blob: 664258ae7cf19ae651ca933d29c843a9580945d7 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import random
import sys
import pytest
import tvm
from tvm import te, arith, ir, tir, testing
from tvm.script import tir as T
@pytest.mark.skip(reason="See https://github.com/apache/tvm/issues/11458")
def test_solution_consistency():
seed = random.randrange(sys.maxsize)
print(
"\nThis test is intentionally non-deterministic, "
"if it fails please report it in github issue together with this seed {}\n".format(seed)
)
random.seed(seed)
def _check(variables, formulas, coef=(-5, 5), bounds=(-20, 20)):
vs = [te.var("x" + str(i)) for i in range(variables)]
fs = []
for i in range(formulas):
s1 = sum([v * random.randint(coef[0], coef[1]) for v in vs])
s1 += random.randint(coef[0], coef[1])
s2 = sum([v * random.randint(coef[0], coef[1]) for v in vs])
s2 += random.randint(coef[0], coef[1])
op = random.choice([tir.expr.EQ, tir.expr.LE, tir.expr.LT, tir.expr.GE, tir.expr.GT])
fs.append(op(s1, s2))
vranges = {v: tvm.ir.expr.Range(bounds[0], bounds[1] + 1) for v in vs}
before = te.all(tir.const(1, "bool"), *fs)
after = arith._ffi_api.SolveInequalitiesAsCondition(vs, vranges, fs)
after = te.all(tir.const(1, "bool"), *after)
testing.check_bool_expr_is_true(before == after, vranges)
solution = arith.solve_linear_inequalities(fs, vs, vranges, deskew_range=True)
testing.check_int_constraints_trans_consistency(solution)
for i in range(3):
_check(1, 1)
for i in range(3):
_check(1, 2)
for i in range(3):
_check(2, 1)
for i in range(3):
_check(2, 2)
for i in range(3):
_check(2, 3)
# Somewhere here coefficients in the results become too large, leading to overflow,
# so we use smaller initial coefficients
for i in range(5):
_check(3, 3, coef=(-2, 2))
for i in range(5):
_check(3, 4, coef=(-2, 2))
for i in range(5):
_check(4, 3, coef=(-1, 1))
for i in range(5):
_check(10, 2, coef=(-1, 1), bounds=(0, 4))
for i in range(5):
_check(10, 3, coef=(0, 1), bounds=(0, 4))
def test_dual_variable():
x, y = te.var("x"), te.var("y")
variables = [x, y]
ranges = {
x: tvm.ir.Range(-100, 100),
y: tvm.ir.Range(0, 10),
}
problem = [
tvm.tir.LE(x + y, 20),
tvm.tir.GE(x - y, 10),
]
# solution as conditions
solution = arith._ffi_api.SolveInequalitiesAsCondition(variables, ranges, problem)
assert ir.structural_equal(solution[0], x >= (y + 10))
assert ir.structural_equal(solution[1], x <= (20 - y))
assert ir.structural_equal(solution[2], y >= 0)
assert ir.structural_equal(solution[3], y <= 5)
# solve and get the ranges
solution = arith.solve_linear_inequalities(problem, variables, ranges)
# 0 <= y <=5
assert solution.ranges[y].min == 0
assert solution.ranges[y].extent == 6
# y + 10 <= x <= 20 - y
assert ir.structural_equal(solution.ranges[x].min, y + 10)
assert solution.ranges[x].extent == 11 # max(10 - 2y)
# deskew the solved ranges to be starting from zero
solution = arith.solve_linear_inequalities(problem, variables, ranges, deskew_range=True)
[x_new, y_new] = solution.dst.variables
[rel] = solution.dst.relations
assert ir.structural_equal(rel, (y_new * 2) + x_new <= 10)
assert ir.structural_equal(solution.dst.ranges[x_new].min, T.int32(0))
assert ir.structural_equal(solution.dst.ranges[x_new].extent, T.int32(11))
assert ir.structural_equal(solution.dst.ranges[y_new].min, T.int32(0))
assert ir.structural_equal(solution.dst.ranges[y_new].extent, T.int32(6))
assert ir.structural_equal(solution.src_to_dst[x], x_new + (y_new + 10))
assert ir.structural_equal(solution.src_to_dst[y], y_new)
assert ir.structural_equal(solution.dst_to_src[x_new], x - y - 10)
assert ir.structural_equal(solution.dst_to_src[y_new], y)
def test_equal():
x, y = te.var("x"), te.var("y")
problem = [
tvm.tir.GE(x + y, 10),
tvm.tir.GE(x - y, 2),
tvm.tir.LE(x, 6),
]
solution = arith.solve_linear_inequalities(problem, [x, y])
assert solution.ranges[x].min == 6
assert solution.ranges[x].extent == 1
assert solution.ranges[y].min == 4
assert solution.ranges[y].extent == 1
solution = arith.solve_linear_inequalities(problem, [x, y], deskew_range=True)
assert len(solution.dst.variables) == 0
assert len(solution.dst.ranges) == 0
assert len(solution.dst.relations) == 0
assert solution.src_to_dst[x] == 6
assert solution.src_to_dst[y] == 4
def test_multi_equal():
x, y, z = te.var("x"), te.var("y"), te.var("z")
problem = [
tvm.tir.LE(x, 6),
tvm.tir.GE(x, 6),
tvm.tir.GE(x - z * y, 0),
tvm.tir.LE(x - z * y, 0),
]
solution = arith.solve_linear_inequalities(problem, [x, y, z])
assert solution.ranges[x].min == 6
assert solution.ranges[x].extent == 1
assert len(solution.relations) == 3
assert ir.structural_equal(solution.relations[0], x == z * y)
assert isinstance(solution.relations[1], tvm.tir.LE)
assert solution.relations[1].b == 0
assert isinstance(solution.relations[2], tvm.tir.LE)
assert solution.relations[2].b == 0
# (z*y - 6) <= 0 && (6 - z*y) <= 0
ana = tvm.arith.Analyzer()
assert ana.simplify(solution.relations[1].a + solution.relations[2].a) == 0
assert ir.structural_equal(solution.relations[1].a, (z * y - 6)) or ir.structural_equal(
solution.relations[2].a, (z * y - 6)
)
solution = arith.solve_linear_inequalities(problem, [x, y, z], deskew_range=True)
assert solution.src_to_dst[y] == y
assert solution.src_to_dst[z] == z
assert solution.src_to_dst[x] == 6
def test_no_solution():
x = te.var("x0")
vranges = {x: tvm.ir.Range.from_min_extent(-20, 41)}
problem = [-x - 4 <= -5 * x + 2, x * 4 + 5 <= x * 5]
solution = arith.solve_linear_inequalities(problem, [x], vranges, deskew_range=True)
assert list(solution.dst.variables) == []
[rel] = solution.dst.relations
ir.assert_structural_equal(rel, tir.const(False))
assert len(solution.src_to_dst) == 0
assert len(solution.dst_to_src) == 0
solution = arith.solve_linear_inequalities(problem, [x], vranges)
assert len(solution.variables) == 0
assert len(solution.ranges) == 0
[rel] = solution.relations
assert not rel
def test_unbound_var_range():
x = te.var("x0")
free_var = te.var("fv")
vranges = {x: tvm.ir.Range.from_min_extent(0, tvm.tir.Cast("int32", 1 + tvm.tir.log(free_var)))}
problem = [x > 3]
solution = arith.solve_linear_inequalities(
problem,
[x],
vranges,
)
assert len(solution.variables) == 1
assert len(solution.ranges) == 0
assert len(solution.relations) == 3
if __name__ == "__main__":
tvm.testing.main()