0)
v_A_red_temp_v0: T.float32 = A_red_temp_v0_shared[0, v0] + A[0, v0 * 64 + v1]
v_A_red_temp_v1: T.float32 = A_red_temp_v1_shared[0, v0] + A[0, v0 * 64 + v1] * A[0, v0 * 64 + v1]
A_red_temp_v0_shared[0, v0] = v_A_red_temp_v0
A_red_temp_v1_shared[0, v0] = v_A_red_temp_v1
for ax1_1 in T.thread_binding(256, thread="threadIdx.x"):
for ax1_0 in T.serial(8, annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("T_reshape_3"):
v0 = T.axis.spatial(T.int64(1), T.int64(0))
v1 = T.axis.spatial(2048, ax1_0 * 256 + ax1_1)
T.reads(A[0, v1], A_red_temp_v0_shared[0, v1 // 64], A_red_temp_v1_shared[0, v1 // 64], B[v1], C[v1])
T.writes(T_reshape[0, v1])
T_reshape[0, v1] = (A[0, v1] - A_red_temp_v0_shared[0, v1 // 64] * T.float32(0.015625)) * T.rsqrt(A_red_temp_v1_shared[0, v1 // 64] * T.float32(0.015625) - A_red_temp_v0_shared[0, v1 // 64] * T.float32(0.015625) * (A_red_temp_v0_shared[0, v1 // 64] * T.float32(0.015625)) + T.float32(1.0000000000000001e-05)) * B[v1] + C[v1] # fmt: on
_check(Before, After)
def test_logsumexp():
@I.ir_module
class Before:
@T.prim_func
def compute_lse(var_A: T.handle, var_blocked_lse: T.handle):
T.func_attr({"tir.noalias": True})
batch_size = T.int64(is_size_var=True)
vocab_size = T.int64(is_size_var=True)
num_chunks = T.int64(is_size_var=True)
A = T.match_buffer(var_A, (batch_size, vocab_size), dtype="float32")
blocked_lse = T.match_buffer(var_blocked_lse, (batch_size, num_chunks), dtype="float32")
A_pad = T.alloc_buffer((batch_size, num_chunks, T.int64(4096)), dtype="float32")
temp_max = T.alloc_buffer((batch_size, num_chunks), dtype="float32")
temp_sum = T.alloc_buffer((batch_size, num_chunks), dtype="float32")
for l0, l1, l2 in T.grid(batch_size, num_chunks, T.int64(4096)):
with T.block("pad"):
v0, v1, v2 = T.axis.remap("SSS", [l0, l1, l2])
A_pad[v0, v1, v2] = T.if_then_else(
v1 * T.int64(4096) + v2 < vocab_size,
A[v0, v1 * T.int64(4096) + v2],
T.min_value("float32"),
)
for l0, l1, l2 in T.grid(batch_size, num_chunks, T.int64(4096)):
with T.block("max"):
v0, v1, v2 = T.axis.remap("SSR", [l0, l1, l2])
with T.init():
temp_max[v0, v1] = T.min_value("float32")
temp_max[v0, v1] = T.max(temp_max[v0, v1], A_pad[v0, v1, v2])
for l0, l1, l2 in T.grid(batch_size, num_chunks, T.int64(4096)):
with T.block("sum_exp"):
v0, v1, v2 = T.axis.remap("SSR", [l0, l1, l2])
with T.init():
temp_sum[v0, v1] = T.float32(0)
temp_sum[v0, v1] += T.if_then_else(
v1 * T.int64(4096) + v2 < vocab_size,
T.exp(A_pad[v0, v1, v2] - temp_max[v0, v1]),
T.float32(0),
)
for l0, l1, l2 in T.grid(batch_size, num_chunks, T.int64(1)):
with T.block("log"):
v0, v1, v2 = T.axis.remap("SSS", [l0, l1, l2])
blocked_lse[v0, v1] = T.log(temp_sum[v0, v1]) + temp_max[v0, v1]
@I.ir_module
class After:
@T.prim_func
def compute_lse(var_A: T.handle, var_blocked_lse: T.handle):
T.func_attr({"tir.is_scheduled": True, "tir.noalias": True})
batch_size, vocab_size = T.int64(is_size_var=True), T.int64(is_size_var=True)
A = T.match_buffer(var_A, (batch_size, vocab_size))
num_chunks = T.int64(is_size_var=True)
blocked_lse = T.match_buffer(var_blocked_lse, (batch_size, num_chunks))
temp_max_shared = T.alloc_buffer((batch_size, num_chunks), scope="shared")
temp_sum_shared = T.alloc_buffer((batch_size, num_chunks), scope="shared")
for ax0_ax1_fused in T.thread_binding(batch_size * num_chunks, thread="blockIdx.x"):
for ax0, ax1 in T.grid(T.int64(1), T.int64(1)):
for ax2_fused_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax2_fused_0 in T.serial(
T.int64(16),
annotations={
"pragma_auto_unroll_max_step": 256,
"pragma_unroll_explicit": 1,
},
):
with T.block("max"):
v0 = T.axis.spatial(
batch_size,
ax0_ax1_fused % (num_chunks * batch_size) // num_chunks + ax0,
)
v1 = T.axis.spatial(num_chunks, ax0_ax1_fused % num_chunks + ax1)
v2 = T.axis.reduce(
T.int64(4096), ax2_fused_0 * T.int64(256) + ax2_fused_1
)
T.reads(A[v0, v1 * T.int64(4096) + v2])
T.writes(temp_max_shared[v0, v1])
with T.init():
temp_max_shared[v0, v1] = T.min_value("float32")
temp_max_shared[v0, v1] = T.max(
temp_max_shared[v0, v1],
T.if_then_else(
v1 * T.int64(4096) + v2 < vocab_size,
A[v0, v1 * T.int64(4096) + v2],
T.min_value("float32"),
),
)
for ax0, ax1 in T.grid(T.int64(1), T.int64(1)):
for ax2_fused_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax2_fused_0 in T.serial(
T.int64(16),
annotations={
"pragma_auto_unroll_max_step": 256,
"pragma_unroll_explicit": 1,
},
):
with T.block("sum_exp"):
v0 = T.axis.spatial(
batch_size,
ax0_ax1_fused % (num_chunks * batch_size) // num_chunks + ax0,
)
v1 = T.axis.spatial(num_chunks, ax0_ax1_fused % num_chunks + ax1)
v2 = T.axis.reduce(
T.int64(4096), ax2_fused_0 * T.int64(256) + ax2_fused_1
)
T.reads(A[v0, v1 * T.int64(4096) + v2], temp_max_shared[v0, v1])
T.writes(temp_sum_shared[v0, v1])
with T.init():
temp_sum_shared[v0, v1] = T.float32(0)
temp_sum_shared[v0, v1] = temp_sum_shared[v0, v1] + T.if_then_else(
v1 * T.int64(4096) + v2 < vocab_size,
T.exp(
(
T.if_then_else(
v1 * T.int64(4096) + v2 < vocab_size,
A[v0, v1 * T.int64(4096) + v2],
T.min_value("float32"),
)
- temp_max_shared[v0, v1]
)
),
T.float32(0),
)
for ax2_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax2_0 in T.serial(
T.int64(1),
annotations={
"pragma_auto_unroll_max_step": 256,
"pragma_unroll_explicit": 1,
},
):
with T.block("log"):
v0 = T.axis.spatial(
batch_size, ax0_ax1_fused % (num_chunks * batch_size) // num_chunks
)
v1 = T.axis.spatial(num_chunks, ax0_ax1_fused % num_chunks)
v2 = T.axis.spatial(T.int64(1), ax2_0 * T.int64(256) + ax2_1)
T.where(ax2_0 * T.int64(256) + ax2_1 < T.int64(1))
T.reads(temp_sum_shared[v0, v1], temp_max_shared[v0, v1])
T.writes(blocked_lse[v0, v1])
blocked_lse[v0, v1] = (
T.log(temp_sum_shared[v0, v1]) + temp_max_shared[v0, v1]
)
_check(Before, After)
if __name__ == "__main__":
tvm.testing.main()