| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| #include <gtest/gtest.h> |
| #include <tvm/ffi/optional.h> |
| |
| #include <iostream> |
| |
| #if defined(TVM_GRAPH_EXECUTOR_CLML) |
| #include "../src/runtime/contrib/clml/clml_memory_planner.h" |
| #include "../src/runtime/contrib/clml/clml_runtime.h" |
| #include "../src/runtime/opencl/opencl_common.h" |
| |
| using namespace tvm::runtime; |
| using namespace tvm::runtime::cl; |
| |
| class CLMLMemoryPlannerBin : public ::testing::Test { |
| protected: |
| virtual void SetUp() override { |
| layer.on_chip_pool_size.clear(); |
| layer.on_chip_pool_size.insert({0, cws->onchip_mem_size}); |
| layer.on_chip_pool_alloc_info.clear(); |
| layer.alloc_ping_pong = true; |
| layer.in_chip_total_free = cws->onchip_mem_size; |
| layer.in_chip_total_alloc = 0; |
| layer.on_chip_alert_fail = 0; |
| |
| /* clear global pool before each test */ |
| for (auto it = cws->ddr_global_pool.begin(); it != cws->ddr_global_pool.end(); it++) { |
| clReleaseMemObject(it->first); |
| } |
| cws->ddr_global_pool.clear(); |
| } |
| |
| void PlanMemory(int total_nodes, const std::map<int, uint32_t>& tensor_sizes, |
| const std::map<int, std::vector<int>>& input_tensors) { |
| for (int nid = 0; nid < total_nodes; ++nid) { |
| uint32_t size = tensor_sizes.at(nid); |
| size_t offset = -1; |
| if (cws->is_on_chip_memory) { |
| os << "Requesting On-chip:" << nid << std::endl; |
| offset = RequestOnChipMemory(&layer, size); |
| } |
| if (-1 != offset) { |
| os << "On Chip not found:" << nid << std::endl; |
| layer.on_chip_pool_alloc_info.insert({offset, nid}); |
| layer.on_chip_alloc_plan.insert({nid, std::make_pair(size, offset)}); |
| } else { |
| os << "Requesting DDR memory:" << nid << std::endl; |
| layer.on_chip_reject.insert({nid, size}); |
| // DDR Allocation |
| auto ddr_mem = RequestDDRMemory(&layer, size); |
| layer.ddr_alloc_plan.insert({nid, ddr_mem}); |
| } |
| |
| // Now free up the input tensors on-chip memory for reuse. |
| for (auto& input_node : input_tensors.at(nid)) { |
| FreeMemory(&layer, input_node); |
| } |
| } |
| |
| // Stats dump |
| size_t in_chip_total_alloc = 0; |
| size_t total_reject = 0; |
| for (auto it = layer.on_chip_alloc_plan.begin(); it != layer.on_chip_alloc_plan.end(); it++) { |
| os << " On-chip Alloc:" << it->first << " Size:" << it->second.first |
| << " Offset:" << it->second.second << std::endl; |
| in_chip_total_alloc += it->second.first; |
| } |
| |
| for (auto it = layer.on_chip_reject.begin(); it != layer.on_chip_reject.end(); it++) { |
| os << "Reject:" << it->first << " Size:" << it->second << std::endl; |
| total_reject += it->second; |
| } |
| os << "Total On-chip Alloc:" << in_chip_total_alloc + total_reject |
| << " On-Chip:" << in_chip_total_alloc << " Reject:" << total_reject << std::endl; |
| |
| for (auto it = cws->ddr_global_pool.begin(); it != cws->ddr_global_pool.end(); it++) { |
| os << "DDR Global pool - size:" << it->second.first << " Ref:" << it->second.second |
| << std::endl; |
| } |
| for (auto it = layer.ddr_storage_ref_map.begin(); it != layer.ddr_storage_ref_map.end(); it++) { |
| os << "DDR Local pool - size:" << it->second.first << " Ref cnt:" << it->second.second |
| << std::endl; |
| } |
| } |
| |
| void CompareOnChipPlan(const std::vector<int>& on_chip_plan) { |
| for (auto& nid : on_chip_plan) { |
| EXPECT_EQ(layer.on_chip_alloc_plan.find(nid) == layer.on_chip_alloc_plan.end(), false) |
| << os.str(); |
| } |
| } |
| |
| void CompareDDRPlan(const std::vector<int>& ddr_plan) { |
| for (auto& nid : ddr_plan) { |
| EXPECT_EQ(layer.ddr_alloc_plan.find(nid) == layer.ddr_alloc_plan.end(), false) << os.str(); |
| } |
| } |
| |
| void RunTest(const std::map<int, std::vector<int>>& input_tensors, |
| const std::map<int, uint32_t>& tensor_sizes, |
| const std::vector<int>& on_chip_expected, const std::vector<int>& ddr_expected, |
| const int ddr_global_pool_size) { |
| PlanMemory(input_tensors.size(), tensor_sizes, input_tensors); |
| CompareOnChipPlan(on_chip_expected); |
| CompareDDRPlan(ddr_expected); |
| EXPECT_EQ(cws->ddr_global_pool.size(), ddr_global_pool_size) << os.str(); |
| } |
| |
| protected: |
| tvm::runtime::contrib::CLMLWorkspace* cws = tvm::runtime::contrib::CLMLWorkspace::Global(); |
| std::stringstream os; |
| |
| public: |
| tvm::runtime::contrib::CachedLayer layer; |
| }; |
| |
| TEST_F(CLMLMemoryPlannerBin, sequential_all_on_chip) { |
| layer.storage_ref_map.insert({0, 1}); |
| layer.storage_ref_map.insert({1, 1}); |
| layer.storage_ref_map.insert({2, 1}); |
| layer.storage_ref_map.insert({3, 1}); |
| layer.storage_ref_map.insert({4, 1}); |
| layer.storage_ref_map.insert({5, 1}); |
| layer.storage_ref_map.insert({6, 1}); |
| layer.storage_ref_map.insert({7, 1}); |
| layer.storage_ref_map.insert({8, 1}); |
| layer.storage_ref_map.insert({9, 1}); |
| |
| layer.life_span.insert({0, 1}); |
| layer.life_span.insert({1, 2}); |
| layer.life_span.insert({2, 3}); |
| layer.life_span.insert({3, 4}); |
| layer.life_span.insert({4, 5}); |
| layer.life_span.insert({5, 6}); |
| layer.life_span.insert({6, 7}); |
| layer.life_span.insert({7, 8}); |
| layer.life_span.insert({8, 9}); |
| layer.life_span.insert({9, 10}); |
| |
| std::map<int, uint32_t> tensor_sizes; |
| tensor_sizes.insert({0, 1024000}); |
| tensor_sizes.insert({1, 1024000}); |
| tensor_sizes.insert({2, 1024000}); |
| tensor_sizes.insert({3, 1024000}); |
| tensor_sizes.insert({4, 1024000}); |
| tensor_sizes.insert({5, 1024000}); |
| tensor_sizes.insert({6, 1024000}); |
| tensor_sizes.insert({7, 1024000}); |
| tensor_sizes.insert({8, 1024000}); |
| tensor_sizes.insert({9, 1024000}); |
| |
| std::map<int, std::vector<int>> input_tensors{ |
| {0, {}}, {1, {0}}, {2, {1}}, {3, {2}}, {4, {3}}, |
| {5, {4}}, {6, {5}}, {7, {6}}, {8, {7}}, {9, {8}}, |
| }; |
| |
| RunTest(input_tensors, tensor_sizes, std::vector<int>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), |
| std::vector<int>({}), 0); |
| } |
| |
| TEST_F(CLMLMemoryPlannerBin, sequential_mixed) { |
| layer.storage_ref_map.insert({0, 1}); |
| layer.storage_ref_map.insert({1, 1}); |
| layer.storage_ref_map.insert({2, 1}); |
| layer.storage_ref_map.insert({3, 1}); |
| layer.storage_ref_map.insert({4, 1}); |
| layer.storage_ref_map.insert({5, 1}); |
| |
| layer.life_span.insert({0, 1}); |
| layer.life_span.insert({1, 2}); |
| layer.life_span.insert({2, 3}); |
| layer.life_span.insert({3, 4}); |
| layer.life_span.insert({4, 5}); |
| layer.life_span.insert({5, 6}); |
| |
| std::map<int, uint32_t> tensor_sizes; |
| tensor_sizes.insert({0, 1024000}); |
| tensor_sizes.insert({1, 1024000}); |
| tensor_sizes.insert({2, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({3, 1024000}); |
| tensor_sizes.insert({4, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({5, 1024000}); |
| |
| std::map<int, std::vector<int>> input_tensors{ |
| {0, {}}, {1, {0}}, {2, {1}}, {3, {2}}, {4, {3}}, {5, {4}}, |
| }; |
| |
| RunTest(input_tensors, tensor_sizes, std::vector<int>({0, 1, 3, 5}), std::vector<int>({2, 4}), 1); |
| } |
| |
| TEST_F(CLMLMemoryPlannerBin, sequential_all_ddr) { |
| layer.storage_ref_map.insert({0, 1}); |
| layer.storage_ref_map.insert({1, 1}); |
| layer.storage_ref_map.insert({2, 1}); |
| layer.storage_ref_map.insert({3, 1}); |
| layer.storage_ref_map.insert({4, 1}); |
| layer.storage_ref_map.insert({5, 1}); |
| |
| layer.life_span.insert({0, 1}); |
| layer.life_span.insert({1, 2}); |
| layer.life_span.insert({2, 3}); |
| layer.life_span.insert({3, 4}); |
| layer.life_span.insert({4, 5}); |
| layer.life_span.insert({5, 6}); |
| |
| std::map<int, uint32_t> tensor_sizes; |
| tensor_sizes.insert({0, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({1, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({2, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({3, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({4, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({5, cws->onchip_mem_size + 1}); |
| |
| std::map<int, std::vector<int>> input_tensors{ |
| {0, {}}, {1, {0}}, {2, {1}}, {3, {2}}, {4, {3}}, {5, {4}}, |
| }; |
| |
| RunTest(input_tensors, tensor_sizes, std::vector<int>({}), std::vector<int>({0, 1, 2, 3, 4, 5}), |
| 2); |
| } |
| |
| TEST_F(CLMLMemoryPlannerBin, branched_all_on_alive_on_chip) { |
| layer.storage_ref_map.insert({0, 9}); |
| layer.storage_ref_map.insert({1, 8}); |
| layer.storage_ref_map.insert({2, 7}); |
| layer.storage_ref_map.insert({3, 6}); |
| layer.storage_ref_map.insert({4, 5}); |
| layer.storage_ref_map.insert({5, 4}); |
| layer.storage_ref_map.insert({6, 3}); |
| layer.storage_ref_map.insert({7, 2}); |
| layer.storage_ref_map.insert({8, 1}); |
| layer.storage_ref_map.insert({9, 1}); |
| |
| layer.life_span.insert({0, 9}); |
| layer.life_span.insert({1, 9}); |
| layer.life_span.insert({2, 9}); |
| layer.life_span.insert({3, 9}); |
| layer.life_span.insert({4, 9}); |
| layer.life_span.insert({5, 9}); |
| layer.life_span.insert({6, 9}); |
| layer.life_span.insert({7, 9}); |
| layer.life_span.insert({8, 9}); |
| layer.life_span.insert({9, 10}); |
| |
| std::map<int, uint32_t> tensor_sizes; |
| tensor_sizes.insert({0, 102400}); |
| tensor_sizes.insert({1, 102400}); |
| tensor_sizes.insert({2, 102400}); |
| tensor_sizes.insert({3, 102400}); |
| tensor_sizes.insert({4, 102400}); |
| tensor_sizes.insert({5, 102400}); |
| tensor_sizes.insert({6, 102400}); |
| tensor_sizes.insert({7, 102400}); |
| tensor_sizes.insert({8, 102400}); |
| tensor_sizes.insert({9, 102400}); |
| |
| std::map<int, std::vector<int>> input_tensors{ |
| {0, {}}, |
| {1, {0}}, |
| {2, {0, 1}}, |
| {3, {0, 1, 2}}, |
| {4, {0, 1, 2, 3}}, |
| {5, {0, 1, 2, 3, 4}}, |
| {6, {0, 1, 2, 3, 4, 5}}, |
| {7, {0, 1, 2, 3, 4, 5, 6}}, |
| {8, {0, 1, 2, 3, 4, 5, 6, 7}}, |
| {9, {0, 1, 2, 3, 4, 5, 6, 7, 8}}, |
| }; |
| |
| RunTest(input_tensors, tensor_sizes, std::vector<int>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), |
| std::vector<int>({}), 0); |
| } |
| |
| TEST_F(CLMLMemoryPlannerBin, branched_all_on_alive_mixed) { |
| layer.storage_ref_map.insert({0, 9}); |
| layer.storage_ref_map.insert({1, 8}); |
| layer.storage_ref_map.insert({2, 7}); |
| layer.storage_ref_map.insert({3, 6}); |
| layer.storage_ref_map.insert({4, 5}); |
| layer.storage_ref_map.insert({5, 4}); |
| layer.storage_ref_map.insert({6, 3}); |
| layer.storage_ref_map.insert({7, 2}); |
| layer.storage_ref_map.insert({8, 1}); |
| layer.storage_ref_map.insert({9, 1}); |
| |
| layer.life_span.insert({0, 9}); |
| layer.life_span.insert({1, 9}); |
| layer.life_span.insert({2, 9}); |
| layer.life_span.insert({3, 9}); |
| layer.life_span.insert({4, 9}); |
| layer.life_span.insert({5, 9}); |
| layer.life_span.insert({6, 9}); |
| layer.life_span.insert({7, 9}); |
| layer.life_span.insert({8, 9}); |
| layer.life_span.insert({9, 10}); |
| |
| std::map<int, uint32_t> tensor_sizes; |
| tensor_sizes.insert({0, 102400}); |
| tensor_sizes.insert({1, 102400}); |
| tensor_sizes.insert({2, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({3, 102400}); |
| tensor_sizes.insert({4, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({5, 102400}); |
| tensor_sizes.insert({6, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({7, 102400}); |
| tensor_sizes.insert({8, 102400}); |
| tensor_sizes.insert({9, 102400}); |
| |
| std::map<int, std::vector<int>> input_tensors{ |
| {0, {}}, |
| {1, {0}}, |
| {2, {0, 1}}, |
| {3, {0, 1, 2}}, |
| {4, {0, 1, 2, 3}}, |
| {5, {0, 1, 2, 3, 4}}, |
| {6, {0, 1, 2, 3, 4, 5}}, |
| {7, {0, 1, 2, 3, 4, 5, 6}}, |
| {8, {0, 1, 2, 3, 4, 5, 6, 7}}, |
| {9, {0, 1, 2, 3, 4, 5, 6, 7, 8}}, |
| }; |
| |
| RunTest(input_tensors, tensor_sizes, std::vector<int>({0, 1, 3, 5, 7, 8, 9}), |
| std::vector<int>({2, 4, 6}), 3); |
| } |
| |
| TEST_F(CLMLMemoryPlannerBin, branched_all_on_alive_all_ddr) { |
| layer.storage_ref_map.insert({0, 9}); |
| layer.storage_ref_map.insert({1, 8}); |
| layer.storage_ref_map.insert({2, 7}); |
| layer.storage_ref_map.insert({3, 6}); |
| layer.storage_ref_map.insert({4, 5}); |
| layer.storage_ref_map.insert({5, 4}); |
| layer.storage_ref_map.insert({6, 3}); |
| layer.storage_ref_map.insert({7, 2}); |
| layer.storage_ref_map.insert({8, 1}); |
| layer.storage_ref_map.insert({9, 1}); |
| |
| layer.life_span.insert({0, 9}); |
| layer.life_span.insert({1, 9}); |
| layer.life_span.insert({2, 9}); |
| layer.life_span.insert({3, 9}); |
| layer.life_span.insert({4, 9}); |
| layer.life_span.insert({5, 9}); |
| layer.life_span.insert({6, 9}); |
| layer.life_span.insert({7, 9}); |
| layer.life_span.insert({8, 9}); |
| layer.life_span.insert({9, 10}); |
| |
| std::map<int, uint32_t> tensor_sizes; |
| tensor_sizes.insert({0, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({1, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({2, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({3, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({4, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({5, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({6, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({7, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({8, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({9, cws->onchip_mem_size + 1}); |
| |
| std::map<int, std::vector<int>> input_tensors{ |
| {0, {}}, |
| {1, {0}}, |
| {2, {0, 1}}, |
| {3, {0, 1, 2}}, |
| {4, {0, 1, 2, 3}}, |
| {5, {0, 1, 2, 3, 4}}, |
| {6, {0, 1, 2, 3, 4, 5}}, |
| {7, {0, 1, 2, 3, 4, 5, 6}}, |
| {8, {0, 1, 2, 3, 4, 5, 6, 7}}, |
| {9, {0, 1, 2, 3, 4, 5, 6, 7, 8}}, |
| }; |
| RunTest(input_tensors, tensor_sizes, std::vector<int>({}), |
| std::vector<int>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), 10); |
| } |
| |
| TEST_F(CLMLMemoryPlannerBin, skip_connections_mixed) { |
| layer.storage_ref_map.insert({0, 2}); |
| layer.storage_ref_map.insert({1, 1}); |
| layer.storage_ref_map.insert({2, 2}); |
| layer.storage_ref_map.insert({3, 1}); |
| layer.storage_ref_map.insert({4, 2}); |
| layer.storage_ref_map.insert({5, 1}); |
| layer.storage_ref_map.insert({6, 2}); |
| layer.storage_ref_map.insert({7, 1}); |
| layer.storage_ref_map.insert({8, 1}); |
| layer.storage_ref_map.insert({9, 1}); |
| |
| layer.life_span.insert({0, 2}); |
| layer.life_span.insert({1, 2}); |
| layer.life_span.insert({2, 4}); |
| layer.life_span.insert({3, 4}); |
| layer.life_span.insert({4, 6}); |
| layer.life_span.insert({5, 6}); |
| layer.life_span.insert({6, 8}); |
| layer.life_span.insert({7, 8}); |
| layer.life_span.insert({8, 9}); |
| layer.life_span.insert({9, 10}); |
| |
| std::map<int, uint32_t> tensor_sizes; |
| tensor_sizes.insert({0, 1024000}); |
| tensor_sizes.insert({1, 1024000}); |
| tensor_sizes.insert({2, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({3, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({4, 1024000}); |
| tensor_sizes.insert({5, 1024000}); |
| tensor_sizes.insert({6, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({7, cws->onchip_mem_size + 1}); |
| tensor_sizes.insert({8, 1024000}); |
| tensor_sizes.insert({9, cws->onchip_mem_size + 1}); |
| |
| std::map<int, std::vector<int>> input_tensors{ |
| {0, {}}, {1, {0}}, {2, {0, 1}}, {3, {2}}, {4, {2, 3}}, |
| {5, {4}}, {6, {4, 5}}, {7, {6}}, {8, {6, 7}}, {9, {8}}, |
| }; |
| |
| RunTest(input_tensors, tensor_sizes, std::vector<int>({0, 1, 4, 5, 8}), |
| std::vector<int>({2, 3, 6, 7, 9}), 2); |
| } |
| |
| #endif // TVM_GRAPH_EXECUTOR_CLML |