blob: b897d50b41c71f3a92792b3e14321d27672b627a [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
from tvm import te
from tvm.contrib import utils
import numpy as np
import tvm.testing
from tvm import tir
@tvm.testing.requires_gpu
def test_large_uint_imm():
value = (1 << 63) + 123
other = tvm.tir.const(3, "uint64")
n = 12
num_thread = 2
A = te.compute((n,), lambda *i: tvm.tir.const(value, "uint64") + other, name="A")
# Convert to TIR and create schedule
mod = te.create_prim_func([A])
sch = tir.Schedule(mod)
# Get block and loop
block = sch.get_block("A")
loop = sch.get_loops(block)[0]
# Split and bind
xo, xi = sch.split(loop, factors=[None, num_thread])
sch.bind(xi, "threadIdx.x")
sch.bind(xo, "blockIdx.x")
def check_target(device):
if not tvm.testing.device_enabled(device):
return
dev = tvm.device(device, 0)
f = tvm.compile(sch.mod, target=device)
# launch the kernel.
a = tvm.runtime.empty((n,), dtype=A.dtype, device=dev)
f(a)
assert a.numpy()[0] == value + 3
check_target("cuda")
check_target("vulkan -from_device=0")
@tvm.testing.requires_gpu
def test_add_pipeline():
n = te.size_var("n")
A = te.placeholder((n,), name="A")
B = te.placeholder((), name="B")
C = te.compute(A.shape, lambda *i: A(*i) + B(), name="C")
D = te.compute(A.shape, lambda *i: C(*i) + 1, name="D")
# Convert to TIR and create schedule
mod = te.create_prim_func([A, B, D])
sch = tir.Schedule(mod)
# Get blocks and loops
c_block = sch.get_block("C")
d_block = sch.get_block("D")
c_loop = sch.get_loops(c_block)[0]
d_loop = sch.get_loops(d_block)[0]
# GPU schedule have to split by gridIdx and threadIdx
num_thread = 256
# Schedule C
c_xo, c_xi = sch.split(c_loop, factors=[None, num_thread])
sch.bind(c_xi, "threadIdx.x")
sch.bind(c_xo, "blockIdx.x")
# Schedule D
d_xo, d_xi = sch.split(d_loop, factors=[None, num_thread])
sch.bind(d_xi, "threadIdx.x")
sch.bind(d_xo, "blockIdx.x")
def check_target(device, host):
if not tvm.testing.device_enabled(device) or not tvm.testing.device_enabled(host):
return
dev = tvm.device(device, 0)
target = tvm.target.Target(device, host)
mhost = tvm.tir.build(sch.mod, target=target)
f = mhost.main
# launch the kernel.
n = 1027
a = tvm.runtime.tensor(np.random.uniform(size=n).astype(A.dtype), dev)
b = tvm.runtime.tensor(np.random.uniform(size=()).astype(B.dtype), dev)
d = tvm.runtime.tensor(np.zeros(n, dtype=D.dtype), dev)
f(a, b, d)
tvm.testing.assert_allclose(d.numpy(), a.numpy() + b.numpy() + 1)
check_target("cuda", host="llvm")
check_target("nvptx", host="llvm")
check_target("vulkan", host="llvm")
check_target("rocm", host="llvm")
if __name__ == "__main__":
test_large_uint_imm()
test_add_pipeline()