| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| #ifndef TVM_TESTS_CPPRUNTIME_HEXAGON_HEXAGON_CONV_UTILS_H |
| #define TVM_TESTS_CPPRUNTIME_HEXAGON_HEXAGON_CONV_UTILS_H |
| |
| #include <dlpack/dlpack.h> |
| #include <gtest/gtest.h> |
| |
| #include <limits> |
| |
| #include "conv2d.h" |
| |
| using namespace tvm::runtime::hexagon::conv_utils; |
| |
| template <typename T> |
| class HexagonUtilsTest : public ::testing::Test { |
| public: |
| void SetUp() override { |
| vtcm_scope = "global.vtcm"; |
| device_api = tvm::runtime::DeviceAPI::Get(hexagon_device, false); |
| float16.code = kDLFloat; |
| float16.bits = 16; |
| float16.lanes = 1; |
| |
| uint8.code = kDLUInt; |
| uint8.bits = 8; |
| uint8.lanes = 1; |
| |
| int8.code = kDLInt; |
| int8.bits = 8; |
| int8.lanes = 1; |
| } |
| |
| void setupTensor(std::tuple<int64_t, int64_t, int64_t, int64_t> shape, DLDataType dtype) { |
| auto [s1, s2, s3, s4] = shape; |
| tensor_shape[0] = s1; |
| tensor_shape[1] = s2; |
| tensor_shape[2] = s3; |
| tensor_shape[3] = s4; |
| int64_t shape_1d[1] = {s1 * s2 * s3 * s4}; |
| |
| flat_mem = device_api->AllocDataSpace(hexagon_device, 1, shape_1d, dtype, vtcm_scope); |
| flat_mem_data = static_cast<T*>(flat_mem); |
| fill_vals(flat_mem_data, shape_1d[0]); |
| |
| flat_tensor.data = flat_mem; |
| flat_tensor.device = hexagon_device; |
| flat_tensor.ndim = 4; |
| flat_tensor.dtype = dtype; |
| flat_tensor.shape = tensor_shape; |
| flat_tensor.strides = nullptr; |
| flat_tensor.byte_offset = 0; |
| } |
| |
| void TearDownTensor() { |
| if (flat_tensor.data) device_api->FreeDataSpace(hexagon_device, flat_mem); |
| } |
| |
| static void fill_vals(T* arr, int size) { |
| // Testing with uint16 instead of float16 as generating random float16 is not easy within c++ |
| auto max = std::numeric_limits<T>::max(); |
| srand(std::time(0)); |
| for (int i = 0; i < size; ++i) { |
| arr[i] = static_cast<T>(std::rand() % max); |
| } |
| } |
| |
| static int flattened_idx(int nn, int hh, int ww, int cc, int64_t* shape) { |
| int h = shape[1]; |
| int w = shape[2]; |
| int c = shape[3]; |
| return cc + c * (ww + w * (hh + h * (nn))); |
| } |
| |
| DLTensor flat_tensor; |
| void* flat_mem; |
| T* flat_mem_data; |
| tvm::runtime::DeviceAPI* device_api; |
| tvm::ffi::String vtcm_scope; |
| DLDataType float16; |
| DLDataType int8, uint8; |
| int64_t tensor_shape[4]; |
| }; |
| |
| #endif |