| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import numpy as np |
| import tvm |
| import tvm.testing |
| from tvm import te |
| from tvm.topi.nn.pooling import pool2d |
| |
| |
| def test_tensor(): |
| m = te.size_var("m") |
| n = te.size_var("n") |
| l = te.size_var("l") |
| A = te.placeholder((m, l), name="A") |
| B = te.placeholder((n, l), name="B") |
| T = te.compute((m, n, l), lambda i, j, k: A[i, k] * B[j, k]) |
| print(T) |
| print(T.op.body) |
| assert tuple(T.shape) == (m, n, l) |
| assert isinstance(A.op, tvm.te.PlaceholderOp) |
| assert A == A |
| assert T.op.output(0) == T |
| assert T.op.output(0).__hash__() == T.__hash__() |
| d = {T.op.output(0): 1} |
| assert d[T] == 1 |
| assert T[0][0][0].astype("float16").dtype == "float16" |
| |
| |
| def test_rank_zero(): |
| m = te.size_var("m") |
| A = te.placeholder((m,), name="A") |
| scale = te.placeholder((), name="s") |
| k = te.reduce_axis((0, m), name="k") |
| T = te.compute((), lambda: te.sum(A[k] * scale(), axis=k)) |
| print(T) |
| print(T.op.body) |
| assert tuple(T.shape) == () |
| |
| |
| def test_conv1d(): |
| n = te.size_var("n") |
| A = te.placeholder((n + 2), name="A") |
| |
| def computeB(ii): |
| i = ii + 1 |
| return A[i - 1] + A[i] + A[i + 1] |
| |
| B = te.compute(n, computeB) |
| |
| |
| def test_tensor_slice(): |
| n = te.size_var("n") |
| A = te.compute((n, n), lambda i, j: 1) |
| B = te.compute((n,), lambda i: A[0][i] + A[0][i]) |
| |
| |
| def test_tensor_reduce_multi_axis(): |
| m = te.size_var("m") |
| n = te.size_var("n") |
| A = te.placeholder((m, n), name="A") |
| k1 = te.reduce_axis((0, n), "k") |
| k2 = te.reduce_axis((0, m), "k") |
| C = te.compute((1,), lambda _: te.sum(A[k1, k2], axis=(k1, k2))) |
| C = te.compute((1,), lambda _: te.sum(A[k1, k2], axis=[k1, k2])) |
| |
| |
| def test_tensor_comm_reducer(): |
| m = te.size_var("m") |
| n = te.size_var("n") |
| A = te.placeholder((m, n), name="A") |
| k = te.reduce_axis((0, n), "k") |
| mysum = te.comm_reducer(lambda x, y: x + y, lambda t: tvm.tir.const(0, dtype=t)) |
| C = te.compute((m,), lambda i: mysum(A[i, k], axis=k)) |
| |
| |
| def test_tensor_comm_reducer_overload(): |
| m = te.size_var("m") |
| n = te.size_var("n") |
| mysum = te.comm_reducer(lambda x, y: x + y, lambda t: tvm.tir.const(0, dtype=t)) |
| sum_res = mysum(m, n) |
| |
| |
| def test_tensor_reduce(): |
| m = te.size_var("m") |
| n = te.size_var("n") |
| l = te.size_var("l") |
| A = te.placeholder((m, l), name="A") |
| B = te.placeholder((n, l), name="B") |
| T = te.compute((m, n, l), lambda i, j, k: A[i, k] * B[j, k]) |
| rv = te.reduce_axis((0, A.shape[1]), "k") |
| C = te.compute((m, n), lambda i, j: te.sum(T(i, j, rv + 1), axis=rv)) |
| # json load save |
| C_json = tvm.ir.save_json(C) |
| C_loaded = tvm.ir.load_json(C_json) |
| assert isinstance(C_loaded, te.tensor.Tensor) |
| assert str(C_loaded) == str(C) |
| |
| |
| def test_tensor_reduce_multiout_with_cond(): |
| def fcombine(x, y): |
| return x[0] + y[0], x[1] + y[1] |
| |
| def fidentity(t0, t1): |
| return tvm.tir.const(0, t0), tvm.tir.const(1, t1) |
| |
| mysum = te.comm_reducer(fcombine, fidentity, name="mysum") |
| |
| m = te.var("m") |
| n = te.var("n") |
| idx = te.placeholder((m, n), name="idx", dtype="int32") |
| val = te.placeholder((m, n), name="val", dtype="int32") |
| k = te.reduce_axis((0, n), "k") |
| cond = te.floormod(k, 2) == 0 |
| T0, T1 = te.compute((m,), lambda i: mysum((idx[i, k], val[i, k]), axis=k, where=cond), name="T") |
| |
| |
| def test_tensor_scan(): |
| m = te.size_var("m") |
| n = te.size_var("n") |
| x = te.placeholder((m, n)) |
| s = te.placeholder((m, n)) |
| res = tvm.te.scan( |
| te.compute((1, n), lambda _, i: x[0, i]), |
| te.compute((m, n), lambda t, i: s[t - 1, i] + x[t, i]), |
| s, |
| ) |
| assert tuple(res.shape) == (m, n) |
| |
| |
| def test_scan_multi_out(): |
| m = te.size_var("m") |
| n = te.size_var("n") |
| x1 = te.placeholder((m, n)) |
| s1 = te.placeholder((m, n)) |
| x2 = te.placeholder((m, n)) |
| s2 = te.placeholder((m, n)) |
| s1_init = te.compute((1, n), lambda _, i: x1[0, i]) |
| s2_init = te.compute((1, n), lambda _, i: x2[0, i]) |
| s1_update = te.compute((m, n), lambda t, i: s1[t - 1, i] + s2[t - 1, i] + x1[t, i]) |
| s2_update = te.compute((m, n), lambda t, i: x2[t, i] + s2[t - 1, i]) |
| |
| r0, r1 = tvm.te.scan([s1_init, s2_init], [s1_update, s2_update], [s1, s2]) |
| assert r0.value_index == 0 |
| assert r1.value_index == 1 |
| json_str = tvm.ir.save_json(r0.op) |
| zz = tvm.ir.load_json(json_str) |
| assert isinstance(zz, tvm.te.ScanOp) |
| |
| |
| def test_extern(): |
| m = te.size_var("m") |
| A = te.placeholder((m,), name="A") |
| |
| def extern_func(ins, outs): |
| assert isinstance(ins[0], tvm.tir.Buffer) |
| return tvm.tir.call_packed("myadd", ins[0].data, outs[0].data, m) |
| |
| B = te.extern((m,), [A], extern_func) |
| assert tuple(B.shape) == (m,) |
| |
| |
| def test_extern_multi_out(): |
| m = te.size_var("m") |
| A = te.placeholder((m,), name="A") |
| B = te.compute((m,), lambda i: A[i] * 10) |
| |
| def extern_func(ins, outs): |
| assert isinstance(ins[0], tvm.tir.Buffer) |
| return tvm.tir.call_packed("myadd", ins[0].data, outs[0].data, outs[1].data, m) |
| |
| res = te.extern([A.shape, A.shape], [A, B], extern_func) |
| assert len(res) == 2 |
| assert res[1].value_index == 1 |
| |
| |
| def test_tuple_inputs(): |
| m = te.size_var("m") |
| n = te.size_var("n") |
| A0 = te.placeholder((m, n), name="A0") |
| A1 = te.placeholder((m, n), name="A1") |
| T0, T1 = te.compute((m, n), lambda i, j: (A0[i, j] * 2, A1[i, j] * 3), name="T") |
| s = te.create_prim_func([A0, A1, T0]) |
| |
| |
| def test_tuple_with_different_deps(): |
| m = te.size_var("m") |
| n = te.size_var("n") |
| A0 = te.placeholder((m, n), name="A1") |
| A1 = te.placeholder((m, n), name="A2") |
| B0, B1 = te.compute((m, n), lambda i, j: (A0[i, j] * 2, A1[i, j] * 3), name="B") |
| C = te.compute((m, n), lambda i, j: B0[i, j] + 4, name="C") |
| |
| te.create_prim_func([A0, A1, C]) |
| |
| |
| def test_tensor_inputs(): |
| x = te.placeholder((1,), name="x") |
| y = te.compute(x.shape, lambda i: x[i] + x[i]) |
| assert tuple(y.op.input_tensors) == (x,) |
| |
| |
| if __name__ == "__main__": |
| test_tensor() |
| test_rank_zero() |
| test_conv1d() |
| test_tensor_slice() |
| test_tensor_reduce_multi_axis() |
| test_tensor_comm_reducer() |
| test_tensor_comm_reducer_overload() |
| test_tensor_reduce() |
| test_tensor_reduce_multiout_with_cond() |
| test_tensor_compute1() |
| test_tensor_compute2() |
| test_tensor_scan() |
| test_scan_multi_out() |
| test_extern() |
| test_extern_multi_out() |
| test_tuple_inputs() |
| test_tuple_with_different_deps() |
| test_tensor_inputs() |